Էլեկտրամագնիսական ճառագայթում

Էլեկտրամագնիսական ճառագայթում, էլեկտրամագնիսական ալիքներ, տարածության մեջ տարածվող էլեկտրամագնիսական դաշտի վիճակի փոփոխությունը։ Ըստ հաճախային տիրույթի, էլեկտրամագնիսական ճառագայթները բաժանվում են՝

էլեկտրամագնիսական ճառագայթման սպեկտր

Էլեկտրամագնիսական ճառագայթումը կարող է տարածվել բոլոր միջավայրերում։ Վակուումում էլեկտրամագնիսական ճառագայթումը տարածվում է առանց մարման՝ անկախ հեռավորությունից, բայց որոշ դեպքերում նաև բավականին լավ է տարածվում նյութական միջակայքում՝ ինչ որ չափով փոխելով իր վարքը։

Բնութագրեր

Էլեկտրամագնիսական ճառագայթման հիմնական բնութագրերն են հաճախականությունը, ալիքի երկարությունը և բևեռացումը։ Էլեկտամագնիսական ճառագայթման հատկությունների ու պարամետրերի նկարագրությամբ հիմնականում զբաղվում է էլեկտրադինամիկան։ Ճառագայթման որոշակի սպեկտրների հատկանիշներով զբաղվում են ֆիզիկայի առավել մասնագիտացած բաժինները։ Այդպիսի՝ ավելի մասնագիտացած բաժիններից են օպտիկան (իր բաժիններով) և ռադիոֆիզիկան։

Գոյություն ունեն մանրամասներով և ընդհանրացվածության աստիճանով տարբերվող ֆիզիկական տեսություններ, որոնք թույլ են տալիս մոդելավորել և հետազոտել էլեկտրամագնիսական ճառագայթման հատկություններն ու դրսևորումները։ Նման տիպի ավատրված և փորձված տեսություններից առավել հիմնանարը քվանտային էլեկտրադինամիկան է, որից այս կամ այն պարզեցումների ճանապարհով, ընդհանուր առմամբ, կարելի է ստանալ մյուս տեսությունները։ Օպտիկական ճառագայթման համար կիրառվում է օպտիկան։

Գամմա ճառագայթումը հիմնականում միջուկային ֆիզիկայի ուսումնասիրության առարկան է։ Գոյություն ունեն նաև որոշ ոլորտներ, ինչպիսիք են աստղաֆիզիկան, ֆոտոքիմիան, ֆոտոսինթեզի կենսաբանությունը և տեսողական ընկալումը, սպեկտորալ անալիզի որոշ ոլորտներ, որոնց համար էլեկտրամագնիսակսն ճառագայթումը և դրա փոխազդեցությունը նյութի հետ առանցքային դեր ունեն։

Հիմնական հատկություններ

Էլեկտրամագնիսական ալիքների հիմնական հատկություններն են՝ անդրադարձում, բեկում, ինտերֆերենց, դիֆրակցիա և բևեռացում։

Անդրադարձում և բեկում

Ճառագայթիչ և ընդունիչ տատանակները տեղադրելով մետաղե էկրանի առջևում և հետևում՝ Հերցը հայտնաբերել է, որ էլեկտրամագնիսական ալիքները մետաղե էկրանով չեն անցնում։Մետաղի մակերևույթին ընկնող էլեկտրամագնիսական ալիքի փոփոխական էլեկտրական դաշտի ազդեցությամբ մետաղի ազատ էլեկտրոնները կատարում են հարկադրական տատանումներ՝ ստեղծեով էլեկտրամագնիսական ալիքի հաճախությամբ փոփոխական հոսանք։ Տատանվող էլեկտրոններն արձակում են էլեկտրամագնիսական ալիքներ, որոնց հաճախությունը նույնն է, ինչ ընկող ալիքներինը։ Այսպիսով՝ մետաղի մակերևույթին ընկնող էլեկտրամագնիսական ալիքների էներգիայի մի մասը փոխակերպվում է ջոուլյան ջերմության, քանի որ մետաղն օժտված է ակտիվ դիմադրությամբ, իսկ մնացած մասն անդրադառնում է։

Մետաղե էկրանը փոխարինելով դիէլեկտրիկով (օրինակ՝ ապակիով)՝ էլեկտրամագնիսական ալիքների փոքր մասն է անդրադառնում, իսկ մեծ մասն անցնում է դիէլեկտրիկով։ Եթե ալիքի հաճախությունը զգալիորեն տարբերվում է դիէլեկտրիկի ատոմների և մոլեկուլների սեփական տատանումների հաճախությունից (այսինքն՝ բացակայում է ռեզոնանսը), ապա դիէլեկտրիկը կարող է թափանցիկ լինել էլեկտրամագնիսական ալիքների համար։ Դիէլեկտրական միջավայրով անցնելիս, որպես կանոն, փոխվում է էլեկտրամագնիսական ալիքի տարածման ուղղությունը։ Այդ երևույթն անվանում են ալիքների բեկում։

Ինտերֆերենց

Ինչպես բոլոր տիպի ալիքներին, էլեկտրամագնիսական ալիքներին նույնպես բնորոշ է ինտերֆերենցի երևույթը։Տատանումների միևնույն հաճախությամբ երկու կամ ավելի ալիքների վերադրումից ստացվող արդյունարար ալիքի լայնույթի մեծացման կամ փոքրացման երևույթն անվանում են ալիքների ինտերֆերենց։ Ինտերֆերենցի հետևանքով արդյունարար ալիքի տատանումների լայնույթը տարածության տարբեր կետերում ունի տարբեր արժեքներ։

Ճառագայթման տիրույթներ

Ընդունված է էլեկտրամագնիսական ճառագայթումը բաժանել ըստ հաճախային ընդգրկույթի։ Տիրույթների միջև հստակ անցումներ չկան, իսկ սահմանները պայմանական են։ Քանի որ, էլեկտրամագնիսական ալիքների տարածման արագությունը վակուումում հաստատուն է, ապա տատանումների հաճախությունը խստորեն կապված է ալիքի երկարության հետ։

Տիրույթի անվանումԱլիքի երկարություն, λՀաճախություն, νԱղբյուր
ՌադիոալիքներԳերերկար10 կմ-ից ավելի30 կՀց-ից պակասՄթնորորտային և մագնիսոլորտի երևույթներ, Ռադիոկապ
Երկար10 կմ -1  կմ30 կՀց - 300 կՀց
Միջին1 կմ - 100 մ300 կՀց - 3 ՄՀց
Կարճ100 մ-10 մ3 ՄՀց - 30 ՄՀց
Գերկարճ10 մ - 1 մմ30 ՄՀց - 300 ԳՀց[1]
Ինֆրակարմիր ճառագայթում1 մմ - 780 մ300 ԳՀց - 429 ՏՀցՄոլեկուլների և ատոմների ճառագայթումը ջերմային և էլեկտրական ազդեցությունների դեպքում։
Տեսանելի ճառագայթում780 - 380  նմ429 ՏՀց - 750 ՏՀց
Ուլտրամանուշակագույն380 նմ - 10 նմ7,5×1014 Հց-3×1016 ԳՀցԱտոմների ճառագայթումն արագացված էլեկտրոնների ազդեցությամբ
Ռենտգենյան10 նմ - 5 պմ3×1016 Հց - 6×1019 ՀցԱտոմային պրոցեսները լիցքավորված արագացված մասնիկների ազդեցությամբ
Գամմա5 պմ-ից պակաս6×1019 Հց-ից ավելիՄիջուկային և տիեզերական պրոցեսներ, ռադիոակտիվ տրոհում

Էլեկտրամագինսական անվտանգություն

Էլեկտրամագնիսկան ճառագայթումը որոշակի տիրույթում կարող է բացասական ազդեցություն ունենալ մարդու, կենդանիների և այլ կենդանի արարածների օրգանիզմների վրա։ Չիոնացող ճառագայթումների տարբեր տեսակները (էլեկտրամագնիստական դաշտեր) տարբեր ֆիզիոլոգիական ազդեցություններ են ունենում։

Ծանոթագրություններ

Արտաքին հղումներ

Այս հոդվածի կամ նրա բաժնի որոշակի հատվածի սկզբնական կամ ներկայիս տարբերակը վերցված է Քրիեյթիվ Քոմմոնս Նշում–Համանման տարածում 3.0 (Creative Commons BY-SA 3.0) ազատ թույլատրագրով թողարկված Հայկական սովետական հանրագիտարանից  (հ․ 4, էջ 19