Մասնակից:Kurghinyanmher/Ավազարկղ

Kurghinyanmher/Ավազարկղ
ՄԻԱՎ-ի հակադարձ տրանսկրիպտազի բյուրեղագրական կառուցվածքը։ Գույնով նշված են p51 և p66 ենթամիավորները, և ընդգծված են պոլիմերազային և նուկլեազային ակտիվ կենտրոնները։
Բնորոշիչներ
ՖՀ համար2.7.7.49
CAS համար9068-38-6
Տվյալներ
IntEnzIntEnz կայքում
BRENDABRENDA կայքում
ExPASyNiceZyme կայքում
KEGGKEGG կայքում
MetaCycմետաբոլիզմ
PRIAMPRIAM կայքում
Protein Data BankRCSB PDB PDBj PDBe PDBsum
Գենի օնտոլոգիաAmiGO / EGO

Հակադարձ տրանսկրիպտազ կամ ռեվերտազ, ֆերմենտ, որը ՌՆԹ-ի հիման վրա սինթեզում է կոմպլեմենտար ԴՆԹ (կԴՆԹ)։ Այն գործում է ՄԻԱՎ-ի և հեպատիտ B վիրուսի գենոմները կրկնապատկելու, ռետրոտրանսպոզոնների պրոլիֆերացվելու և էուկարիոտ բջիջներում թելոմերները երկարացնելու համար[1][2][3]։

Ռետրովիրուսային հակադարձ տրանսկրիպտազն ունի երեք հաջորդական կենսաքաիմիական գործառույթներ․ ՌՆԹ-կախյալ ԴՆԹ-պոլիմերազային ակտիվություն, ռինոնուկլեազային ակտիվություն և ԴՆԹ-կախյալ ԴՆԹ-պոլիմերազային ակտիվություն։ Այսպիսով, ֆերմենտը միաշղթա ՌՆԹ-ից ստանում է երկշղթա ԴՆԹ։ Ռեակցիաների նույն հաջորդականությունը կիրառվում է լաբորատորիաներում մոլեկուլային կլոնավորման, ՌՆԹ-ի սեքվենավորման, պոլիմերազային շղթայական ռեակցիայի (ՊՇՌ) և գենոմային վերլուծության մեջ։

Պատմություն

Հակադարձ տրանսկրիտազները հայտնաբերել է Հաուարդ Թեմինը[4] և անջատել է Դեյվիդ Բալտիմորը[5]։ Նրանց ձեռքբերումների համար նրանք ստացան 1975 թվի Նոբելյան մրցանակը «Ֆիզիոլոգիա կամ բժշկություն» ոլորտում։

Լավ ուսումնասիրված հակադարձ տրանսկրիպտազներ են․

  • ՄԻԱՎ-1 հակադարձ տրանսկրիպտազ[6]
  • M-MLV հակադարձ տրանսկրիպտազ (Մոլոնի մկան լեյկոմիայի վիրուս)[7]
  • AMV հակադարձ տրանսկրիպտազ (թռչնի միելոբլաստոզի վիրուս)[7]
  • Թելոմերազ հակադարձ տրանսկրիպտազ (էուկարիոտ բջիջներում ապահովում է թելոմերների կայուն երկարությունը)[8]

Գործառույթը վիրուսներում

Հակադարձ տրանսկրիպտազը իր «մատ», «ափ» և «բութ» հատվածներով։ Ռիբոնուկլեազ H-ի և պոլիմերազի կատալատիկ ակտիվ կենտրոնները ցուցադրված են գնդիկ-և-ձողիկ մոդելով։

Վիրուսների այն խումբը, որն օրգագործում է հակադարձ տրանսկրիպտազը սեփական գենոմը կրկնապատկելու և հետագայում տիրոջ գենոմի մեջ ներկառուցելու համար, կոչվում են ռետրովիրուսներ, եթե նրանց գենոմը ներկայացված է ՌՆԹ-ով, և հեպադնավիրուսներ, եթե նրանց գենոմը ներկայացված է ԴՆԹ-ով։ ՌՆԹ-ից ԴՆԹ-ի սինթեզը կոչվում է հակադարձ տրանսկրիպցիա կամ ռետրոտրանսկրիպցիա։

Հակադարձ տրանսկրիպցիայի ընթացքը

Հակադարձ տրանսկրիպտազը միաշղթա ՌՆԹ-ից ստանում է երկշղթա ԴՆԹ։ Եթե վիրուսը չունի ԴՆԹ-կախյալ ԴՆԹ-պոլիմերազային ակտիվություն, երկշղթա ԴՆԹ-ն սինթեզվում է տիրոջ ԴՆԹ-պոլիմերազ δ-ով, որը «շփոթում» է վիրուսային ԴՆԹ-ն սեփական բջջի դեռևս պրայմեր կապած ԴՆԹ-ի հատվածի հետ, և փոխարինում է ՌՆԹ-ն ԴՆԹ-ով։

Հակադարձ տրանսկրիպցիայի սխալ գործելու հավանականությունը բարձր է, որն էլ պայմանավորում է վիրուսների դիմակայունությունը դեղամիջոցների նկատմամբ։

Հակադարձ տրանսկրիպցիան ռետրովիրուսների մոտ

ՄԻԱՎ-ի հակադարձ տրանսկրիպցիայի մեխանիզմը։

Ռետրովիրուսները ՌՆԹ գենոմ պարունակող հակադարձ տրանսկրիպցիա իրականացնող վիրուսներ են, որոնք իրենց կրկնապատկման ցիկլում գործածում են նաև միջանկյալ ԴՆԹ։ Ռետրովիրուսներ են մարդու իմունային անբավարաության վիրուսը (ՄԻԱՎ), մարդու T լիմֆոտրոֆ վիրուսը (HTLV)։ Երկշղթա ԴՆԹ-ն գոյանում է ցիտոզոլում[9], և այդ գործընթացի հաջորդականությունը ներկայացված է սույն բաժնի պատկերում։

Երկշղթա ԴՆԹ-ի սինթեզի պրոցեսը ներառում է շղթայի տեղափոխում, որի ժամանակ ՌՆԹ-կախյալ ԴՆԹ-պոլիմերազը սինթեզում է ԴՆԹ, որը տրանսլոկացվում է գենոմի ակցեպտորային տեղամաս, որից հետո ԴՆԹ-կախյալ ԴՆԹ-պոլիմերազը վիրուսային ԴՆԹ-ի վրա սինթեզում է երկրորդ շղթան[10]։

Ռետրովիրուսային ՌՆԹ-ի ընթերցման ուղղությունը 5' ծայրից դեպի 3' ծայրն է։ Պրոմոտերի հետ կապվող հատվածը կոչվում է պորոմոտեր կապող տեղամաս, որի 5' ծայրը կոչվում U5, իսկ 3' ծայրը՝ առաջնորդող ծայր։ Պրոմոտեր կապող տեղամասը ավելի մոտ է 5' ծայրին, սակայն հակադարձ տրանսկրիպցիան հարուցվում է 3' ծայրից 5'→3' ուղղությամբ (նոր սինթեզված ԴՆԹ-ի նկատմամբ)։ Այսպիսով, պրայմերը և հակադարձ տրանսկրիպտազը պետք է վերադասավորվեն դեպի 3' ծայր։ Այս գործընթացը իրականացնելու համար գործում են ԴՆԹ պոլիմերազը, ռիբոնուկլեազ H-ը և այլ ֆերմենտներ, տեղի է ունենում պոլինուկլեոտիդեների ապապարուրում և այլն[11][12]։

ՄԻԱՎ-ի հակադարձ տրանսկրիպտազը ունի ռիբոնուկլեազային ակտիվութուն, որով այն քայքայում է վիրուսային ՌՆԹ-ն կԴՆԹ-ի սինթեզի ընթացքում, ինչպես նաև ԴՆԹ-կախյալ ԴՆԹ-պոլիմերազային ակտիվություն, որով իմաստային (սենս) կԴՆԹ-ի շղթայի վրա սինթեզվում է հակաիմաստային (անտիսենս) շղթան։ Այսպես գոյանում է երկշղթա միջանկյալ վիրուսային ԴՆԹ-ն (վԴՆԹ)[13]։ ՄԻԱՎ-ի ՌՆԹ-ի կառուցվածքային տարրերը կարգավորում են հակադարձ տրանսկրիպցիայի ընթացքը[14]։

Բջջային օրգանիզմներում

Էուկարիոտ բջիջների գենոմի ինքնակրկնապատկվող տեսամասերը, որոնք կոչվում են ռետրոտրանսպոզոններ, վերադասավորվում են գենոմի մի տեղամասից մյուսը հակադարձ տրանսկրիպցիայի միջոցով՝ կիրառելով միջանկյալ ՌՆԹ մոլեկուլ։ Ռետրոտրանսպոզոնները առկա են բույսերի և կենդանիների գենոմներում։ Թելոմերազը մարդու և շատ այլ էուկարիոտների մոտ առկա մեկ այլ հակադարձ տրանսկրիպտազ է, որն ունի իր սեփական ՌՆԹ-ն։ Վերջինս կիրառվում է որպես կաղապար ԴՆԹ-ի կրկնապատման համար[15]։

Հակադարձ տրանսկրիպտազի առկայությունը պրոկարիոտներում ուսումնասիրվել է դեռևս 1971 թվականին (Բելյանսկին և գործընկերները) Ֆրանսիայում և մի քանի տարի անց ԽՍՀՄ-ում (Ռոմաշչենկո 1977[16])։ Դրանք կոդավորովում են բակտերիալ գենոմի հատուկ հաջորդականություններով՝ ռետրոններով, որոնք կիրառվում են բազմապատճեն միաշղթա ԴՆԹ-ի սինթեզի մեջ։ ԴՆԹ-ի սինթեզը սկսվում է պրայմերով, որը բակտերիաներում սինթեզվում է կրկնապատկման ժամանակ[17]։

Վալերիան Դոլյան պնդում է, որ վիրուսները, իրենց բազմազանության շնորհիվ, շատ կարևոր ներդրում են ունեցել բջջային կյանքի ձևավորման մեջ, և հակադարձ տրանսկրիպտազը կենտրոնական դեր է կատարել[18]։

Կառուցվածքը

Հակադարձ տրանսկրիպտազը, ինչպես այլ վիրուսային նուկլեինաթթուների պոլիմերզները, նման է աջ ձեռքի[19][20]։ Բացի պոլիմերազից, հակադարձ տրանսկրիպտազն ունի նաև ռիբոնուկլեազ H, որը քայքայելով ՌՆԹ կաղապարը՝ հնարավոր է դարձնում ԴՆԹ-ի մյուս շղթայի սինթեզը[21]։ Քայքայման որոշ ֆրագմենտներ պրայմերի դեր են կատարում ԴՆԹ-պոլիմերազի համար (կա՛մ հակադարձ տրանսկրիպտազի, կա՛մ տեր բջջի)[19]։

Կրկնապատկման ճշտությունը

Ռետրովիրուսի կենսական ցիկլում գործում են կրկնապատկման երեք տարբեր համակարգեր։ Առաջինը վիրուսային ՌՆԹ-ից կոմպլեմենտար ԴՆԹ-ի սինթեզն է հակադարձ տրանսկրիպտազով։ Երկրորդն արդեն իսկ տեր բջջի գենոմում ինտեգրված վիրուսային ԴՆԹ-ի կրկնապատկումն է տիրոջ ԴՆԹ-պոլիմերազով։ Երրորդը նախավիրուսային ԴՆԹ-ի տրանսկրիպցիան է ՌՆԹ պոլիմերազ II-ով և ՌՆԹ մոլեկուլի ստացումն է։ Այս ՌՆԹ-ն հետագայում «փաթեթավորվելու» է վիրիոններում։ Կրկնապատկման փուլերից մեկում կամ մի քանիսում հնարավոր է մուտացիաների առաջացումը[22]։

Հակադարձ տրանսկրիպտազն ունի սխալ գործելու բարձր հավանականություն, քանի որ, ի տարբերություն այլ ԴՆԹ-պոլիմերազների, այն չունի սրբագրման հատկություն։ Սա հանգեցնում է մուտացիաների ավելի արագ կուտակման համեմատած կրկնապատման սրբագրվող փուլերի։ Promega-ի արտադրության կոմերցիոն օգտագործման հակադարձ տրանսկրիպտազների համար նշվում է սխալի հաճախականությունը, որը հավասար է 1:17,000-ի AMV-ի հակադարձ տրանսկրիպտազի և 1:30,000-ի M-MLV-ի հակադարձ տրանսկրիպտազի համար[23]։

Միանուկլեոտիդային պոլիմորֆիզմներ գոյացնելուց բացի հակադարձ տրանսկրիպտազները դերակատարում ունեն հիբրիդային տրանսկրիպտների սինթեզի, էքզոնների նոր կոմբինացիաների ստեղծման և արհեստական հակաիմաստային (անտիսենս) տրանսկրիպտների սինթեզի մեջ[24][25]։ Ենթադրվում է, որ հակադարձ տրանսկրիպտազի կաղապարի փոփոխման հատկությունը, որը հնարավոր է ուսումնասիրել միայն in vivo պայմաններում, հանդիսանում է մոդելային օրգանիզմների գենոմում հազարավոր չանոտացված տրանսկրիպտների հայտնաբերման պատճառը[26]։

Կաղապարի փոփոխություն

Ռետրովիրուսային յուրաքանչյուր մասնիկում տեղակայված են երկու ՌՆԹ գենոմներ, սակայն վարակումից հետո յուրաքանչյուր մասնիկ գոյացնում է միայն մեկ նախավիրուս (պրովիրուս)[27]։ Վարակումից հետո հակադարձ տրանսկրիպցիան ուղեկցվում է հակադարձ տրանսկիրպտազի կաղապարների փոփոխությամբ (ռեկոմբինացիա)[27]՝ մի գենոմից մյուսը։ Գոյություն ունեն երկու մոդելներ, որոնք բացատրում են այս երևույքը։ Առաջինը՝ հարկադրված ընտրության մոդելը, ենթադրում է, որ հակադարձ տրանսկրիպտազը փոխում է իր կաղապարը, երբ այն հանդիպում է խոչընդոտի, հետևաբար գենոմի անբողջականության պահպանման համար ռեկոմբինացիան պարտադիր է։ Երկրորդը՝ դինամիկ ընտրության մոդելը, ենթադրում է, որ կաղապարի փոփոխությունը տեղի է ունենում, երբ ռիբոնուկլեազային ակտիվության արագությունը չի համապատասխանում պոլիմերազային ակտիվության արագությանը, հետևաբար ռեկոմբինացիան տեղի է ունենում պատահականորեն և չի գործում ի պատասխան գենոմային վնասների։ Ռոսոնի և գործընկեների ուսումնասիրությունները հիմավորել է այս երկու մոդելները[27]։ Յուրաքանչյուր ռեպլիկացիոն ցիկլի ընթացքում գենոմի փոփոխությունը տեղի է ունենում 5-14 անգամ[28]։ Կաղապարի փոփոխությունը (ռեկոմբինացիան) անհրաժեշտ է գենոմի ամբողջականությունը պահպանելու համար և կարծես «փրկում» է վնասված գենոմը՝ նորոգելով այն[29][27]։

Կիրառումներ

Հակադարձ տրանսկրիպտազը արգելակող դեղամիջոց զիդովուդինի (AZT) մոլեկուլային կառուցվածքը

Հակավիրուսային դեղամիջոցներ

Քանի որ ՄԻԱՎ-ը կրկնապատկում է իր գենոմը հակադարձ տրանսկրիպտազով և այդպես բազմանում ՝ գոյացնելով վիրուսային նոր մասնիկներ, ստեղծվել են յուրահատուկ դեղամիջոցներ, որոնք ընտրողաբար արգելակում են հակադարձ տրանսկրիցիան։ Այս դեղամիջոցները կոչվում են հակադարձ տրանսկրիպտազի արգելակիչներ, որոնցից են նուկլեոզիդների և նուկլեոտիդների անալոգ զիդովուդինը (առևտրային անվանումը Ռետրովիր), լամիվուդինը (առևտրային անվանումը Էպիվիր) և տենոֆովիրը (առևտրային անվանումը Վիրեադ), ինչպես նաև ոչ նուկլեոզիդային արգելակիչ նևիրապինը (առևտրային անվանումը Վիրամուն)։

Մոլեկուլային կենսաբանություն

Հակադարձ տրանսկրիպտազը հնարավորություն է տալիս պոլիմերազային շղթայական ռեակցիան կիրառել ՌՆԹ-ի համար (հակադարձ տրանսկրիպտազի կիրառումով պոլիմերազային շղթայական ռեակցիա՝ ՀՏ-ՊՇՌ/RT-PCR)։ Դասական ՊՇՌ-ն կիրառվում է միայն ԴՆԹ-ի դեպքում, սակայն հակադարձ տրանսկրիպտազի օգնությամբ ՌՆԹ-ն տրանսկրիպտվում է ԴՆԹ-ի, այսպիսով հնարավոր դարձնելով ՌՆԹ մոլեկուլների ՊՇՌ անալիզը։ իՌՆԹ-ից կԴՆԹ-ի դարանների ստեղծման գործում նույնպես կիրառվում է հակադարձ տրանսկրիպտազը։ Շուկայում հակադարձ տրանսկրիպտազի հայտնվելը նպաստել է մոլեկուլային կենսաբանության զարգացմանը, հատկապես ՌՆԹ-ի կլոնավորման, սեքվենավորման և բնութագրման համար։

Տես նաև

Ծանոթագրություններ

Արտաքին հղումներ