Atomkraftverk

elektrisk energi
Se også Liste over verdens største kjernekraftverk

Et atomkraftverk er et kraftverk som fremstiller elektrisk energi ved hjelp av kjernekraft. Den 20. desember 1951 ble elektrisk strøm for første gang produsert av en atomreaktor, og tre år senere ble det første offisielle atomkraftverket satt i konvensjonell bruk i Obninsk, Russland). Neste anlegg ble Calder Hall i Storbritannia, som åpnet i 1954.

Reaktor 3 på det svenske atomkraftverket Forsmark

Det finnes forskjellige typer atomkraftverk, men alle bruker samme kraftkilde; spalting av atomer. Det er kjøle- og moderasjonsprosessen som avviker mellom verkene. Kraftverkene kan produsere alt fra 40 MW til nesten 10 000 MW. Nye reaktorer er ofte standardiserte fra de store, internasjonale produsentene – og produserer vanligvis enten ca. 1 000 MW eller 2 000 MW. Teoretisk sett kan nesten hele verdens strømforsyning dekkes av atomkraft.

Atomkraftverk er kontroversielle på grunn av behovet for lagring av radioaktivt avfall i svært lang tid. I tillegg vil konsekvensene ved en ulykke være store dersom ulykken fører til betydelig utslipp. Den mest kjente atomkraftulykken skjedde i 1986, kjent som Tsjernobylulykken, da en reaktor i Tsjernobyl i det tidligere Sovjetunionen smeltet ned . Det radioaktive utslippet kunne spores i hele Nordøst-Europa, en rekke byer måtte evakueres, og tjue år etter (2006) uhellet er et område på 2 600 km2 i Ukraina fortsatt ubeboelig.

Oppbygning og virkemåte

Atomkraft kan bygge på fisjon eller fusjon. Konstruksjon og drift av fisjonsreaktorer har funnet sted i en menneskealder, mens utnyttelse av fusjonsreaktorer ennå befinner seg på prøvestadiet. Med atomkraft menes derfor inntil videre i overveiende grad fisjonskraft.

Kjernereaktoren er den sentrale komponenten i et kjernekraftverk. I reaktoren forløper de energigivende kjernereaksjonene. Energien frigis i form av varme og ioniserende stråling. Sistnevnte nødvendiggjør forskjellige former for avskjerming. Varmen benyttes til å fordampe vann. Vanndampen ledes under høyt trykk gjennom turbiner, som genererer elektrisk energi. Etter å ha passert turbinene fortettes vanndampen på ny. Til dette formålet benyttes kjølevann, som f.eks. kan hentes i en elv. På bilder av kjernekraftverk vises ofte vanndampen som siger opp av reaktorene. Det finnes flere typer kjernereaktorer i verden, men trykkvannsreaktor og kokevannsreaktor er de to mest utbredte. På grunn av det store behovet for vann som kjølemiddel, bygges kjernekraftverk ofte langs kysten eller i nærheten av en elv eller innsjø.

Animert diagram av en trykkvannsreaktor.

Trykkvannsreaktor

Trykkvannsreaktoren (PWR – Pressurized Water Reactor) er en reaktortype hvor moderator og kjølemiddel består av alminnelig vann under høyt trykk. Det høye trykket gjør at vannet ikke koker. Dette er den vanligste reaktortypen i verden. Over halvparten av alle reaktorer brukt innenfor kommersiell atomkraft er av denne typen.

Kokevannsreaktor

Animert diagram av en kokevannsreaktor.

Kokvannsreaktoren (BWR – Boiling Water Reactor) har også stor utbredelse på verdensbasis. Også denne reaktoren blir både kjølt og moderert av lettvann. Som navnet påpeker, utgjør kjølemiddelet her kokende vann. Dampen ledes til turbinene før den kondenserer og ledes tilbake til reaktortanken.

Det brukte brenslet utgjør et stort problem. Kjerneavfallet kan gjenbrukes etter en tur igjennom et opparbeidingsanlegg, utnyttes i forbindelse med produksjon av nytt brensel eller deponeres. Brukt brensel i fra kommersielle kjernekraftanlegg er imidlertid lite egnet til kjernevåpen. Det utøves ekstrem stor forsiktighet ved håndtering av kjerneavfallet, da det dels er sterkt radioaktivt, dels ikke må havne i «de ondes hender».

Utbredelse og produksjon

Kart som viser status for kommersielle kjernekraftprogrammer i verdens land, 2009.

Per februar 2012 er det 190 kjernekraftverk i drift med 436 atomreaktorer fordelt på 31 land, som tilsammen dekker 15-20 % av verdens elektrisitetsforbruk. Installert produksjonskapasitet er ca. 370 000 MW, som gir en strømleveranse på 2 586 TWh, eller drøye 20 ganger mer enn Norges kraftproduksjon. Atomkraftverk stenges gjerne ved konsesjonsutløp etter 20-40 år, da er anlegget nedslitt og må fornyes. Atomkraftverk er i frammarsj, og land som Kina, India, Japan, Russland, Finland, Frankrike, Sør-Korea og Sør-Afrika satser på disse kraftverkene som en hovedkilde for å dekke landets energiforbruk. I tillegg er det mye som tyder på at USA også vil bygge nye atomkraftverk i fremtiden. USA (104), Frankrike (58), Japan (50) og Russland (33) har flest reaktorer.

På kort tid har Sør-Korea bygget seks verk med i alt 23 reaktorer, som gir dem femteplassen blant verdens atomkraftnasjoner. Enkelte europeiske land som tidligere har besluttet å avvikle atomkraft, som Sverige, har vedtatt å bygge nye. Ifølge Det internasjonale energibyråets prognoser vil den samlede effekten fra verdens atomkraftverk øke til 427 gigawatt i 2020. Selv om Tyskland etter Fukushima-ulykken besluttet å gi opp kjernekraft som energikilde er det i dag allikevel få som forutser avvikling av kjernekraft. Omkring 200 gamle anlegg antas å bli stengt i løpet av de neste 10–15 årene. Tabellen nedenfor viser antallet kjernekraftverk, reaktorer, og produksjonskapasitet (effekt) i de landene som utnytter kjernekraft.

LandReaktorer 2012Stengte reaktorerUnder byggingKapasitets
utnyttelse
An-
tall
Netto-
effekt
(MW)
Brutto-
effekt
(MW)
An-
tall
Netto-
effekt
(MW)
Brutto-
effekt
(MW)
An-
tall
Netto-
effekt
(MW)
Brutto-
effekt
(MW)
Produksjon
(TWh 2011)
Andel
(%)
Argentina29351 00516927455,95,0
Armenia137540813764082,433,2
Belgia75 9276 2121101245,954,0
Brasil21 8841 99011 2451 35015,63,2
Bulgaria21 9062 00041.6321 76016,332,6
Canada1812 60413 42573 0523 24185,215,1
Finland42 7362 84011 6001 72022,331,6
Frankrike5863 13065 880123 7894 24011 6001 650421,077,7
India204 3914 78074 8245 30028,93,7
Iran1915100080,00,04
Italia41 4231 472
Japan5044 21546 148104 5834 816226502756156,218,1
Kasakhstan15290
Kina1611 68812 5632626 62029 31787,41,9
Litauen22 3702 600
Mexico21 3001 3649,33,6
Nederland1482515155583,93,6
Norge2000----
Pakistan372578726306803,83,8
Romania21 3001.41211,719,0
Russland3323 64325 8175786849108 2038 630155,117,1
Storbritannia179 70311 442283 4354 26556,415,7
Sverige109 2309 76431 2101 24258,039,6
Sveits53 2633 43016625,740,9
Slovakia41 8161 95039091023278288014,354,0
Slovenia16887275,941,7
Spania87 5677 728262165055,119,5
Sør-Afrika21 8301 91012,95,2
Sør-Korea2320 67121 58233 6403 800147,734,6
Taiwan65 0185 22522 6002 70040,519,0
Tsjekkia63 7663 97626,733,0
Tyskland912 06812 6962714 30115 158102,317,8
Ukraina1513 10713 83543 5003 80021 9002 00084,847,2
Ungarn41 8892 00014,743,3
USA104101 240106 496289 76410 31211 1651 218790,219,3
Verden436370 012390 90714451 87456 0026158 15162 7462 586,1

Atomkraftverk på Vestlandet

«Kjernekraft i Bergens-regionen rundt år 2000» stod det som overskrift i Bergens Tidende 15. august 1973, som opplyste at Norges Vassdrags- og elektrisitetsvesen (NVE) dro på befaring med tanke på byggetomt for kjernekraftverk. Blant 11 aktuelle kandidater finner vi Ostereidet, Krossnes, Krokeide, Bogøy og Trengereid-fjorden.

Imidlertid var ikke befolkningen blitt spurt. Skepsisen var enorm, og bare i Lindås kommune ble det samlet inn over 4 000 underskrifter mot prosjektet. 16. oktober 1974 stod grunneierne på Hodnelandsmarka i Lindås vakt for å hindre NVE i å få båt på Austevatnet for å foreta seismiske målinger. Vaktlag fortsatte i de følgende dagene å hindre NVEs adkomst til vannet, og i løpet av oktober 1974 kapitulerte NVE for det de kalte «sterk folkelig motstand». I gymsalen på ungdomsskolen i Eikelandsosen stod varmekraftsjef Ingvald Haga og forsvarte prosjektet med at risikoen for ulykker lå på en gang på et par millioner år, og at en eventuell ulykke ikke ville være større enn en flyulykke med et par hundre døde. Dette overbeviste ikke de fremmøtte, og våren 1975 vedtok Stortinget en foreløpig stans i planleggingen av atomkraftverk i Norge.[1]

Se også

Referanser

Eksterne lenker