அணு மின் நிலையம்

அணு மின் நிலையம் (nuclear power plant, NPP) ஒன்று அல்லது பல அணுக்கரு உலைகளிலிருந்து வெப்ப ஆற்றலைப் பயன்படுத்தும் ஓர் அனல் மின் நிலையம் ஆகும். ஓர் வழமையான அனல் மின் நிலையம் போன்றே இங்கும் வெப்பம் மூலம் நீராவி உருவாக்கப்பட்டு நீராவிச்சுழலியுடன் இணைக்கப்பட்டுள்ள மின்னாக்கி மூலம் மின்சாரம் உற்பத்தி செய்யப்படுகிறது. இது யுரேனியம், தோரியம் போன்ற அணுக்கருக்களை எரிபொருளாக பயன்படுத்தும் மின்நிலையமாகும். இங்கும் வழக்கமான அனல்மின் நிலையங்களைப் போலவே, வெப்பம் நீராவியை உண்டாக்கி அதன்வழியாக நீராவிச் சுழலி இயக்கப்படுகிறது. இந்நீராவிச் சுழலி தன் அச்சுத்தண்டில் பூட்டியுள்ள மின்னாக்கியை (மின்னியற்றியை) இயக்குகிறது.பன்னாட்டு அணு ஆற்றல் முகமையத்தின் 2014 ஏப்பிரல் 23 ஆம் நாள் அறிவிப்பின்படி உலகில் 31 நாடுகளில்[1] 435 அணுக்கரு உலைகள் இயக்கத்தில் உள்ளதாக அறியப்படுகிறது .[2] இவற்றில் பயன்படும் எரிபொருளின் அடக்கவிலை மின்னாக்கச் செலவில் சிற்றளவாக உள்ளதால் இவை தொடர்ந்து இயங்கவல்ல அடிப்படைச்சுமை மின் நிலையங்களாக மின் கட்டமைப்பில் இயக்கப்படுகின்றன.[3]

செர்மனியில் பவேரியாவில் உள்ள கிரேப்பன்ரீன்பீல்டு அணுக்கரு மின் நிலையம். அணுக்கரு உலை நடுக்கோளச் சிறைப்புக் கட்டிடத்தில் உள்ளது. இடதிலும் வலதிலும் வழக்கமாக அனல்மின் நிலையங்களில் உள்ள குளிர்த்தும் ஏற்பாடுகள் (சாதனங்கள்) உள்ளன. இவை கதிரியக்கமற்ற நீராவிச் சுழலிகள் உமிழும் நீரை ஆவியாக வெளியேற்றுகின்றன.
சுலோவாக்கியாவில் உள்ள யாசுலோசுக்ய பொகுனிசு அணுக்கரு மின் நிலையம்.

மாறாத மின்திறனை வழங்கக்கூடிய அணு மின் நிலையங்கள் வாடிக்கையாளர்களின் உச்ச அடிப்படை மின் தேவையை சிக்கனமாக (base load) வழங்கக்கூடிய அடிப்படை மின் நிலையங்களாக (base load stations) கருதப்படுகின்றன.மேலும் இவை சிக்கனமான மின்திறனை வழங்குவதால் நிறுத்தப்படாமல் எப்போதும் இயங்கிக் கொண்டிருப்பதாலும் அடிப்படை மின் நிலையங்கள் எனப்படுகின்றன.

வரலாறு

ஓர் அமெரிக்க அணுக்கரு மின் நிலையக் கட்டுபாட்டறை.

அணுக்கரு உலை வழியாக மின்சாரம் முதன்முதலில் அமெரிக்க டென்னசு கணவாய் ஓக்பிரிட்ஜில் அமைந்த X-10 கிராபைட்டு உலையால் 1948 செப்டம்பர் 3 இல் வழங்கப்பட்டது. இதுவே முதலில் மின் விளக்குகளுக்கு மின்சாரம் வழங்கிய அணுக்கரு மின் நிலையம் ஆகும்.[4][5][6] இரண்டாம் பெரிய செய்முறை நிலையம் 1951 திசம்பர் 20 இல் உருவாக்கப்பட்டது. EBR-I எனும் இந்த செய்முறை நிலையம் அமெரிக்காவில் இதாகோவில் அமைந்த ஆர்க்கோ எனும் இடத்துக்கு அருகில் அமைக்கப்பட்டது. முதலில் மின் கட்டமைப்பில் மின்சாரம் வழங்கிய நிலையம் சோவியத் ஒன்றியத்தில் ஒபின்சுக் நகரில் 1954, ஜூன் 27 இல் ஒபின்சுக் அணுக்கரு மின் நிலையம் என்ற பெயரில் அமைக்கப்பட்டது.[7]

நிலைய அமைப்புகள்

கொதிநீர் அணு உலையின் வகைப்படிமம்.
அழுத்தம் ஊட்டிய நீர் அணு உலை

இவற்றில் வழக்கமான அனல்மின் நிலையங்களைப் போலவே மறைமுகமாக மின்சாரம் உண்டாக்கப்படுகிறது. அணுக்கரு உலையின் அணுப்பிளவு வினை உலையின் குளிர்த்தியை சூடாக்குகிறது. குளிர்த்தியாக நீரோ வளிமமோ அல்லது நீர்ம வடிவில் உள்ல பொன்மமோ (Metal) பயன்படுகிறது. உலையின் குளிர்த்தி பிறகு நீராவியை உருவா கொதிகலனுக்குச் சென்று நீரைச் சூடாக்கி நீராவியை உருவாக்குகிறது. இந்த அழுத்தம் ஊட்டிய நீராவி பலகட்ட நீராவிச் சுழலிக்குள் பாய்கிறது. சுழலி நீராவியை விரிவாக்கி ஓரளவு செறிவும் ஊட்டியதும் எஞ்சும் ஆவி வடிவ நீர் செறிகலனுக்குச் சென்று மேலும் செறிந்துக் குளிர்கிறது. செறிகலன் ஒரு வெப்பப் பரிமாற்றியாகும் இது மறுபுறம் ஆற்று நீருடனோ கடல்நீருடனோ அல்லது குளிர்த்தும் கோபுரத்திலோ இணைக்கப்படுகிறது. பிறகு அந்த நீர் மீண்டும் கொதிகலனுக்குள் எக்கி வழியாக ஏற்றப்படுகிறது. இந்த வட்டிப்பு அல்லது சுழற்சி மீண்டும் தொடங்குகிறது. நீர்-நீராவி சுழற்சி இரேங்கைன் சுழற்சியைப் பின்பற்றுகிறது.

அணுக்கரு உலைகள்

அணுக்கரு உலைகள் ஓர் அணுக்கருத் தொடர்வினையைத் தொடங்கிக் கட்டுபடுத்தும் எற்பாடு அல்லது சாதனமாகும். அணுக்கரு உலை அணுக்கரு மின் நிலையங்களிலும் அணுக்கருக் கப்பல்களைச் செலுத்தவும் பயன்படுகிறது.

அணுக்கரு உலைகள் தம் தொடர்வினைக்கு யுரேனியத்தை எரிபொருளாகப் பயன்படுத்துகின்றன. யுரேனியம் ஓர் உயரெடைத் தனிம மாகும். இது புவியில் கடல்நீரிலும் பாறைகளிலும் பேரளவில் கிடைக்கிறது. இயற்கையில் இது இருவகை ஓரகத் தனிமங்களாகக் கிடைக்கிறது: யுரேனியம்-238 (U-238) (99.3%) யுரேனியம்-235 (U-235) (0.7 %). ஓரகத்தனிமங்கள் நொதுமிகளின் எண்ணிக்கை வேறுபடும் ஒரே தனிமத்தின் வடிவங்களாகும். எனவே U-238 இல் 146 நொதுமிகளும் U-235 இல் 143 நொதுமிகளும் உள்ளன. ஒவ்வொரு ஓரகத்தனிம்மும் வேறுபட்ட பண்புகளைக் கொண்டமையும். எடுத்துகாட்டாக, U-235 பிளக்க முடிந்தது. பிளவு வினையின்போது இது ஏராளமான ஆற்றலை வழங்குகிறது. எனவே இது அணுக்கரு உலைக்கு உகந்த எரிபொருளாகும். ஆனால், U-238 ஐப் பிளத்தல் அரிது. மேலும் வேறுபட்ட ஓரகத்தனிமமும் வேறுபடும் அரை-வாழ்நாளைப் பெற்றுள்ளன. அரைவாழ்நாள் என்பது தனிமம் தனது அரைப்பகுதி சிதைந்துப் பாதியாகப் பிடிக்கும் கால அளவாகும். U-238 நெடிய அரை வாழ்நாளை U-235 அதைவிடக் குறைவான அரை வாழ்நாளையும் பெற்றுள்ளன. எனவே முன்னது சிதைய நெடுங்காலமாகும். இதனால் U-238, U-235 ஐ விட குறைவான கதிரியக்கம் உடையதாகும்.

அணுக்கரு உலை மின் நிலையத்தின் உயிர்நாடியாகும். இதன் நடுப்பகுதியில் தொடர்வினையால் வெப்பம் உருவாகிறது. இந்த வெப்பம் குளிர்த்தியை உலைவழியாகப் போகும்போது சூடேற்றுகிறது. உலையில் அணுக்கரு பிளவால் கிடைக்கும் வெப்பம் நீராவிக்கலனில் நீராவியாக்கப் பயன்படுகிறது. இந்நீராவி நீராவிச்சுழலிகளை இயக்குகிறது. நீராவிச்சுழலிகள் கப்பலின் செலுத்துபொறியையோ மின்னாக்கியையோ இயக்குகிறது.

அணுக்கருப் பிளவு வினை கதிரியக்கத்தை உண்டாக்குவதால், உலையின் கரு அல்லது அகடு காப்புக் கவசத்தால் சூழப்பட்டுள்ளது. இது கதிர்வீச்சை உறிஞ்சி, கதிரியக்கஒ பொருள் சூழலில் பரவாமல் தடுக்கிறது.மேலும் உலையை உள்ளேதங்களில் இருந்தும் வெளித்தாக்கங்களில் இருந்தும் காக்க, உலையைச் சுற்றிக் கற்காரைச்சுவர் கும்மட்டம் கட்டியெழுப்பப்படுகிறது.[8]

நீராவிச் சுழலிகள்

நீராவிச்சுழலி நீராவியின் வெப்ப ஆற்ரலை இயக்க ஆற்றலாக மாற்றுகிறது. நீராவிச் சுழலி அணுக்கரு உலைக் கட்டிடத்தில் இருந்து தனிப்படுத்தி வைக்கப்படுகிறது.மேலும் இயங்கும் நீராவிச் சுழலி சிதைய நேர்ந்தால் அதன் சிதிலங்கள் அணுக்கரு உலையைத் தாக்காதவாறு நிறுவப்படுகிறது.[சான்று தேவை]

உயரழுத்த நீர் உலையில் நீராவிச் சுழலி அணுக்கரு அமைப்பில் இருந்து தனிமைப்படுத்தி வைக்கப்படும்..நீராவிச் சுழலியின் கசிவால் கதிரியக்க நீர் தொடக்கக் கட்டடத்துக்குள் சென்றால் கண்டறிய ஒரு கதிரியக்க அளவி நீராவிக்கலனின் வெளித் தடத்தில் நிறுவப்பட்டிருக்கும். மாறாக கொதிநீர் உலைகள் கதிரியக்க நீரை நீராவிச் சுழலி வழியாக கடத்துகின்றன. இதனால் சுழலி, மின் நிலையக் கட்டுபாட்டறையின் ஒரு பகுதியாக கண்காணிக்கப்படுகிறது.

மின்னாக்கி

மின்னாக்கி அல்லது மின்னியற்றி இயக்க ஆற்றலை மின் ஆற்றலாக மாற்றுகிறது. இப்பணியை குறைவான காந்தமுனைகளும் உயர் நிறுவு திறனும் உள்ள மாமி ஒத்தியங்கு மின்னாக்கிகள் நிறைவேற்றுகின்றன.

குளிர்த்தும் அமைப்பு

குளிர்த்தும் அமைப்பு உலை வெப்பத்தை நிலையத்தின் வேறுபகுதிக்குக் கொண்டுசெல்கிறது. இவ்வெப்பம் மின்னாக்கத்துக்கோ வேறு பயன்பாடுகளுக்கோ உதவும். வழக்கமாக இந்த சூடான குளிர்பொருள் கொதிகல ஆற்றல் வாயிலாகப் பயன்படுகிறது. கொதிகல்ன் தரும் அழுத்த நீராவி மற்றொரு நீராவிச் சுழலியை இயக்கும். இந்நீராவிச் சுழலி மின்னாக்கிகளை இயக்கும்.[9]

காப்புக் கவாடங்கள்

நெருக்கடி நேரத்தில் உலை வெடிக்காமலும் குழாய்கள் உடையாமலும் இருக்க காப்புக் கவாடங்கள் பயன்படுத்தப்படுகின்றன. கவாடத்துக்குத் தரப்படும் பாய்வு வீதங்கள் சற்றே கூடுதல் அழுத்தத்தில் இருக்குமாறு கவாடம் வடிவமைக்கப்படும். கொதிநீர் உலையில் நீராவி நேரடியாக தணிப்பு அறைக்கு அனுப்பிச் செறிய வைக்கப்படும். வெப்பப் பரிமாற்றியில் உள்ள இந்தத் தணிப்பு அறை இடைநிலைக் குளிர்த்தல் சுற்றுடன் இணைக்கப்படும்.

நீரூட்டும் எக்கி (ஏற்றி)

கொதிகலனிலும் உலையிலும் உள்ள நீர்மட்டம் நீரூட்ட அமைப்பால் கட்டுபடுத்தப்படுகிறது. நீரூட்டும் அமைப்பு செறிகல நீரை அழுத்தமூட்டி அழுத்தநீர் உலைகளில் நேரடியாக உயர்விசையோடு நீராவிக்கலனுக்குச் செலுத்தும்; ஆனால், கொதிநீர் உலைகளில் நேரடியாக உலைக்கே அனுப்பிவிடும்.

நெருக்கடிநேர மின் வாயில் (வழங்கல்)

அணுக்கரு மின் நிலையங்களுக்கு இருவேறான மின்வழங்கும் வாயில்கள் அவை இயங்காதபோது தேவைப்படுகின்றன.இவை நிலைய மின்மாற்றிகளுக்குத் திறனூட்டத் தேவையாகின்றன, எனவே இவை நிலைய மின்வங்கு முற்றத்தில் இருந்து தனியாகவும் தொலைவிலும் அமையவேண்டும். இவற்றுக்கு மின்சாரம் தர பல வேறான மின்செலுத்த்த் தொடர்கள் பின்னணியில் இருத்தல் வேண்டும்.கூடுதலாக, சில அணுக்கரு மின் நிலையங்களில் சுழலி மின்னாக்கியே மின் நிலைய இல்லச் சுமைகளுக்கு, மின்னாக்கி வெளியீட்டில் உள்ள நிலைய மின்னூட்டப் பெருந்தண்டில் இருந்து, உயர்த்தும் மின்மாற்றி, நிலையச் சேவை மின்மாற்றிகள் வழியாக மின்சாரம் தருகிறது (இந்நிலையங்களில் வலையிணைப்பு முற்றத்தின் ஊடாக பொது மின்கட்டமைப்பில் இருந்தும் மின்சாரத்தை நேரடியாகப் பெறும் சேவை மின்மாற்றிகளையும் கொண்டுள்ளன). இதுபோல இரண்டு கூடுதை மின்வாயில்கள் உள்ளநிலையிலும் மின் நிலையத்துக்கு மின்சாரம் கிடைக்காமல் போக வாய்ப்புண்டு. வெளியில் இருந்து மின்சாரம் கிடைக்காமலும் குறிப்பிட்ட நிலைய அணி மின்நிறுத்தத்திலும் உள்ளபோது நிலையப் பதுகாப்பைப் பேணிட, அணுக்கரு மின் நிலையங்கள் நெருக்கடி மின்வாயில் ஒன்றைப் பெற்றிருக்கும். மேலும் மின்கல அடுக்குகள் அளத்தல், கட்டுபாட்டு அமைப்பு, கவாடங்கள் ஆகியவற்றுக்குத் தடங்கல் இல்லாத மின்சாரம் தருகின்றன. இம்மின்கல அடுக்குகளுக்கும் மின்னோடியால் இயங்கும் எக்கிகளுக்கும் டீசல் மின்னாக்கிகள் நேரடியாக மாமி மின்திறனை வழங்குகின்றன. நெருக்கடிநேர டீசல் மின்னாக்கிகள் நிலையத்தின் அனைத்து இனை, துணை அமைப்புகளுக்கம் வழங்காது; உலைப் பாதுகாப்பைப் பேண அதைநிறுத்தவல்ல அமைப்புகளுக்கும் உலையில் இருந்து அணுச்சிதைவு வெப்பத்தினை வெளியேற்றி உடனடியாக உலையகட்டைக் குளிர்த்தும் அமைப்புகளுக்கும் மட்டுமே வழங்கும். சில நிலையங்களில் பயன்படுத்திய எரிபொருளைக் குளிர்த்தவும் கூட மின்சாரம் வழங்கப்படுகிறது.நிலையத்தில் உள்ல முதன்மை ஊட்டுநீர், செறிவூட்டி, சுழற்சிநீர், உலைக்குளிர்த்தல் போன்ற பயன்பாடுகளுக்கான பெரிய அளவு எக்கிகளுக்கு டீசல் மின்னாக்கிகள் மின்சாரம் வழங்குவதில்லை.

மின் நிலையப் பணியாளர்த் தொகுதி

  • அணுக்கருப் பொறியாளர்கள்
  • உலை இயக்குவோர்கள்
  • எந்திரப் பொறியாளர்கள்/உடல்நல இயற்பியலாளர்கள்
  • மின் நிலைய நெருக்கடிநேரச் செயல்பாட்டுக் குழுப் பணியாளர்கள்
  • அணுக்கரு ஒழுங்குமுறை ஆணையத்தின் நிலைய ஆய்வாளர்கள்

பொருளியல்

புரூசு அணு மின் நிலையம் [10]

அணுக்கரு மின் நிலையங்களின் பொருளியல் முரண்பாட்டுச் சிக்கல் வாய்ந்ததாகும். இது ஏன், ஆற்றல் வாயிலைத் தேர்வு செய்வதே பலகோடி உரூபாய் முதலீட்டுச் சிக்கல் உள்ளதாகும். இந்நிலையங்களின் நிறுவல் முதல் உயர்வானதாகும். ஆனால் எரிபொருள் செலவோ மிகவும் குறைவானதாகும். இது எரிபொருள் பிரித்தெடுப்பு, பதப்படுத்தல், பயன்படுத்திய எரிபொருளின், தேக்கச் செலவுகளையும் உள்ளடக்கியதே. எனவே, மற்ற மின்னாக்க முறைகளோடு ஒப்பிடும்போது உகந்த பொருளியல் சிக்கனம் வாய்ப்பது நிலையக் கட்டுமானக் கால அளவு, முதலீட்டு வாய்ப்பு ஆகிய கூறுபாடுகளைச் சார்ந்துள்ளது. செலவு மதிப்பீடுகள் அணுக்கரு மின் நிலைய இயக்க நிறுத்தம், பயன்படுத்திய எரிபொருளின் தேக்கச் செலவுகள் அல்லது எதிர்கால மின் நிலையப் பயன்பாட்டுக்கான (நான்காம் தலைமுறை உலைகளுக்கான) மீளாக்கச் செலவுகள் ஆகியவற்றையும் உள்ளடக்கும். இந்த புதிய எதிர்கால மின் நிலையங்கள் அணுக்கரு எரிபொருள் சுழற்சியை முற்றிலும் மூடுதிறத்தோடு வடிவமைக்கப்படுகின்றன.

மற்றொருவகையில் இந்த கூடுதலான முதலீட்டுச் செலவு கரி உமிழ்வு வணிகம் சார்ந்த கரிவரிவிதிப்பைத் தவிர்த்து மாசில்லா மின்னாக்கத்துக்கு வழிவகுப்பதால் பொருளியலாக வரவேற்கப்படுகிறது. மேலும் மேம்பட்ட மூன்றாம், நான்காம் தலைமுறை உலைகளின் வடிவமைப்பால் இவை கூடுதலான திறமையோடு இயங்குமென எதிர்பார்க்கப்படுகிறது. மூன்றாம் தலைமுறை உலைகளின் திறமை 17% அளவு கூடும் எனவும் நான்காம் தலைமுறை உலைகளின் வடிவமைப்பில் பயன்படுத்திய அணுக்கரு எரிபொருளேதும் எஞ்சாதெனக் கூறப்படுகிறது.

கிழக்கு ஐரோப்பாவில் பல நெடுநாள் திட்டங்கள் நிதி கிடைக்காமல் திணருகின்றன. குறிப்பாக, பல்கேரியாவின் பெலீன் நிலையம், உரொமேனியாவில் உள்ளசெர்நவோடா நிலையக் கூடுதல் உலைகள் நிதியின்றித் தவிக்கின்றன. பின்னணியில் இருந்த நிதியாளர்கள் பின்வாங்கிவிட்டனர்.[11] மேலும் இங்கு மலிவான வளிம வாயில் கிடைப்பதாலும் அதன் எதிர்காலக் கிடைப்பும் உறுதியாக உள்ளதாலும் இதுவும் அணுக்கரு நிலையத் திட்டங்களுக்கு குந்தகமாக விளங்குகிறது.[11]

அணுக்கரு மின் நிலையப் பொருளியல் ஆய்வு எதிர்கால உறுதியின்மைகளுக்கான இடர்களுக்கு யார் பொறுப்பு ஏற்பது என்ற தகவலையும் கணக்கில் எடுத்துக் கொள்ளவேண்டும். இன்றளவில், அனைத்து இயக்கத்தில் உள்ள நிலையங்களையும் அரசுரிமையிலோ அல்லது சட்ட ஒழுங்குமுறைக்கு உட்பட்ட மின்பயனீட்டுக் குழுமத்தின் தனிவல்லாண்மை உரிமையிலோ உள்ளன.[12] இவற்றில்கட்டுமானச் செலவு, இயக்கச் செலவு, எரிபொருள் செலவு, பிற கூறுபாடுகள் ஆகியவற்றைச் சார்ந்த இடர்பொறுப்பு மின்வழங்குவோரிடம் இல்லை; மாறாக மின்நுகர்வோர் தலையிலேயே கட்டப்படுகிறது. இப்போது பல நாடுகள் மின்வணிகத்தைத் தாராளமயமாக்கி விட்டன. இந்நிலையில் நிலைய இடர்கள் அனைத்துமே நுகர்வாளரிடம் விடாமல் முதலீட்டை மீட்பதற்கும் முன்பாகவே சிக்கனப் போட்டியாளரின் பொறுப்பிலும் நிலைய விற்பனையாளர் பொறுப்பிலும் நிலைய இயக்குவோரின் பொறுப்பிலும் வந்துள்ளது. இதனால், அணுக்கரு மின் நிலையப் பொருளியலில்முற்றிலும் புதிய மதிப்பீட்டு முறை உருவாகியுள்ளது.[13]

அண்மையில் 2011 இல் நிகழ்ந்த புகுழ்சிமா அணுக்கரு ஏதத்திற்குப் பிறகு நடப்பில் இயங்கும் நிலையங்கள், எதிர்கால நிலையங்களின் அடக்கச் செலவும், நிலைய இருப்பிட எரிபொருள் மேலாண்மையின் செலவும் மேம்பட்ட வடிவமைப்புச் செலவும் கூடுவதால், உயர வாய்ப்புள்ளது.[14] என்றாலும்,பல நடப்பு வடிவமைப்புகள், (AP1000 போன்றவை) வினைப்புறக் குளிர்த்து அமைப்பைப் பயன்படுத்துவதால், குளிர்த்து அமைப்புக்கான தேவையற்றக் கூடுதல் பின்னணிப் பாதுகாப்புக் கருவிகள் பெரிது தவிர்க்கப்படுகின்றன.

பாதுகாப்பும் ஏதங்களும் (நேர்ச்சிகளும்)

சார்லசு பெரோ தன் இயல்பான ஏதங்கள் (விபத்துகள்) எனும் நூலில் சிக்கலான, இறுக்கமாக இணைவுற்ற அணுக்கரு உலைகள் அமைந்த மின் நிலையங்கள் எதிர்பாராத பன்முகக் குலைவுகளைக் கொண்டுள்ளன எனக் கூறுகிறார். இவ்வகை ஏதங்கள் தவிர்க்க இயலாதவை மட்டுமல்ல. முற்றிலுமாக வடிவமைப்பால் எளிதாகக் கடக்க முடியாதவையும் ஆகும் என்றும் கருத்துரைக்கிறார்.[15] An interdisciplinary team from MIT has estimated that given the expected growth of nuclear power from 2005 – 2055, at least four serious nuclear accidents would be expected in that period.[16][17] என்றாலும் இவர் 1970 க்குப் பின்னர் உருவாகியுள்ள பாதுகாப்பு மேம்பாடுகளைக் கருத்தில் கொள்ளவில்லை..[18][19] இன்றலவில் 1970 க்குப் பின்னர் ஐந்து மாபெரும் உலையகட்டுக் குலைவுகளால் ஏதங்கள் நேர்ந்து பேரழிவுகளை விளைவித்துள்ளன. இதில் ஒன்று 1979 இல் மூமைல் தீவு ஏதமாகும்; மற்றொன்று 1986 இல் செர்நோபிலில் நிகழ்ந்த ஏதமாகும். மூன்றாவது தாயிச்சியில் 2011 இல் நிகழ்ந்த புகுழ்சிமா-தாயிச்சி ஏதமாகும்இது மின்னாக்க உலையின் இயக்கத் தொடக்கத்திலேயே ஏற்பட்டுள்ளது.இதனால் உலகளாவிய நிலையில் நிரலாக எட்டு ஆண்டுகளுக்கு ஒருமுறை பேரழிவுதரும் அணுக்கரு மின் நிலைய ஏதம் ஏற்பட்டது புலப்படுகிறது.

கருத்து முரண்பாடுகள்

செர்நோபிள் பேரழிவுக்குப் பிறகு துறந்த உக்ரைனில் உள்ள பிரைபியாத் நகரம்.பின்னணியில் செர்நோபிள் அணுக்கரு மின் நிலையம் அமைந்துள்ளது.

அணுக்கரு மிந்திறன் விவாதம் கருத்து முரண் மிக்கதாகும்.[20][21][22][23] இந்த விவாதம் நாட்டின் பொதுப்பணி பயன்பாட்டுக்கான மின்தேவையை நிறைவு செய்ய அணுக்கருப் பிளவு உலைகளைப் பயன்படுத்தி மின்னாக்கம் மேற்கொள்வதைப் பற்றியே நடந்தது. அணுக்கரு எரிபொருளைப் பயன்படுத்தி மின்திறன் ஆக்கம் சில நாடுகளில் 1970களிலும் 1980களிலும் தொழில்நுட்ப வரலாற்றிலேயே இதுவரை காணாத அளவு செறிவுற்றதாலும் அதனால் எழுந்த கருத்து முரண்பாட்டாலும் இவ்விவாதம் கிளைத்து முற்றி வெடித்தது.[24][25]

அணுமின் திறன் ஏற்போர் இது நீடிப்புதிற ஆற்றல் வாயில் எனவும் கரி உமிழ்வைக் குறைக்கிறது எனவும் மேலும், எரிபொருளுக்கான இறக்குமதியைப் பின்னணியில் அமையுமாறு ஏற்பாடு செய்தால், இது தொடர் ஆற்றல் நிலைப்பையும் உறுதிப்பாட்டையும் வழங்கவல்லது எனவும் வாதிடுகின்றனர்.[26] இவர்கள் தொல்படிவ எரிபொருள் பயன்பாட்டை ஒப்பிடும்போது, அணுக்கரு ஆற்றல் காற்றுமாசை ஏற்படுத்துவதில்லை என்கின்றனர். மேலும் இவர்கள் அணுக்கரு ஆற்றல் ஒன்றுமட்டுமே மேலை நாடுகள் தற்சாபுடன் இருக்க உதவும் எனவும் கூறுகின்றனர் கழிவுத் தேக்கச் செலவு மிகக் குறைவானதே எனவும் புதிய வடிவமைப்பு உலைகளில் மேம்பட்ட புதிய தொழில்நுட்பங்களைப் பயன்படுத்தினால் மேலும் இச்செலவு மிகவும் குறைந்துவிடும் என்றும் வாதிடுகின்றனர். மேலும் மேலை உலக இயக்கப் பாதுகாப்பும் உலகின் பிற பெரும்பாலான அணுக்கரு மின் நிலையங்களுடன் ஒப்பிடும்போது, உயர்தரம் வாய்ந்த்தாக உள்ளது எனவும் சுட்டிக் காட்டுகின்றனர்.[27]

அணுக்கரு மின்திறன் எதிர்ப்பாளர்கள் இது மக்களுக்கும் சுற்றுச்சூழலுக்கும் பல அச்சுறுத்தல்களைக் கொண்டுள்ளது எனவும் இவற்றில் உடல்நல இடர்களும் யுரேனியம் பிரித்தெடுப்பும் பதப்படுத்தமும் போக்குவரத்தும் ஏர்அடுத்தும் சுற்றுச்சூழல் அழிவும் உள்ளடங்கும் எனவும் எரிபொருள் களவாடலால் அணுக்கருப் படைகலன் உருவாக்க வாய்ப்பும் உள்லது எனவும் வாதிடுகின்றனர். மேலும் இதுவரை தீர்வு காணாத கதிரியக்க்க் கழிவுப்பொருள் சிக்கலும் உள்ளது என்கின்றன[28][29][30] மேலும் அவர்கள் உலையே சிக்கல்வாய்ந்த அமைப்பாக உள்ளதால் இதில் பலவகை ஊறுகள் நேரலாம் எனவும் அவற்ரால் பல ஏதங்கள் (நேர்ச்சிகள்) ஏர்அடும் வாய்ப்புகள் எப்போதும் உண்டு எனக் கருதுகின்றனர்.[31][32] இந்த இடர்களைப் புதிய தொழில்நுட்பம் எதுவுமே தவிர்க்கும் என்பதை அவர்கள் நம்ப மறுக்கின்றனர்.[33] யுரேனியம் பிரித்தெடுப்பில் இருந்து அணுக்கரு நிலையத்தை இயக்கத்தில் இருந்து நிறுத்திவைக்கம் வரையிலான அணுக்கரு எரிபொருள் தொடரின் அனைத்து ஆற்றல்-செறிவுக் கட்டங்களையும் கருதும்போது, இதுவொன்றும் தாழ்கரி உமிழ்வு வாயிலாகாது எனவும் வாதிடுகின்றனர்.[34][35][36]

அணுக்கரு எரிபொருள் மீள்பதனாக்கம்

அணுக்கரு எரிபொருள் மீள்பதனாக்கத் தொழில்நுட்பம் கதீர்வீச்சுக்கு ஆட்படுத்திய அணுக்கரு எரிபொருளில் இருந்து புளூட்டோனியத்தை வேதியியலாகப் பிரித்தெடுத்து அதிலிருந்து அணுப்பிளவியன்ற புளூட்டோனியத்தை மீட்கும் செயல்முறையாகும்.[37] மீள்பதனாக்கம் பல நோக்கங்களை நிறைவேற்றுகிறது,இதன் சார்பு முதன்மை காலத்துக்குக் காலம் மாறுபடுகிறது. முதலில் அணுப்படைக்கலனுக்குத் தேவையான புளூட்டோனியத்தைப் பிரித்தெடுக்கவே இத்தொழில்நுட்பம் பயன்பட்டது. வணிக நடைமுறையில் அணுக்கரு மின்திறன் வந்ததுமே, மீள்பதப் புளூட்டோனியம் மீள்சுழற்சி எரிபொருளாக அனல் உலைகளுக்குப் பயன்படலானது.எரிபொருள் கூடுதலாக12% அளவு மின் திறனைத் தரவல்லதாக உள்ளது. மேலும் இது ஓரளவுக்குப் புளூட்டோனியம் இருப்பையும் குறைக்கிறது. யுரேனிய விலையும் கழிவுத்தேக்கச் செலவும் கூடுதலாக உள்ளநிலையில் பேரளவில் கிடைக்கும் உலைக்கழிவு யுரேனியத்தை மீள்பதனாக்கம் செய்து மீளவும் உலைகளில் பயன்படுத்தலாம். இறுதியில் பேரீன் உலைகளில் மீள்சுழற்சிப் புளூட்டோனியத்தயும் உலைக்கழிவு யுரேனியத்தையும் உலை உருவாக்கும் ஆக்டினைடு எரிபொருளையும் பயன்படுத்தி இயற்கை யுரேனியத்தில் இருந்து பெறும் மின் திறனை 60 மடங்குக்கும் மேலாகப் பெருக்கலாம்.[38]

அணுக்கரு மீள்பதனாக்கம் கழிவுப்பொருளின் பருமனைக் குறைக்கிறது. ஆனால் கதிரியக்கத்தைக் குறைக்காது;வெப்ப உருவாக்கத்தையும் குறைக்காது. எனவே இது கழிவுத் தேக்கத் தேவையையும் தவிர்க்காது. மேலும் கழிவுத்தேக்கக் களவாடல்வழி அணுக்கருப் படைக்கலன் உருவாக்க வாய்ப்பளித்து அணுக்கரு அச்சுறுத்தலுக்கு வழிவகுக்கும் என்பதால், அரசியலாக விவாதத்துக்கு உரியது. இதன் புவியிடத் தேக்க இருப்பிடத் தேர்வும் நேரடிக் கழிவுப்பொருள் தேக்கலைப் போலவே உயர்செலவினத்தால் அரசியல் சிக்கல் மிக்கதாகிறது.[39] அமெரிக்க ஒன்றிய நாடுகளில் அணுக்கரு மீள்பதனாக்கம் தொடர்பான புழ்சின் பேரளவுத் திட்டங்களை நிறைவேற்றாமல் பின்வாங்கி, அறிவியல் ஆய்வுக்கான அணுக்கரு மிள்பதனாக்கத்துக்கு மட்டுமே ஒப்புதல் நல்கினார்.[40]

ஏதக் காப்புறுதி

அணுக்கரு சேதத்துக்கான பொதுமக்கள் கடப்பாடு குறித்த வியன்னா மாநாடு அணுக்கரு இழப்புக் கடப்பாட்டுக்கான பன்னாட்டுச் சட்டகத்தைச் சரியாக முன்வைக்கிறது.[41]

என்றாலும் பல உலக அணுக்கரு மின் நிலையங்களைக் கொண்ட அமெரிக்க, உருசியா, சீனா, யப்பான் போன்ற வல்லரசு நாடுகள் இந்தக் கடப்பாட்டை இதுவரை ஏற்றுக் கையெழுத்திடவில்லை.

அமெரிக்காவில் அணுக்கரு ஏதங்களுக்கான காப்புறுதிக்கான கடப்பாடுகள், 2025க்குப் பின்னர் உரிமம் வழங்கவுள்ள மின் நிலையங்களுக்கு பிரைசு-ஆண்டர்சன் அணுக்கருத் தொழிலகக் காப்புறுதிச் சட்ட்த்தின்கீழ் வரையறுக்கப்பட்டுள்ளது.

பெரும்பிரித்தானியா ஒன்றிய பிரித்தானிய அரசுகளின் ஆற்றல் கொள்கைப்படி, இயற்றப்பட்ட அணுக்கரு நிறுவல் சட்டம், 1965 இல் அனுக்கரு சேதம் தரும் இழப்புகளுக்கான கடப்பாடுகள், அணுக்கரு நிலையத்தைக் கட்டி இயக்கும் உரிமதாரரின் பொறுப்பாக வரையறுத்துள்ளது.இந்தச் சட்டப்படி, நிலையத்தை இயக்கும் உரிமதாரர் ஏத நிகழ்வுக்குப் பின் பத்தாண்டுகட்கு 150 மில்லியன் பவுண்டுகள் அளவுக்கு இழப்பீடு வழங்கவேண்டும். முப்பது ஆண்டுகட்குப் பிறகு அரசே இந்தக் கடப்பாட்டைச் சந்திக்கும். மேலும் அரசு, பன்னாட்டுப் பாரிசு மாநாட்டு முடிவின்படியும் அதற்கு மிகைநிரப்பாக நடந்த பிரசல்சு மாநாட்டு முடிவின்படியும் அணுக்கரு ஆற்றல் புலத்தில் மூன்றாம் தரப்புக்கு ஏற்படும் இழப்புக்குக் கூடுதலான நாட்டிடையிலான கடப்பாட்டையும் 300 மில்லியன் பவுண்டு அளவுக்கு ஈடுகட்ட வேண்டும்.[42]

அணுக்கரு நிலைய இயக்கம் நிறுத்தல்

அணுக்கரு நிலைய இயக்கம் நிறுத்தல் (Nuclear decommissioning) என்பது அணு மின் நிலையத்தின் இயக்கத்தை நிறுத்தி உரிய இருப்பிடக் கதிர்வீச்சால் பொதுமக்களுக்கு வேறு பாதுகாப்பேதும் தேவையற்ற வகையில் அதை நீக்குவதாகும். மற்ற மின் நிலையங்களைப் பிரித்து அகற்றுவதில் இருந்து அணு மின் நிலையங்கள் கதிர்வீச்சுள்ள உலைக்கழிவுபொருளால் வேறுபடுகின்றன. எனவே இவற்றுக்கெனத் தனியான தகுந்த முன்னெச்சரிக்கைகள் தேவைப்படுகின்றன.

அணுக்கரு மின் நிலையங்களை இயக்குவற்கான உத்தரவாதக் காலம் 30 ஆண்டுகளாகும்.[43] தேய்மானக் காரணிகளில் ஒன்றாக, மின்னணுவாக்கக் கதிரியக்கத்தால் உலைகளின் அழிவு கருதப்படுகிறது .[43]

பொதுவாக, அணுக்கரு மின் நிலையங்கல் 30 ஆண்டு வாழ்நாளுக்கு வடிவமைக்கப்படுகின்றன. [சான்று தேவை] புதிய நிலையங்கள் 40 முதல் 60 ஆண்டுகட்கு இயக்க வல்லபடி வடிவமைக்கப்படுகின்றன. [சான்று தேவை]

நிலையத்தின் இயக்கத்தை நிறுத்திவைத்தல் பல ஆட்சியிய்ல், தொழில்நுட்பச் செயல்பாடுகலைக் கொண்டுள்ளது. இதற்கு கதிரியக்கத்தை முற்றிலுமாக நீகித் தூய்மைப்படுத்தவேண்டும். தொடர்ந்து நிலைய உறுப்புகளை அழிக்கவேண்டும். நிலையத்தை நிறுத்திவைத்த பிறகு நிலையத்துக்கு வருபவர்களுக்குக் கதிரியக்க ஏதம் ஏதும் நேரக்கூடாது. நிலையத்தை முழுமையாக நிறுத்திய பிறகு அதைக் கட்டுபடுத்தும் நடவடிக்கை ஏதும் மேற்கொள்லப்படாது நிலைய முந்தைய உரிமதாரரும் அணுக்கருப் பாதுகாப்புக்கான எந்தவிதப் பொறுப்பும் ஏற்க வேண்டியதில்லை.

வரலாற்றுச் சிறப்புள்ள ஏதங்கள் (நேர்ச்சிகள்)

யப்பானில் 2011 இல் நடந்த புகுழ்சிமா தலிச்சி அணுக்கருப் பேரழிவு. இது செர்நோபிள் அணுக்கருப் பேரழிவுக்கு நிகழ்ந்த 25 ஆண்டுகளுக்குப் பிறகு ஏற்பட்ட பெரிய அணுக்கரு ஏத நிகழ்வு ஆகும்.

புகுழ்சிமா தலிச்சி அணுக்கருப் பேரழிவின்போது கதிரியக்கம் மண்ணிலும் விண்ணிலும் கடலிலும் கசிந்து பேரளவில் பரவியதால் சுற்றுவட்டாரத்தில் இருந்து 50,000 வீடுகள் இடம்பெயர்க்கப்பட்டன.[44] கதிரியக்க ஆய்வுக்குப் பின்னர் காய்கறிகளும் மீன்களும் ஏற்றுமதி செய்வது நிறுத்தப்பட்டது.[45]]]

அணுக்கருத்தொழில்துறை, புதிய தொழில்நுட்பமும் கூர்ந்த மேற்பார்வையும் அணு மின் நிலையங்களைக் காப்பானதாக மாற்றிவிட்டதெனக் கூறினாலும், செர்நோபிள் பேரழிவிற்குப் பின்னர் பன்னாட்டளவில்1986 முதல் 2008 வரை 57 சிறுசிறு அணுக்கரு ஏதங்கள் நிகழ்ந்துள்ளன. இவற்றில் மூன்றில் இருபங்கு அமெரிக்க ஒன்றிய நாடுகளில் நிகழ்ந்துள்ளன.[16] பிரான்சு அணு ஆற்றல் முகமையம் எவ்வளவு தொழில்நுட்பப் புத்தாகங்கள் ஏற்பட்டாலும் மாந்தக்குறைபாட்டாலும் புறக்கணிப்பாலும் நிகழும் ஏதங்களை அணுக்கரு மின் நிலைய இயக்கத்தில் நீக்குவது அரிது எனக் கூறுகிறது.[சான்று தேவை]

பெஞ்சமின் சோவாகூலின் கருத்துப்படி, 2003 இல் மசாசூசட் தொழில்நுட்பக் கழகத்தின் பலதுறை வல்லுனர்கள் குழு எதிர்காலத்தில் 2005 இல் இருந்து 2055வரையிலான அணுக்கருத் தொழில் வளர்ச்சியைக் கருதும்போது அக்காலகட்டத்தில் குறைந்தது நான்கு அணுக்கரு நிலைய ஏதங்களாவது நேரலாம் எனக் கருதியது.[16] என்றாலும் மசாசூசட் தொழில்நுட்பக் கழகத்தின் குழு 1970 க்குப் பிறகான பாதுகாப்பு மேம்பாடுகளைக் கருத்தில் கொள்ளவில்லை.[18][19]

அணுக்கரு நிலையப் பொருளியல் நெகிழ்திறம்

அணுக்கரு மின் நிலையங்கள் முதன்மையாக தொடர்ந்த சிக்கனமான அடிப்படை மின்தேவையைச் சந்திக்க அடிப்படைச் சுமை நிலையங்களாகப் பயன்படுத்தப்படுகின்றன. நிலக்கரி, வளிம அனல்மின் நிலையங்களைவிட இவற்றின் எரிபொருள் செலவு குறைவாக உள்ளதே இதற்குக் காரணமாகும். ஆனால் முழுதிறனளவில் இயங்காதபோது எரிபொருள் செலவு குறையாது. என்றாலும் பிரான்சின் பெரிய மின் நிலையங்களில் வழக்கமாக மாறுசுமைகளை ஏற்கும்படியே இந்நிலை சிக்கனமானதல்ல என அறிந்தும் இயக்கப்படுகிறது."[46] செருமனியில் உள்ள பிபிலிசு அணுக்கரு மின் நிலையம் நிறுவுதிறனின் 40 முதல் 100% நெடுக்கத்தில் மணித்துளிக்கு 15% வீதம் மாறும்படி வடிவமைக்கப்பட்டுள்ளது.[47]மீள்சுழற்சி நீரை வேறுபடுத்தி சுமையை எளிதாக மாற்றுந்திறமையைப் பெற்றுள்ளதால், கொதிநீர் உலைகள் சுமை வேறுபாட்டை ஏற்கும் நெகிழ்திறம் வாய்ந்தவையாக உள்ளன.[சான்று தேவை]

எதிர்கால அணுக்கரு மின் நிலையங்கள்

இக்குறைகளைத் தீர்க்கும்வகையில் நான்காம் தலைமுறை உலைகளை வடிவமைக்கும் ஆராய்ச்சி முனைவாக நடைபெற்று வருகிறது. இந்தப் புதிய வடிவமைப்புகள் அணுக்கரு மின் நிலையத்தைத் தூய்மையாகவும் பாதுகாப்பாகவும் இடர்குறைந்ததாகவும் அமைக்க முயன்றுவருகின்றன. மேலும் அணுக்கரு எரிபொருளை அணுகுண்டுகள் உருவாக்க களவாடப்படுவதைத் தவிர்க்கும்வகையிலும் இவை வடிவமைக்கப்படுகின்றன. எளிய சிக்கனமான கொதிநீர் உலை, முழுநிறைவான காப்புக் கூறுபாடுகள் கொண்ட உலைகளின் வடிவமைப்பு இந்நலங்களை உறுதிப்படுத்துகிறது.[48][49] அணுப்பிணைவு உலைகள், அணுப்பிளவு உலைகளின் இடர்களை குறைக்கின்றன அல்லது தவிர்க்கின்றன. ஆனால் இவை இன்னமும் ஆய்வின் தொடக்கநிலையிலேயே உள்ளன.[50]

இரண்டு 1600 மெவா ஐரோப்பிய அழுத்தநீர் உலைகளும் சீனாவில் இரண்டு 1600 மெவா அழுத்தநீர் உலைகளும் கட்டியமைக்கப்பட்டு வருகின்றன. இவ்வுலைகளை பிரான்சிம் அரேவா நிறுவனமும் செருமனியின் சீமன்சு ஏஜி யும் இணைந்து கட்டப்படுகின்றன. முடிக்கப்பட்டால் இவைதாம் உலகிலேயே உள்ல மிகப் பெரிய அணுக்கரு மின் நிலையங்களாக அமையும். இவற்ரில் ஒன்று பின்லாந்தின் ஓலிகிலுவோட்டாவில் உள்ள ஓலிகிலுவோட்டா அணுக்கரு மின் நிலையத்தினோர் அணியாக அமையவுள்ளது. இது முதல் ஏற்பாட்டின்படி 2009 இல் இயங்கிடவிருந்தது. ஆனால் இதன் இயாக்கம் தொடர்ந்து தள்ளிப் போடப்பட்டு வருகிறது.[51][52] இது 2014 ஆம் ஆண்டின் நிலவரப்படி, இதனை 2018 இல் இயக்கிட திட்டமிடப்பட்டுள்ளது.[53]பிரான்சில் மஞ்சேவில் உள்ள பிளேம்வில்லி அணுக்கரு மின் நிலையத்தில் ஒரு அழுத்தநீர் உலைக்கான ஆயத்த வேலைகள் 2006 இல் தொடங்கப்பட்டது, இது திட்டமிட்டபடி 2012 இயக்கத்தைத் தொடங்கவேண்டும்.[54] ஆனால் பிரெஞ்சு உலையும் தள்ளிப் போடப்பட்டு 2016 இல் நிலைய உலையின் இயக்கம் தொடங்கும் என 2013 இல் அறிவீக்கப்பட்டுள்ளது.[55][56] சீனாவில் குவாங்தாங்கில் உள்ள தாய்ச்சான் அணுக்கரு மின் நிலையத்தில் அதன் ஒருபகுதியாக, இரண்டு அழுத்தநீர் உலைகள் 2014 இலும் 2015 இலும் இயக்கிவைக்கத் திட்டமிடப்பட்டன.[57] ஆனால் இவையும் 2015இலும் 2016 இலும் இயங்கலாம் என கூறப்படுகின்றன.[58]

2007 ஆம் ஆண்டளவில் இந்தியாவில் ஏழும் சீனாவில் ஐந்தும் அணுக்கரு மின் நிலையங்கள் கட்டுமானத்தில் இருந்தன.[59]

கல்ஃப் மின்திறன் நிறுவனம் 2012 முடிவுக்குள் பிளாரிடாவில் உள்ள பென்சகோலாவில் 4000 ஏக்கர் நிலம் அணுக்கரு மின் நிலையம் ஒன்ரை அமைக்க கையகப்படுத்தப்படும் என்று 2011 நவம்பரில் அறிவித்தது.[60]

உருசியா 2010 இல் உலகில் முதன்முதலாக, ஓர் மிதவை அணுக்கரு மின் நிலையத்தை தொடங்கி வைத்தது. 100 மில்லிய பவுண்டு அகதமிக் உலோமனசோவ் கப்பல் திட்டமிடப்பட்ட ஏழு நிலையங்களில் தொடங்கி வைக்கப்பட்ட முதல் உலக நிலையம் ஆகும். இது உருசிய நெடுந்தொலைவுப் பகுதிகட்கு மின்சாரம் வழங்கும்.[61]

இந்தோனேசியாவில் நான்கும் மலேசியாவில் நான்கும் தாய்லாந்தில் ஐந்தும் வியட்நாமில் பதினாறும் ஆக, தெற்கிழக்காசிய நாடுகளில் 2025 அளவில் 29 அணுக்கரு மின் நிலையங்கள் கட்டியமைக்கப்படவுள்ளன. இந்நாடுகளில் 2011 இல் அணுக்கரு மின் நிலையம் ஏதும் இல்லை என்பது குறிப்பிட்த்தக்கது.[62]

சீனாவில் 2013 இல் 32[63] அணுக்கரு உலைகள் கட்டப்பட்டுவந்தன. உலகிலேயே மிகப் பேரளவு எண்ணிக்கையில் உலைகள் கட்டப்பட்டது இதுவே முதல் தடவையாகும்.

அமெரிக்காவில் ஜார்ஜியாவிலும் தென்கரோலினாவிலும் உள்ள இரு அணுக்கரு மின் நிலையங்களில், அதாவது வோக்தில் அணுக்கரு மின் நிலையம், வர்ஜில் சம்மர் அணுக்கரு மின் நிலையம் அகியவற்றின் விரிவாக்கம் முறையே 2016 இலும் 2019 இலும் நிறைவுற உள்ளன. வோக்தில் அணுக்கரு மின் நிலையத்தின் இரு உலைகளும் வர்ஜில் சி. சம்மர் அணுக்கரு மின் நிலையத்தின் இரு உலைகளும் 1979 இல் நடந்த மூன்று மைல் தீவின் அணுக்கரு ஏதத்துக்குப் பின்னர் நிறுவப்படும் முதல் உலைகளாகும்.

பல நாடுகள் தோரிய எரிபொருள் அணுக்கரு உலைகளை நிறுவும் திட்டங்களை தொடங்கியுள்ளன. உரெனியத்தை விட தோரியம் இயற்கையில் நான்கு மடங்கு செறிவாகக் கிடைக்கிறது. அமெரிக்கா, இந்தியா, ஆத்திரேலியா, பிரேசில், நார்வே ஆகிய நாடுகளில் 60% தோரியம் கிடைக்கிறது. பல்லாரிரம் ஆண்டுகட்கு தேவைப்படும் ஆற்ற வழங்கிட இந்த தோரிய வளம் போதுமானதாகும்.[64] தோரியம் எரிபொருள் வட்டிப்பு அல்லது சுழற்சி யுரேனியம் எரிபொருள் வட்டிப்பை விட மின்னாக்கத்தின்போது மிகவும் குறைவான கதிரியக்கக் கழிவைத் தருகிறது.[65]

மேலும் காண்க

மேற்கோள்கள்

வெளி இணைப்புகள்

"https:https://www.search.com.vn/wiki/index.php?lang=ta&q=அணு_மின்_நிலையம்&oldid=3885472" இலிருந்து மீள்விக்கப்பட்டது
🔥 Top keywords: தீரன் சின்னமலைதமிழ்இராம நவமிஅண்ணாமலை குப்புசாமிமுதற் பக்கம்சிறப்பு:Search2024 இந்தியப் பொதுத் தேர்தல்நாம் தமிழர் கட்சிடெல்லி கேபிடல்ஸ்வினோஜ் பி. செல்வம்வானிலைதிருக்குறள்தமிழக மக்களவைத் தொகுதிகள்சுப்பிரமணிய பாரதிஇந்திய மக்களவைத் தொகுதிகள்சீமான் (அரசியல்வாதி)தமிழச்சி தங்கப்பாண்டியன்சுந்தர காண்டம்தமிழ்நாட்டில் இந்தியப் பொதுத் தேர்தல், 2024பாரதிதாசன்இந்திய நாடாளுமன்றம்பிரியாத வரம் வேண்டும்முருகன்தினகரன் (இந்தியா)தமிழ்த் திரைப்படங்களின் பட்டியல் (ஆண்டு வரிசை)தமிழ்நாட்டின் சட்டமன்றத் தொகுதிகள்மக்களவை (இந்தியா)தமிழ்நாட்டின் மாவட்டங்கள்தமிழ் தேசம் (திரைப்படம்)பதினெண் கீழ்க்கணக்குஇராமர்அம்பேத்கர்விக்ரம்நயினார் நாகேந்திரன்கம்பராமாயணம்பொன்னுக்கு வீங்கிதமிழ்நாடுவிநாயகர் அகவல்திருவண்ணாமலை