Молекулярная машина

Молекулярная машина, нанит или наномашина[1] – это молекулярный компонент, который производит квази-механические движения (выход) в ответ на определенные стимулы (вход)[2][3]. В клеточной биологии макромолекулярные машины часто выполняют жизненно важные задачи, такие как репликация ДНК и синтез АТФ. Выражение чаще всего применяется к молекулам, которые просто имитируют функции, происходящие на макроскопическом уровне. Этот термин также распространен в нанотехнологиях, где был предложен ряд очень сложных молекулярных машин, нацеленных на создание молекулярного ассемблера[4][5].

Кинезин, идущий по микротрубочке - это молекулярно-биологическая машина, использующая динамику белковых доменов на наномасштабе.

В течение последних нескольких десятилетий химики и физики с разной степенью успеха пытались миниатюризировать машины, существующие в макроскопическом мире. Молекулярные машины находятся в авангарде исследований клеточной биологии. Нобелевская премия по химии 2016 г. была присуждена Жан-Пьеру Соважу, сэру Дж. Фрейзеру Стоддарту и Бернарду Л. Феринге за разработку и синтез молекулярных машин[6][7].

Типы

Молекулярные машины можно разделить на две большие категории; искусственные и биологические. Искусственные молекулярные машины (АММ) относятся к молекулам, которые искусственно созданы и синтезированы, тогда как биологические молекулярные машины обычно встречаются в природе и эволюционировали в свои формы после абиогенеза на Земле[8].

Искусственные молекулярные машины

Химики синтезировали большое количество искусственных молекулярных машин (АММ), которые довольно просты и малы по сравнению с биологическими молекулярными машинами[8]. Первый молекулярный челнок AMM был синтезирован сэром Дж. Фрейзером Стоддартом[9]. Молекулярный челнок – это молекула ротаксана, в которой кольцо механически заблокировано на оси двумя громоздкими стопорами. Кольцо может перемещаться между двумя сайтами связывания с различными стимулами, такими как свет, pH, растворители и ионы[10].

Авторы статьи JACS 1991 года отмечали: «Поскольку становится возможным управлять движением одного молекулярного компонента по отношению к другому в ротаксане, появится технология для создания молекулярных машин». Механически взаимосвязанные молекулярные архитектуры возглавили разработку и синтез AMM, поскольку они обеспечивают направленное движение молекул[11]. Сегодня существует большое количество AMM, перечисленных ниже.

Переполненный алкановый молекулярный мотор.

Молекулярные двигатели

Молекулярные двигатели – это молекулы, которые способны к направленному вращательному движению вокруг одинарной или двойной связи[12][13][14][15]. Роторные двигатели с одинарной связью[16] обычно активируются химическими реакциями, тогда как роторные двигатели с двойной связью[17] обычно работают от света. Скорость вращения двигателя также можно настроить с помощью тщательного молекулярного дизайна[18]. Также были произведены наномоторы из углеродных нанотрубок[19].

Молекулярный пропеллер

Молекулярный пропеллер – это молекула, которая может толкать жидкости при вращении благодаря своей особой форме, которая разработана по аналогии с макроскопическими пропеллерами[20][21]. У него есть несколько лезвий молекулярного масштаба, прикрепленных под определенным углом наклона по окружности наноразмерного вала. См. Также молекулярный гироскоп.

Шлейфовая цепь ротаксана. Эти молекулы считаются строительными блоками для искусственных мышц.

Молекулярный переключатель

Молекулярный переключатель – это молекула, которая может обратимо перемещаться между двумя или более стабильными состояниями[22]. Молекулы могут переключаться между состояниями в ответ на изменения pH, света (фотопереключатель), температуры, электрического тока, микросреды или присутствия лиганда[22][23][24].

Молекулярный челнок на основе ротаксана.

Молекулярный челнок

Молекулярный челнок – это молекула, способная перемещать молекулы или ионы из одного места в другое[25]. Обычный молекулярный челнок состоит из ротаксана, макроцикл которого может перемещаться между двумя участками вдоль оси "гантели"[25][9][26].

Наномобиль(нанокар)

Нанокары – это одномолекулярные транспортные средства, которые напоминают макроскопические автомобили и важны для понимания того, как контролировать молекулярную диффузию на поверхностях. Первые наномобили были синтезированы Джеймсом М. Туром в 2005 году. У них было H-образное шасси и 4 молекулярных колеса (фуллерена), прикрепленных к четырем углам[27]. В 2011 году Бен Феринга и его сотрудники синтезировали первый моторизованный нанокар с молекулярными двигателями, прикрепленными к шасси в качестве вращающихся колес[28]. Авторам удалось продемонстрировать направленное движение наномобиля по поверхности меди, подавая энергию от острия сканирующего туннельного микроскопа. Позже, в 2017 году, в Тулузе прошла первая в мире гонка на нанокарах.

Молекулярные весы

Молекулярные весы[29] [30] – это молекула, которая может взаимодействовать между двумя и более конформационными или конфигурационными состояниями в ответ на динамику множества внутри- и межмолекулярных движущих сил, таких как водородные связи, сольвофобные / гидрофобные эффекты[31], π-взаимодействия[32] стерические и дисперсионные взаимодействия[33]. Молекулярные весы могут состоять из небольших молекул или макромолекул, таких как белки. Кооперативно свернутые белки, например, использовались в качестве молекулярных весов для измерения энергии взаимодействия и конформационных склонностей[34].

Молекулярный пинцет

Молекулярный пинцет – это молекула-хозяин, способная удерживать предметы между двумя "руками"[35]. Открытая полость молекулярного пинцета связывает предметы с помощью нековалентных связей, включая водородные связи, координацию металлов, гидрофобные силы, силы Ван-дер-Ваальса, π-взаимодействия или электростатические эффекты[36]. Сообщалось о примерах молекулярных пинцетов, которые сконструированы из ДНК и считаются ДНК-машинами[37].

Молекулярный сенсор

Молекулярный сенсор – это молекула, которая взаимодействует с анализируемым веществом, вызывая обнаруживаемые изменения[38][39]. Молекулярные сенсоры сочетают молекулярное распознавание с некоторой формой репортера, поэтому присутствие объекта можно наблюдать.

Молекулярный логический шлюз

Молекулярный логический шлюз – это молекула, которая выполняет логическую операцию на одном или нескольких логических входах и производит единственный логический выход[40][41]. В отличие от молекулярного датчика, молекулярный логический шлюз будет выводить данные только при наличии определенной комбинации входов.

Молекулярный ассемблер

Молекулярный ассемблер – это молекулярная машина, способная управлять химическими реакциями, точно позиционируя реактивные молекулы[42][43][44][45][46].

Молекулярный шарнир

Молекулярный шарнир – это молекула, которую можно выборочно переключать с одной конфигурации на другую обратимым образом[47]. Такие конфигурации должны иметь различимую геометрию; например, азобензольные группы в линейной молекуле могут подвергаться цис- транс- изомеризации[48] при облучении ультрафиолетовым светом, вызывая обратимый переход к изогнутой или V-образной конформации[49][50][51][52]. Молекулярные шарниры обычно вращаются кривошипно вокруг жесткой оси, такой как двойная связь или ароматическое кольцо[53]. Однако также были синтезированы макроциклические молекулярные шарниры с механизмами, более похожими на зажим[54][55][56].

Биологические молекулярные машины

Рибосома, выполняющая этапы удлинения и нацеливания на мембрану трансляции белка. Рибосома зеленая и желтая, тРНК темно-синего цвета, а другие задействованные белки светло-голубые. Полученный пептид попадает в эндоплазматический ретикулум .

Самые сложные макромолекулярные механизмы находятся внутри клеток, часто в форме мультибелковых комплексов[57]. Важные примеры биологических машин включают моторные белки, такие как миозин, который отвечает за сокращение мышц,[58] кинезин, который перемещает грузы внутри клеток от ядра по микротрубочкам, и динеин, который перемещает грузы внутри клеток к ядру и вызывает биение аксонемы подвижные реснички и жгутики. В результате подвижная ресничка представляет собой наномашину, состоящую из более чем 600 белков в молекулярных комплексах, многие из которых также функционируют независимо как наномашины. Гибкие линкеры позволяют соединенным ими мобильным белковым доменам привлекать своих партнеров по связыванию и вызывать дальнодействующую аллостерию через динамику белковых доменов[1]. За производство энергии отвечают другие биологические машины, например АТФ-синтаза, которая использует энергию протонных градиентов через мембраны, чтобы управлять турбиноподобным движением, используемым для синтеза АТФ, энергетической валюты клетки[59][58]. Другие машины отвечают за экспрессию генов, включая ДНК-полимеразы для репликации ДНК, РНК-полимеразы для производства мРНК, сплайсосомы для удаления интронов и рибосомы для синтеза белков. Эти машины и их наноразмерная динамика намного сложнее любых молекулярных машин, которые до сих пор были созданы искусственно[60].

Биологические машины могут найти применение в наномедицине. Например[61], их можно использовать для идентификации и уничтожения раковых клеток[62][63]. Молекулярная нанотехнология – это спекулятивное подразделение нанотехнологии, касающееся возможности разработки молекулярных ассемблеров, биологических машин, которые могут переупорядочивать материю в молекулярном или атомном масштабе. Наномедицина будет использовать этих нанороботов, введенных в организм, для восстановления или обнаружения повреждений и инфекций. Молекулярная нанотехнология в высшей степени теоретическая, она направлена на то, чтобы предвидеть, какие изобретения могут принести нанотехнологии, и предложить повестку дня для будущих исследований. Предлагаемые элементы молекулярной нанотехнологии, такие как молекулярные ассемблеры и нанороботы, намного превосходят существующие возможности[64][65].

Некоторые биологические молекулярные машины

Исследования

Создание более сложных молекулярных машин – активная область теоретических и экспериментальных исследований. Был разработан ряд молекул, таких как молекулярные пропеллеры, экспериментальные исследования которых, тем не менее, были затруднены из-за отсутствия методов их создания[66]. В этом контексте теоретическое моделирование может быть чрезвычайно полезным[67] для понимания процессов самосборки / разборки ротаксанов, важных для создания молекулярных машин с легким двигателем[68]. Эти знания на молекулярном уровне могут способствовать реализации все более сложных, универсальных и эффективных молекулярных машин для областей нанотехнологии, включая молекулярные ассемблеры.

Хотя в настоящее время это неосуществимо, некоторые потенциальные применения молекулярных машин включают транспортировку на молекулярном уровне, манипулирование наноструктурами и химическими системами, обработку твердотельной информации высокой плотности и молекулярное протезирование[69]. Прежде чем молекулярные машины можно будет использовать на практике, необходимо преодолеть многие фундаментальные проблемы, такие как автономная работа, сложность машин, стабильность в синтезе машин и рабочие условия[8].

Примечания

 

🔥 Top keywords: Заглавная страницаЯндексДуров, Павел ВалерьевичСлужебная:ПоискYouTubeЛунин, Андрей АлексеевичПодносова, Ирина ЛеонидовнаВКонтактеФоллаут (телесериал)WildberriesTelegramРеал Мадрид (футбольный клуб)Богуславская, Зоя БорисовнаДуров, Валерий СемёновичРоссияXVideosСписок умерших в 2024 годуЧикатило, Андрей РомановичFallout (серия игр)Список игроков НХЛ, забросивших 500 и более шайбПопков, Михаил ВикторовичOzon17 апреляИльин, Иван АлександровичMail.ruСёгун (мини-сериал, 2024)Слово пацана. Кровь на асфальтеПутин, Владимир ВладимировичЛига чемпионов УЕФАГагарина, Елена ЮрьевнаБишимбаев, Куандык ВалихановичЛига чемпионов УЕФА 2023/2024Турнир претендентов по шахматам 2024Манчестер СитиMGM-140 ATACMSРоссийский миротворческий контингент в Нагорном КарабахеЗагоризонтный радиолокаторПинапВодительское удостоверение в Российской Федерации