Ubikvitin

Ubikvitin (latinski: ubique praesentes = sveprisutno) je mali (8,6 kDa) regulatorni protein koji se nalazi u većini tkiva eukariotskih organizama, tj. nalazi se sveprisutno. Otkrio ga je Gideon Goldstein, 1975., a dalje je karakteriziran tokom kasnih 1970-ih i 1980-ih.[1] Ubikvitin u ljudskom genomu kodiraju četiri gena: UBB, UBC, UBA52 i RPS27A.

Porodica ubikvitina
Dijagram ubikvitina. Sedam lizinskih bočnih lanaca prikazano je žuto /narandžasto
Identifikatori
Simbolubiquitin
PfamPF00240
InterProIPR000626
PROSITEPDOC00271
SCOP21aar / SCOPe / SUPFAM
Dostupne proteinske strukture:
Pfam  strukture / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumsažetak strukture

Dodatak ubikvitina supstratnom proteinu naziva se ubikvilacija (ili, alternativno, ubikvitinacija ili ubikvitinilacija). Ubikvilacija utiče na proteine na mnogo načina: može ih označiti za razgradnju putem proteasoma, promijeniti njihovu ćelijsku lokaciju, uticati na njihovu aktivnost i promovirati ili spriječiti proteinske interakcije. Uključuje tri glavna koraka: aktivaciju, konjugaciju i ligaciju, šro izvode ubikvitin-aktivirajući enzimi (E1s), ubikvitin-konjugirajući enzimi (E2s), odnosno ubikvitin-ligaza (E3s). Rezultat ove sekvencijske kaskade je vezanje ubikvitina na lizinske ostatke na proteinskoj podlozi putem izopeptidne veze, cisteinskih ostataka preko tioesterske veze, serinskih i treoninskih ostataka putem esterske veze ili amino grupa proteinskog N-kraja, putem peptidne veze.

Modifikacije proteina mogu biti ili jedan protein ubikvitina (monoubikvilacija) ili lanac ubikvitina (poliubikvitilacija). Sekundarne molekule ubikvitina su uvijek povezane sa jednim od sedam lizinskih ostataka ili N-terminalnim metioninom prethodne molekule ubikvitina. Ovi ostaci 'povezivanja' predstavljeni su s "K" ili "M" (jednoznačna oznaka aminokiselina lizina i metionina) i brojem, koji se odnosi na njegov položaj u molekuli ubikvitina kao u K48 , K29 ili M1. Prva molekula ubikvitina kovalentno je vezana preko C-terminalne karboksilatne grupe za određeni lizin, cistein, serin, treonin ili N-kraj ciljanog proteina. Poliubikvitilacija se javlja kada je C-kraj drugog ubikvitina povezan sa jednim od sedam ostataka lizina ili prvim metioninom na prethodno dodanoj molekuli ubikvitina, stvarajući lanac. Ovaj postupak se ponavlja nekoliko puta, što dovodi do dodavanja nekoliko ubikvitina. Samo poliubikvilacija na definiranim lizinima, uglavnom na K48 i K29, povezana je s razgradnjom putem proteasoma (naziva se "molekulski poljubac smrti"), dok su druge poliubikvilacije (npr. Na K63, K11, K6 i M1) i monoubikvitilacije mogu regulirati procese kao što su promet endocita, upala, translacija i popravak DNK.

Otkriće da lanci ubikvitina ciljaju proteine na proteasom, koji razgrađuje i reciklira proteine, počašćeno je Nobelovom nagradom za hemiju 2004. godine.[2][3][4]

Identifikacija

Površina ubikvitina

Ubikvitin (izvorno, sveprisutni imunopoetski polipeptid) prvi je put identificiran 1975. godine[5] kao 8,6 kDa protein, eksprimiran u svim eukariotskim ćelijama. Osnovne funkcije ubikvitina i komponente puta ubikvitilacije su početkom 1980-ih u Technion-u objasnili Aaron Ciechanover, Avram Hershko i Irwin Rose za koje su dobili Nobelovu nagrada za hemiju. 2004.

Ubikvitilacijski sistem je u početku okarakteriziran kao ATP-ovisni proteolitski sistem u ćelijskim ekstraktima. Utvrđeno je da je termički stabilan polipeptid prisutan u ovim ekstraktima, ATP-zavisni faktor proteolize 1 (APF-1), kovalentno vezan za modelni proteinski supstratni lizozim u procesu koji je zavisi od ATP i Mg2+.[6] Više molekula APF-1 povezano je s jednom molekulom supstrata, pomoću izopeptidne veze, a utvrđeno je da se konjugati brzo razgrađuju oslobađanjem slobodnog APF-1. Ubrzo nakon što je okarakterizirana konjugacija proteina APF-1, APF-1, identificiran je kao ubikvitin. Karboksilna grupa C-terminalnog glicinskog ostatka ubikvitina (Gly76) identificirana je kao ostatak konjugiran sa supstratnim lizinskim ostacima.

Protein

Svojstva ljudskog ubikvitina
Broj ostataka76
Molekulska masa8564.8448 Da
Izoelektrična tačka (pI)6.79
GenRPS27A (UBA80, UBCEP1), UBA52 (UBCEP2), UBB, UBC
Sekenca (aminokiselina)MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPD

QQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG

Ubikvitin je mali protein u svim eukariotskim ćelijama. Svoje bezbrojne funkcije obavlja putem konjugacije sa velikim brojem ciljnih proteina. Može se pojaviti čitav niz različitih modifikacija. Sam protein ubikvitin sastoji se od 76 aminokiselina i ima molekulsku masu oko 8,6 kDa. Ključne karakteristike uključuju njegov rep na C-terminalu i sedam lizinski ostataka. Visoko je konzerviran tokom evolucije eukariota; ubikvitin ljudi i kvasaca ima 96% identiteta sekvence

Geni

Ubikvitin je kod sisara kodiran sa četiri različita gena. UBA52 i RPS27A kodiraju jednu kopiju ubikvitina spojenog sa ribosomskim proteinima L40, odnosno S27a. Geni UBB i UBC kodiraju prekurssorske proteine poliubikvitina.[7]

Ubikvitilacija

Sistem ubikvitilacije (prikazuje RING E3 ligazu).

Ubikvitilacija (poznata i kao ubikvitinacija ili ubikvitinilacija) je enzimske posttranslacijska modifikacija u kojoj je protein ubikvitin vezan za enzimski supstratni protein. Ovaj postupak najčešće veže posljednju aminokiselinu ubikvitina (glicin 76) za ostatak lizina na podlozi. Izopeptidna veza nastaje između karboksil grupe (COO) ubikvitinovog glicina i epsilon – amino grupe (ε- NH +
3
) lizinskog supstrata.[8] Tripsinsko cijepanje supstrata konjugiranog s ubikvitinom ostavlja "ostatak" di-glicina koji se koristi za identificiranje mjesta ubikvilacije.[9][10] Ubikvitin se takođe može vezati za druga mesta u proteinu koja su elektronama bogata nukleofilima, nazvana "nekanonska sveprisutnost".[11] To je prvi put uočeno kod aminogrupe proteinskog N-kraja, koji se koristi za ubikvuitilaciju, umjesto ostatka lizina, u proteinu MyoD [12] i od tada je primijećen u 22 druga proteina u više vrsta i tipova,[13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31] ukljućujući i sam ubikvitin.[32] Također je sve više dokaza o ostacima nelizina kao ciljevima ubikvilacije upotrebom neaminskih grupa, kao što je sulfhidrilna grupa na cisteinu,[33][34][35][36][37][38][39][40] i hidroksil grupa na treoninu i serinu.[28][29][33][39][40][41][42][43][44] Krajnji rezultat ovog postupka je dodavanje jedne molekule ubikvitina (monoubikvitilacija) ili lanca molekula ubikvitina (poliubikvitinacija) proteiskog supstrata.[45]

Za ubikvitinaciju su potrebna tri tipa enzima: ubikvitin-aktivirajući enzim, ubikvitin-konjugirajući enzim i ubikvitin-ligaza, poznati kao E1s, E2s i E3s. Proces se sastoji od tri glavna koraka:

  1. Aktivacija: Ubikvitin se aktivira u reakciji u dva koraka pomoću E1 enzim koji aktivira ubikvitin, što ovisi o ATP. Početni korak uključuje proizvodnju intermedijera ubikvitin-adenilata. E1 veže i ATP i ubikvitin i katalizira acil-adenilaciju C-kraja molekule ubikvitina. Drugi korak prenosi ubikvitin na aktivno mesto cisteinskog ostatka, uz oslobađanje AMP. Ovaj korak rezultira tioesterskom vezom između C-terminalne karboksilne grupe ubikvitina i E1 cisteinske sulfhidrilne grupe.[8][46] Ljudski genom sadrži dva gena koji proizvode enzime sposobne za aktiviranje ubikvitina: UBA1 i UBA6.[47]
  2. Konjugacija: E2 ubikvitin-konjugirajući enzimi kataliziraju transfer ubikvitina iz E1 u aktivno mesto cisteina E2 putem reakcije trans (tio) esterifikacije. Da bi izveo ovu reakciju, E2 se veže i za aktivirani ubikvitin i za enzim E1. Ljudi posjeduju 35 različitih enzima E2, dok ih ostali eukarioti imaju između 16 i 35. Karakterizira ih visoko konzervirana struktura, poznata kao ubikvitin-konjugirajući katalitski nabor (UBC).[48]
Glicin i lizin povezani izopeptidnom vezom. Izopeptidna veza je istaknuta žutom bojom.
  1. Ligacija: E3 ubikvitin-ligaza katalizira završni korak kaskade ubikvitinacije. Najčešće stvaraju izopeptidnu vezu između lizina ciljnog proteina i C-terminalnog ubikvitinskog glicina. Općenito, ovaj korak zahtijeva aktivnost jednog od stotina E3. Enzimi E3 funkcioniraju kao supstrat moduli za prepoznavanje sistema i sposobni su za interakciju s E2 i supstrat. Neki enzimi E3 također aktiviraju enzime E2. E3 enzimi imaju jedan od dva domena: homologni E6-AP karboksilnom C-kraju (HECT) i zaista zanimljiv novi gen (RING) domen (ili usko povezana U-boks domen). HECT domen E3 u ovom procesu privremeno veže ubikvitin (obvezni tioesterski intermedijar nastaje s cisteinskog aktivnog mjesta E3), dok RING domen E3 katalizira direktan prenos sa enzima E2 na supstrat.[49] Kompleks za promociju anafaze (APC) i SCF kompleks (za proteinski kompleks Skp1-Cullin-F-boks) dva su primjera multipodjedinica E3, uključenih u prepoznavanje i ubikvitinaciju specifičnih ciljnih proteina za razgradnju od putem proteasoma.[50]

U kaskadi ubikvitinacije, E1 se može vezati za mnogo E2, koji se mogu hijerarhijski vezati za stotine E3. Postojanje nivoa unutar kaskade omogućava strogu regulaciju mehanizma za ubikvitinaciju.[51] Ostali proteini slični ubikvitinu (UBL) također se modificiraju putem kaskade E1-E2-E3, iako postoje varijacije u tim sistemima.[52]

Enzimi E4 ili faktori produženja lanca ubikvitina sposobni su za dodavanje unaprijed formiranih poliubikvitinskih lanaca u supstratne proteine.[53] Naprimjer, višestruki monoubikvitilacijski supresor tumora p53 putem Mdm2[54] može biti praćeno dodavanjem lanca poliubikvitina, upotrebom p300 i CBP.[55][56]

Struktura

Različito povezani lanci imaju specifične učinke na protein za koji su vezani, uzrokovano razlikama u konformacijama proteinskih lanaca. K29–, K33–,[57] K63– M1-vezani lanci imaju prilično linearnu konformaciju; poznati su kao lanci otvorene konformacije. Vezani lanci K6–, K11– i K48 čine zatvorene konformacije. Molekule ubikvitina u lancima otvorene konformacije ne djeluju međusobno, osim kovalentne izopeptidne veze koja ih spaja. Suprotno tome, zatvoreni konformacijski lanci imaju veze s ostacima u interakciji. Promjenom lančanih konformacija izlažu se i prikrivaju različiti dijelovi ubikvitinskih proteina, a različite veze prepoznaju proteini koji su specifični za jedinstvenu topologiju, svojstvenu vezi. Proteini se mogu specifično vezati za ubikvitin putem ubivitinskih vezujućih domena (UBD-ova). Udaljenost između pojedinih jedinica ubikvitina u lancima razlikuje se između lizinskih 63– i 48–vezanih lanaca. UBD-ovi to iskorištavaju tako što imaju male odstojnike između motiva interakcije ubikvitina, koji vežu lizinske 48-vezane lance (kompaktni lanci ubikvitina) i veće odstojnike, za lizinske 63-povezane lance. Mehanizmi koji su uključeni u prepoznavanje poliubikvitinskih lanaca mogu također razlikovati lance povezane sa K63 i M1 poveznice, što pokazuje činjenica da potonji mogu izazvati proteasomsku degradaciju supstrata.[2][58]

Funkcija

Sistem ubikvitinacije funkcionira u širokom spektru ćelijskih procesa, kao što su:[59]

Deubikvitinacija

Deubikvitinirajući enzimi (DUB) protive se ulozi ubikvinacije uklanjanjem ubikvitina iz proteinskog supstrata. Oni su cistein-proteaze koje razdvajaju amidnu vezu između dva proteina. Vrlo su specifični, kao i E3 ligaze, koje vežu ubikvitin, sa samo nekoliko supstrata po enzimu. Mogu razdvojiti i izopeptid (između ubikvitina i lizina) i peptidnu vezu (između ubikvitina i N-kraja).

Pored uklanjanja ubikvitina iz proteinskog supstrata, DUB imaju i mnoge druge uloge unutar ćelije. Ubikvitin se eksprimira kao višestruke kopije spojene u lanac (poliubikvitin) ili je vezan za ribosomske podjedinice. DUB cijepaju ove proteine, da bi proizveli aktivni ubikvitin. Također recikliraju ubikvitin koji je bio vezan za male nukleofilne molekule tokom procesa ubikvitinacije. Monoubikvitin tvore DUB-ovi koji cijepaju ubikvitin iz slobodnih poliubikvitinskih lanaca koji su prethodno uklonjeni iz proteina.[61]

Ubikvitinski vezni domeni

Karakterizacija ubikvitinskih veznih domena
DomenBroj proteina u proteasomuDužina

(aminkiseline)

Afinitet ubikvitinskog vezanja
CUES. cerevisiae: 7

H. sapiens: 21

42–43~2–160 μM
GATIIS. cerevisiae: 2

H. sapiens: 14

135~180 μM
GLUES. cerevisiae: ?

H. sapiens: ?

~135~460 μM
NZFS. cerevisiae: 1

H. sapiens: 25

~35~100–400 μM
PAZS. cerevisiae: 5

H. sapiens: 16

~58Nepoznato
UBAS. cerevisiae: 10

H. sapiens: 98

45–55~0.03–500 μM
UEVS. cerevisiae: 2

H. sapiens: ?

~145~100–500 μM
UIMS. cerevisiae: 8

H. sapiens: 71

~20~100–400 μM
VHSS. cerevisiae: 4

H. sapiens: 28

150Nepoznato

Ubikvitin-vezujući domeni (UBD) su modularni proteinski domeni koji se nekovalentno vežu za ubikvitin i kontroliraju različite ćelijske događaje. Detaljne molekularne strukture poznate su po brojnim UBD-ima, specifičnost vezanja određuje njihov mehanizam djelovanja i regulacije, te kako reguliraju ćelijske proteine i procese.[62][63]

Vezane bolesti

Put ubikvitina uključen je u patogenezu širokog spektra bolesti i poremećaja, kao što su:[64]

Dijagnostička upotreba

Imunohistohemijska upotreba antitijela za ubikvitin može identificirati abnormalne nakupine ovog proteina unutar ćelija, što ukazuje na proces bolesti. Ove nakupine proteina nazivaju se inkluzijska tijela (što je opći termin za bilo koju mikroskopski vidljivu nakupinu abnormalnog materijala u ćeliji). Primjeri uključuju:

Ljudski proteini sa ubik vitinskim domenom

Ovdje su uključeni ubikvitinoliki protrini:

ANUBL1; BAG1; BAT3/BAG6; C1orf131; DDI1; DDI2; FAU; HERPUD1; HERPUD2;HOPS; IKBKB; ISG15; LOC391257; MIDN; NEDD8; OASL; PARK2;RAD23A; RAD23B; RPS27A; SACS; 8U SF3A1; SUMO1; SUMO2; SUMO3;SUMO4; TMUB1; TMUB2; UBA52; UBB; UBC; UBD; UBFD1;UBL4; UBL4A; UBL4B; UBL7; UBLCP1; UBQLN1; UBQLN2; UBQLN3;UBQLN4; UBQLNL; UBTD1; UBTD2; UHRF1; UHRF2;

Predviđanje ubikvitinacije

Dostupni programi predviđanja su:

  • UbiPred je SVM-zasnovani poslužitelj za predviđanje zasnovan na 31 fizičko-hemijskom svojstvu za predviđanje mjesta ubikvitinacije.[65]
  • UbPred je random forest-zasnovani prediktor potencijalnih mjesta ubikvitinacije u proteinima. Obučeno je na kombiniranom skupu od 266 nepotrebnih eksperimentalno provjerenih mjesta ubikvitinacije, dostupnih iz izvedenih eksperimenata i u dvije velike studije proteomike.[66]
  • CKSAAP_UbSite je predviđanje zasnovano na SVM-u i koristi sastav k-razmaknutih parova aminokiselina koji okružuju mjesto upita (tj. bilo koji lizin u sekvenci upita) kao ulaz, koristi isti skup podataka kao i UbPred.[67]

Također pogledajte

Reference

Vanjski linkovi

Šablon:Proteinska posttranslacijska modifikacija