Rhodium(II) acetate

Rhodium(II) acetate is the coordination compound with the formula Rh2(AcO)4, where AcO is the acetate ion (CH
3
CO
2
). This dark green powder is slightly soluble in polar solvents, including water. It is used as a catalyst for cyclopropanation of alkenes. It is a widely studied example of a transition metal carboxylate complex.

Rhodium(II) acetate
Names
IUPAC name
Rhodium(II) acetate
Other names
Dirhodium tetraacetate,
Tetrakis(acetato)dirhodium(II),
Rhodium diacetate dimer,
Tetrakis(μ-acetato)dirhodium
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard100.036.425 Edit this at Wikidata
EC Number
  • 240-084-8
RTECS number
  • VI9361000
UNII
  • InChI=1S/2C2H4O2.Rh/c2*1-2(3)4;/h2*1H3,(H,3,4);/q;;+2/p-2 checkY
    Key: ITDJKCJYYAQMRO-UHFFFAOYSA-L checkY
  • InChI=1S/4C2H4O2.2Rh/c4*1-2(3)4;;/h4*1H3,(H,3,4);;/q;;;;2*+2/p-4
    Key: : SYBXSZMNKDOUCA-UHFFFAOYSA-J
  • [OH2][Rh+3]1234#[Rh+3]([OH2])(O[C-](C)O1)(O[C-](C)O2)(O[C-](C)O3)O[C-](C)O4
Properties
C8H12O8Rh2
Molar mass441.99 g/mol
AppearanceEmerald green powder
Density1.126 g/cm3
Melting point>100 °C
Boiling pointdecomposes
soluble
Solubility in other solventspolar organic solvents
Structure
monoclinic
octahedral
0 D
Hazards
GHS labelling:[1]
GHS07: Exclamation mark
Warning
H315, H319
P264, P280, P302+P352, P305+P351+P338, P321, P332+P313, P337+P313, P362
NFPA 704 (fire diamond)
Flash pointlow flammability
Safety data sheet (SDS)Coleparmer MSDS
Related compounds
Related compounds
Copper(II) acetate
Chromium(II) acetate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Preparation

Rhodium(II) acetate is usually prepared by the heating of hydrated rhodium(III) chloride in acetic acid (CH3COOH):[2] Rhodium(II) acetate dimer undergoes ligand exchange, the replacement of the acetate group by other carboxylates and related groups.[3]

Rh2(OAc)4 + 4 HO2CR → Rh2(O2CR)4 + 4 HOAc

Structure and properties

The structure of rhodium(II) acetate features a pair of rhodium atoms, each with octahedral molecular geometry, defined by four acetate oxygen atoms, water, and a Rh–Rh bond of length 2.39 Å. The water adduct is exchangeable, and a variety of other Lewis bases bind to the axial positions.[4] Copper(II) acetate and chromium(II) acetate adopt similar structures.

Chemical properties

The application of dirhodium tetraacetate to organic synthesis was pioneered by Teyssie and co-workers.[5] An extensive range of reactions including insertion into bonds and the cyclopropanation of alkenes[6] and aromatic systems.[7] It selectively binds ribonucleosides (vs. deoxynucleosides) by binding selectively to ribonucleosides at their 2′ and 3′ –OH groups.[8] Rhodium(II) acetate dimer, compared to copper(II) acetate, is more reactive and useful in differentiating ribonucleosides and deoxynucleosides because it is soluble in aqueous solution like water whereas copper(II) acetate only dissolves in non-aqueous solution.

Selected catalytic reactions

Dirhodium tetraacetate is also used as catalyst for insertion into C–H and X–H bonds (X = N, S, O).

  1. Cyclopropanation

    through the decomposition of diazocarbonyl compounds, the intra- and intermolecular cyclopropanation reactions occurs.
  2. Aromatic cycloaddition

    Rhodium acetate catalyzes both two-component cycloaddition as well as three-component 1,3-dipolar cycloadditions.
  3. C–H insertion

    Rh(II)-catalyzed regioselective intramolecular and regiospecific intermolecular C–H insertion into aliphatic and aromatic C–H bonds is a useful method for the synthesis of a diverse range of organic compounds.
  4. Oxidation of alcohols

    Allylic and benzylic alcohols were oxidized to the corresponding carbonyl compounds using tert-butyl hydroperoxide in stoichiometric amounts and Rh2(OAc)4 as catalyst in dichloromethane at ambient temperature.
  5. X–H insertion (X = N, S, O)

    Rh(II) carbenoid reacts with amines, alcohols or thiols to yield the product of a formal intra- or intermolecular X–H bond (X = N, S, O) insertion via the formation of an ylide intermediate.

References