Espace de Lindelöf

En mathématiques, un espace de Lindelöf est un espace topologique dont tout recouvrement ouvert possède un sous-recouvrement dénombrable. Cette condition est un affaiblissement de la quasi-compacité, dans laquelle on demande l'existence de sous-recouvrements finis. Un espace est dit héréditairement de Lindelöf si tous ses sous-espaces sont de Lindelöf. Il suffit pour cela que ses ouverts le soient.

Les espaces de Lindelöf sont nommés d'après le mathématicien finlandais Ernst Leonard Lindelöf.

Propriétés

Espaces fortement de Lindelöf

Si ω1 désigne le premier ordinal non dénombrable, l'ouvert [0, ω1[ du compact [0, ω1] n'est pas de Lindelöf.

Un espace est dit fortement de Lindelöf si tous ses ouverts sont de Lindelöf.

  • Tout espace fortement de Lindelöf est héréditairement de Lindelöf, c'est-à-dire que tous ses sous-espaces sont de Lindelöf. (Il suffit, pour le vérifier, d'écrire que tout recouvrement ouvert d'une partie Y de X est de la forme (Y Oi) où les Oi sont des ouverts de X et que leur réunion O est alors un ouvert contenant Y et recouvert par les Oi.)
  • Tout espace à base dénombrable est fortement Lindelöf (puisque ses sous-espaces sont à base dénombrable).
  • Tout espace souslinien est fortement de Lindelöf.
  • La propriété d'être fortement de Lindelöf est préservée par réunions dénombrables, sous-espaces et images continues.
  • Toute mesure de Radon sur un espace fortement Lindelöf est modérée, c'est-à-dire que sa mesure extérieurement régulière associée est σ-finie.

Produit d'espaces de Lindelöf

Un produit d'espaces de Lindelöf n'est pas toujours de Lindelöf. Le contre-exemple classique est le plan de Sorgenfrey S×S, produit de la droite de Sorgenfrey S par elle-même. Dans le plan S×S, l'antidiagonale D (la droite d'équation y = – x) est un sous-espace discret donc n'est pas de Lindelöf (puisque D n'est pas dénombrable). Or D est un fermé de S×S, qui n'est par conséquent pas de Lindelöf non plus.

Cependant, le produit d'un espace de Lindelöf par un espace quasi-compact est de Lindelöf[6].

Généralisation

Un espace est dit κ-compact (ou κ-Lindelöf), pour un cardinal κ donné, si tout recouvrement ouvert possède un sous-recouvrement de cardinalité strictement inférieure à κ. Les espaces quasi-compacts sont donc les 0-compacts et les espaces de Lindelöf sont les 1-compacts.

À tout espace X on associe son degré de Lindelöf, ou nombre de Lindelöf, noté L(X) et son degré héréditaire de Lindelof, noté hL(X)[7] :

L(X) est le plus petit cardinal infini κ tel que tout recouvrement ouvert de X possède un sous-recouvrement de cardinalité inférieure ou égale à κ et
hL(X) est la borne supérieure des L(Y) pour toutes les parties Y de X.

Avec cette notation, X est de Lindelöf si et seulement si L(X) = ℵ0, mais la donnée de L(X) ne suffit pas à distinguer si X est quasi-compact ou seulement de Lindelöf. C'est pourquoi, bien que moins couramment, certains auteurs donnent le nom de nombre de Lindelöf[8] de X (ou parfois degré de compacité[réf. nécessaire]) à une notion différente : le plus petit cardinal infini κ tel que X soit κ-compact.

Le cardinal d'un espace séparé X est borné[9] en fonction de son degré de Lindelöf L(X) et de son caractère χ(X)[7] : |X| ≤ 2L(X)χ(X). Par exemple, tout espace de Lindelöf séparé (en particulier tout espace compact) à bases dénombrables de voisinages a au plus la puissance du continu.

Il est aussi borné en fonction de son degré héréditaire de Lindelöf[7] : |X| ≤ 2hL(X).

Notes et références

Voir aussi

Articles connexes

Lien externe

(en) Chris Good, « The Lindelöf Property », sur Université de Birmingham,

🔥 Top keywords: