Vöröseltolódás

Vöröseltolódásnak hívjuk az elektromágneses hullámok hullámhosszának a kibocsátott hullámhosszhoz viszonyított megnövekedését. A jelenségnek a csillagászat és az asztrofizika területén fontos szerepe van, mivel a távoli galaxisok színképe a vörös felé tolódik. Az ellentétes jelenséget, amikor a hullámhossz rövidül, kékeltolódásnak hívjuk.

Egy távoli galaxishalmaz fényének vöröseltolódása a látható tartományban
Vörös-, illetve kékeltolódás

A vöröseltolódás három lehetséges okát meg kell különböztetni:

  1. a forrás és a megfigyelő relatív mozgása (Doppler-effektus, relativisztikus Doppler-effektus)
  2. a forrás és a megfigyelő gravitációs potenciálja eltérő (gravitációs vöröseltolódás)
  3. a Világegyetem tágulása (a forrás és a megfigyelő között)

Általában a vöröseltolódás (és a kékeltolódás, a kibocsátottnál rövidebb hullámhossz észlelése) a következő módon számszerűsíthető:

ahol a frekvencia és a hullámhossz.

Története

A tárgy története a hullámmechanika 19. századi kifejlesztésével és a Doppler-effektussal kapcsolatos jelenségek felfedezésével kezdődött. A jelenséget Christian Andreas Dopplerről nevezték el, aki 1842-ben az első ismert fizikai leírását adta a jelenségnek[1] A feltevést a holland Christoph Hendrik Diederik Buys Ballot tesztelte 1845-ben hanghullámok segítségével, és megállapította annak helyességét.[2] Doppler helyesen állapította meg, hogy a jelenségnek mindenféle hullám esetén létre kell jönnie, és azt is felvetette, hogy a csillagok különböző színe is a Földhöz viszonyított mozgásukból ered.[3] Bár ez utóbbi megállapítás helytelennek bizonyult (a csillagok színe a csillag hőmérsékletével kapcsolatos, nem a mozgásával), a Doppler-effektust igazolták a vöröseltolódás megfigyelésével.

Az első Doppler-féle vöröseltolódást 1848-ban egy francia fizikus, Armand-Hippolyte-Louis Fizeau írta le, aki kimutatta a csillagok színképének eltolódását a Doppler-effektusnak megfelelően. A hatást emiatt Doppler–Fizeau-hatásnak is nevezik. 1868-ban William Huggins brit csillagász volt az első, aki ezzel a módszerrel először határozta meg egy a Földtől távolodó csillag sebességét.[4]

1871-ben a Nap forgásával kapcsolatosan állapították meg a jelenség létezését a Fraunhofer-vonalak megfigyelésével, az eltolódás nagyjából 0,1 Å volt.[5] 1901-ben Aristarh Apollonovics Belopolszkij mért optikai vöröseltolódást laboratóriumban, forgó tükrökből álló rendszer segítségével.[6]]

A vöröseltolódás kifejezés először Walter S. Adams amerikai csillagász cikkében jelent meg nyomtatásban 1908-ban ("Two methods of investigating that nature of the nebular red-shift".)[7] Maga a szó idézőjelek nélkül csak 1934-ben jelenik meg Willem de Sitter által használva.[8]

1912-ben kezdett észleléssorozatában Vesto Slipher felfedezte, hogy a legtöbb spirálködnek jelentős vöröseltolódása van.[9] Ezután Edwin Hubble felfedezett egy közelítő kapcsolatot az ilyen „ködök” (akkor még nem tekintették csillagvárosoknak, galaxisoknak) vöröseltolódása és a távolságuk között, amely a Hubble-törvényhez vezetett[10] Ezek a megfigyelések megerősítették Alexander Friedmann 1922-es munkáját, melyben levezette a Friedmann-egyenleteket.[11] Ezek ma a táguló világegyetem és az Ősrobbanás-elmélet komoly bizonyítékát jelentik.[12]

A rajz bal oldalán lévő megfigyelőhöz képest a fényforrás távolodik, ekkor a megfigyelőhöz érkező fény hullámhossza megnyúlik. Ezáltal a fény színe vörösebbé válik. Ezt hívják vöröseltolódásnak.
1: a fényforrás elmozdulásának hatására az elmozdulással ellentétes irányban a fényhullámok megnyúlnak
2: a fényforrás elmozdulási iránya
3: fényforrás
4: a fényforrás mozgása miatt a szemben lévő megfigyelőhöz érkező fény hullámhossza lerövidül

A jelenség okai

A vöröseltolódásnak a következő okai lehetnek:

A forrás mozgása

Ha a fényforrás távolodik a megfigyelőtől, akkor vöröseltolódás ( ) lép fel; ha a forrás a megfigyelő felé mozog, akkor pedig kékeltolódás ( ). Ez minden hullám esetén igaz, és a Doppler-effektussal magyarázható. Ha a forrás a megfigyelőtől a fény sebességénél jóval kisebb sebességgel távolodik, akkor a vöröseltolódás megadható a

összefüggéssel, ahol a fénysebesség.

Fontos hangsúlyozni, hogy a kifejezés csak közelítő, és a fénysebesség közelében módosításra szorul (relativisztikus Doppler-effektus):


A tér tágulása

Egy test felszínéről elinduló fény gravitációs vöröseltolódást szenved

A kozmológia jelenleg elfogadott modellje szerint a tér tágul, és a fény hullámhossza megnövekszik (megnyúlik) a tér tágulásával, ami a fény vörösebbé válásaként látszik látható fény esetében. Ha a Világegyetem az összehúzódás állapotában lenne, akkor a távoli galaxisok fénye a kék felé tolódna. A távoli galaxisok vöröseltolódása teljesen úgy látszik, mintha a távoli galaxisok távolodnának, az általános relativitáselmélet szerint viszont a távolodás, és a tér tágulása két különböző dolog. A távoli galaxisokra ne úgy tekintsünk, mint amelyek távolodnak, hanem úgy, hogy a közöttünk levő tér tágul. Ennek ellenére néha hivatásos csillagászok is kissé pongyolán „távolodási sebességről” beszélnek a vöröseltolódás esetében, ami a laikusokat megzavarhatja.

Gravitációs hatások

Az általános relativitáselmélet szerint az erős gravitációs téren keresztülhaladó fény vörös vagy kékeltolódást szenvedhet. Ezt Einstein-eltolódásként ismeri a szakirodalom. Ez a hatás a Földön nagyon kicsi, de a Mössbauer-effektus révén mérhető. Ennek ellenére a fekete lyuk esetén nagyon jelentős: azoknak a testeknek, melyek elérik az eseményhorizontot, a vöröseltolódása végtelenné válik. Ez a fő oka a kozmikus mikrohullámú háttérsugárzás nagy szögskálájú hőmérséklet-ingadozásainak is.

Megfigyelése

A Doppler-effektus csillagászati alkalmazásait a Doppler-effektus szócikkben találhatjuk. A továbbiakban a másfajta eredetű vöröseltolódásokról írunk.

A csillagászat területén a vöröseltolódás mérhető, hiszen az atom emissziós és abszorpciós (elnyelési) színképe jól ismert. Amikor távoli galaxisok színképét vizsgáljuk, akkor a megfelelő színképvonalak a kisebb frekvenciák (nagyobb hullámhosszak) felé tolódnak el. Minél távolabbi egy objektum, annál nagyobb a vöröseltolódása. Ezekre a távolabbi objektumokra úgy is tekinthetünk, mint amelyek korábbi állapotúak, ugyanis a fénynek időre van szüksége, hogy hozzánk eljusson. A legnagyobb megfigyelhető vöröseltolódása a kozmikus mikrohullámú háttérsugárzásnak van: z = 1089. Ez időben a jelenleginél 13,7 milliárd évvel korábbnak felel meg, és az Ősrobbanás utáni 379 000. évnek.

A Lokális Csoporton kívüli, de ezer megaparszeknél közelebbi galaxisok esetén a vöröseltolódás a galaxis távolságával arányos, amelyet Edwin Hubble fedezett fel, és róla Hubble-törvénynek nevezték el. Ezt az eltolódást a tér tágulásának a számlájára írják, azaz minél távolabb van egy galaxis, annál nagyobb mértékben tágult a tér, mióta a fénye elért minket, azaz annál jobban megnyúlt a fény hullámhossza, annál jobban eltolódott a hullámhossza a vörös felé, annál nagyobb sebességgel látszik távolodni. A vöröseltolódás gyakran könnyebben és pontosabban mérhető, mint a távolodási sebesség, ezért a távolságot általában a vöröseltolódásból számolják a Hubble-törvény szerint.

A még távolabbi galaxisok esetén a jelenlegi távolság és a megfigyelt vöröseltolódás közötti összefüggés bonyolultabbá válik. Ha valaki egy távoli galaxist néz, akkor annak egy régmúltbeli állapotát figyeli meg, amikor a Világegyetem másmilyen volt, mint most. Úgy feltételezzük, hogy régebben más sebességgel tágult a Világegyetem, mint most. A feltételezésnek két oka van: (1) a gravitációs vonzás hatására a tágulásnak lassulnia kell és (2) a kozmológiai állandó jelenléte változtathatja a világegyetem tágulási ütemét. Jelenlegi megfigyeléseink viszont arra utalnak, hogy a világegyetem tágulása nem lassul, ahogy (1) szerint várjuk, hanem gyorsul.

A táguló Világegyetem az Ősrobbanás-elmélet alapvető következménye.

Működése

Egy egyszerű foton a vákuumbeli terjedése során többféle módon is képes vöröseltolódásra. Ezek mindegyike a Doppler-jelenséghez hasonló, ami azt jelenti, hogy független a hullámhossztól. Ezeket a Galilei-transzformációval, Lorentz-transzformációval, vagy az általános relativitáselmélet segítségével írhatjuk le.

Vöröseltolódás Összegzés
Eltolódás típusaEltolódási törvényPélda téridők[13]Definíció[14]
Doppler-eltolódásGalilei-transzformációNewtoni téridő
Relativisztikus DopplerLorentz-transzformációMinkowski téridő
Kozmológiai vöröseltolódásáltalános relativitáselméletFRW téridők
Gravitációs vöröseltolódásáltalános relativitáselméletSchwarzschild téridő

Jegyzetek

További információk

A Wikimédia Commons tartalmaz Vöröseltolódás témájú médiaállományokat.