Skaitīšanas sistēma

Skaitīšanas sistēma ir simbolisks skaitļu pieraksta veids, kurā skaitļu attēlošanai tiek izmantoti vairāki cipari vai citas rakstzīmes.

Izšķir pozicionālās un nepozicionālās skaitīšanas sistēmas. Pozicionālajās skaitīšanas sistēmās cipara vērtība ir atkarīga no tā atrašanās vietas skaitlī. Pozicionālās ir decimālā, heksadecimālā, duodecimālā, oktālā, binārā un citas skaitīšanas sistēmas. Nepozicionālās skaitīšanas sistēmas piemērs ir romiešu skaitļi. Šajā sistēmā nav svarīgi, kur kāds simbols atrodas, tā nozīme nemainās. Piemēram I ir vieninieks gan skaitļa sākumā gan beigās. Visās pozicionālajās skaitīšanas sistēmās bāze attēlojas skaitļa "10" veidā, piemēram, binārajā skaitīšanas sistēmā skaitlis "2" attēlojas kā "10", oktālajā kā "10" attēlojas skaitlis "8" utt.

Decimālā skaitīšanas sistēma

Decimālajā skaitīšanas sistēmā bāze ir kopējais dažādu simbolu skaits, kas pieļaujami šajā sistēmā. Lielākā simbola vērtība vienmēr ir par vienu mazāka nekā bāze. Piemēram, decimālajā sistēmā ir desmit dažādi simboli: 0,1,2,3,4,5,6,7,8,9, kur lielākais 9 ir par vienu mazāks nekā 10 (bāze).

Skaitīšana

Secīgas (pa vienam) decimālās skaitīšanas koncepcija

Simtu pozīcijaDesmitu pozīcijaVieninieku pozīcijaPiezīmes
0Mazākās vērtības simbols
1Secīgs pieaugums pozīcijā
2Secīgs pieaugums pozīcijā
3Secīgs pieaugums pozīcijā
4Secīgs pieaugums pozīcijā
5Secīgs pieaugums pozīcijā
6Secīgs pieaugums pozīcijā
7Secīgs pieaugums pozīcijā
8Secīgs pieaugums pozīcijā
9Lielākās vērtības simbols
10Nobīdes rādītājs
11Secīgs pieaugums pozīcijā
12 [..]Secīgs pieaugums pozīcijā
1[..] 9Secīgs pieaugums pozīcijā
20Nobīdes rādītājs
21Secīgs pieaugums pozīcijā
22Secīgs pieaugums pozīcijā
[..][..]Secīgs pieaugums pozīcijā
98Secīgs pieaugums pozīcijā
99Secīgs pieaugums pozīcijā
100Nobīdes rādītājs
101
Decimālās skaitīšanas koncepcija

Ir speciāli jāpasvītro skaitļu traktēšanu, kas lielāki par sistēmas bāzi. Simbols 0 seko vienmēr pēc tam, kad kādā no skaitļa pozīcijām skaitīšanas secībā izmantoti visi sistēmā atļautie simboli, kas decimālajā sistēmā ir no 0 līdz 9. Pie simbola 0 parādīšanās uzkrājums no 1 līdz 9 "jānobīda" uz tieši blakus esošo pozīciju pa kreisi no 0 simbola un secīgā skaitīšana jāatsāk iepriekšējā pozīcijā. Simbolu 0 dēvē par nobīdes rādītāju un tas norāda, ka secīgi skaitot ir saskaitīti attiecīgās pozīcijas 10 vieninieki. Šādu darbību var aplūkot tabulā pie skaitļiem 10, 20 un 100. Katrai pozīcijai decimālajā skaitlī, jeb katram vieniniekam šajā pozīcijā ir desmit reizes lielāka vērtība par labajā pusē tieši blakus esošās pozīcijas vērtību, t.i. šajā pozīcijā esošā vieninieka vērtību. Katra pozicionālā vērtība ir desmita reizulis un tā var tikt izteikta kā skaitlis 10 kāpināts kādā pakāpē.

Piemērs: izteikt 123 pakāpju formā.
Risinājums:
123= 1*100+2*10+3*1= 1*102+2*101+3*100

Virkni (rindu) ar augošām pakāpēm pa kreisi no decimālā komata var turpināt neierobežoti tālu. Virkni var turpināt arī pa labi no decimālā komata, tikai ar negatīvām pakāpēm. Piemēram, pirmajā pozīcijā pa labi no decimālā komata ir desmitdaļu pozīcija un tai vērtība ir 10-1 jeb 1/101.
Jebkuru decimālās sistēmas skaitli var izteikt tāpat kā tas parādīts tabulā "Decimālo skaitļu izteikšana". Simbols, kas atrodas skaitļa kādā pozīcijā, rāda cik 10 pakāpes reizināmo ietilpst kopējā apjomā, ko pārstāv skaitlis.

SimtiDesmitiVieniDecimālais
komats
DesmitdaļasSimtdaļas
10n102101100,10-110-210-mPakāpes pozīcija
n210,-1-2-m
Decimālie
skaitļi
100101,0,10,01Pozīciju ekvivalentās
vērtības pie
bāzes 10
11
1212
123,45123,45
0,62,62
10,1010,10
234,5234,5
Decimālo daļu izteikšana



Vispārīgā veidā jebkuru decimālo skaitli var izteikt ar vienādojumu N=j=-mj=n Ai*10j , kur: Aj - pieļaujamie simboli (0,1,2,3,4,5,6,7,8,9); n,m - summēšanas augšējā un apakšējā robeža, turklāt m ir daļskaitļa daļas pozīciju skaits, n=P-1, kur P - skaitļa veselās daļas pozīciju skaits.
Piemērs: izteikt summas formā decimālo skaitli 2345,67.
Risinājums:

n=3, m=2
N=2*103+3*102+4*101+5*100+6*10-1+7*10-2
N=2000+300+40+5+0,6+0,07

Binārā skaitīšanas sistēma

Bāze un simboli

Šajā skaitīšanas sistēma bāze ir 2 un izmantojamie simboli ir 0 un 1.

Skaitīšana

Pie bāzes 2 maksimālais skaits, ko var izteikt ar vienu pozīciju, ir viens. Ja grib izteikt decimālo 2, tad 1 jānobīda pa kreisi un jālieto 0, lai indicētu, ka notikusi bīde. Tādējādi skaitlis 2 binārajā sistēmā ir 10 (viens un nulle).

DecimālaisBināraisPiezīmes
00000Identiski
10001Identiski
20010Nepieciešama bīde pa kreisi
300112 un 1 ir 3
40100Nepieciešama vēl viena bīde
501014 un 1 ir 5
601104 un 2 ir 6
701114 un 2 un 1 ir 7
81000Nepieciešama jauna bīde
910018 un 1 ir 9
1010108 un 2 ir 10
1110118 un 2 un 1 ir 11
1211008 un 4 ir 12
1311018 un 4 un 1 ir 13
1411108 un 4 un2 ir 14
1511118 un 4 un 2 un 1 ir 15
Binārā skaitīšana no 0 līdz 15


Šis skaitīšanas piemērs parāda, ka pastāv iespēja skaitīt sistēmā, kuras bāze atšķiras no 10. Tabulā "Binārā skaitīšana no 0 līdz 15" skaitīšanas apjoms beidzas ar 15, bet tāpat kā decimālajā, arī binārajā sistēmā var skaitīt neierobežoti palielinot.

četriniekidivniekiVienibinārais
komats
pusesceturtdaļas
2n222120,2-12-22-mPakāpes pozīcija
n210,-1-2-m
Decimālie
skaitļi
421,1/21/4Pozīciju ekvivalentās
vērtības pie
bāzes 10
11
210
5101
7,5111,1
6,25110,01
5,75101,11
Skaitļu izteikšanas piemēri binārajā sistēmā


Tabula ir līdzīga tabulai, kas demonstrē decimālo sistēmu. Vienīgās atšķirības ir citu iespējamo simbolu lietojums un divnieku pakāpes reizuļa izmantojums. Vienādojumu var pārrakstīt formā : N=j=-mj=n Ai*2j, kur Ai - pieļaujamie simboli (0,1); n,m - summēšanas augšējā un apakšējā robeža, turklāt m ir daļskaitļu pozīcijas skaits; n=P-1, kur P - skaitļu veselās daļas pozīciju skaits.
Piemērs: izteikt bināro skaitli 11011,01 pakāpju formārisinājums: n=4, m=2

N=1*24+1*23+0*22+1*21+1*20+0*2-1+1*2-2
N=27,25

2nn2-n
101
210,5
420,25
830,125
1640,062 5
3250,031 25
6460,015 625
12870,007 812 5
25680,003 906 25
51290,001 953 125
1 024100,000 976 562 5
2 048110,000 488 281 25
4 096120,000 244 140 625
8 192130,000 122 070 312 5
16 384140,000 061 035 156 25
32 768150,000 030 517 578 125
65 536160,000 015 258 789 062 5
131 072170,000 007 629 394 531 25
262 144180,000 003 814 697 265 625
524 288190,000 001 907 348 632 812 5
1 048 576200,000 000 953 674 316 406 25


Jebkuras bāzes skaitīšanas sistēma

Skaitīšanas sistēmas izveidošanai var izmantot jebkura izmēra bāzi, kura lielāka par viens. Apzīmējot bāzi ar B, skaitli N pēc līdzīgas shēmas kā ar decimālo un bināro sistēmu, var izteikt kā pakāpju summu N=j=-mj=n Ai*Bj, kur Ai - pieļaujamie simboli (0,1, ... , B-1); n,m - summēšanas augšējā un apakšējā robeža, turklāt m ir daļskaitļu pozīcijas skaits; n=P-1, kur P - skaitļu veselās daļas pozīciju skaits.Jebkuras sistēmas skaitli var attēlot sekojoši saskaņā ar formulu N=j=-mj=n Ai*Bj izmantojot bāzes B pakāpes.
Vispārējais vienādojums jeb formula ļauj izveidot citas digitālajā tehnikā izmantojamas skaitīšanas sistēmas, piemēram, oktālo ar bāzi 8 vai heksadecimālo ar bāzi 16 un citas sistēmas. Tomēr digitālajās ierīcēs vairumu operāciju realizē izmantojot bināro skaitīšanas sistēmu.

Binārās sistēmas nepieciešamība

Binārā sistēma ievērojami samazina grūtības, kas rodas, precīzi attēlojot decimālos ciparus ar elektronisko ierīču rīcībā esošajiem līdzekļiem. Lai varētu izmantot visus decimālās sistēmas simbolus, nepieciešami desmit diskrēti līmeņi. Visiem šiem līmeņiem jābūt pietiekami atšķirīgiem vienam no otra, lai atpazīstot simbolus, nerastos kļūdas. Šāds kritērijs vairumam datu apstrādes elektronisko iekārtu ir pārāk ierobežojošs un neizpildāms.
Binārajā sistēmā nepieciešami tikai divi diskrēti līmeņi un decimālos skaitļus var kodēt ekvivalentās binārās vērtībās. Elektroniskajās ierīcēs var izmantot divus izteikti atšķirīgus sprieguma vai strāvas līmeņus un vērtējot katrā gadījumā izslēgt jebkādas šaubas par to, kādu bināro vērtību katrs līmenis pārstāv. Vērtību 0 pārstāv viens pieņemtais elektriskā signāla līmenis, kurš parasti ir zems, un vērtību 1 - otrs. Visas tālāk aplūkotās datu apstrādes, pārveidošanas, pārvadīšanas ierīces izmanto bināro sistēmu un tādēļ viena no pamatprasībām iepazīstoties ar digitālajiem elementiem un ierīcēm ir prasme pāriet n decimālās sistēmas uz bināro sistēmu un otrādi.

10 2816
0000000
1000111
2001022
3001133
4010044
5010155
6011066
7011177
81000108
91001119
10101012A
11101113B
12110014C
13110115D
14111016E
15111117F
Skaitīšanas sistēmu salīdzinājums (izceltās ir sistēmu bāzes)


Oktālā sistēma

Oktālās skaitīšanas sistēmas bāze ir 8. Tabulā "Skaitīšanas sistēmu salīdzinājums" redzams, ka pakāpeniski skaitot vienas pozīcijas ietvaros no 0 līdz 7, t.i. maksimālajam simbolam oktālajā sistēmā, attiecīgi binārajā sistēmā notiek skaitīšana triju pozīciju ietvaros (no 000 līdz 111). Katram oktālās sistēmas simbolam atbilst trīs pozīciju binārais ekvivalents un otrādi.
Lai pārietu no binārās uz oktālo sistēmu, binārais skaitlis jāsadala ciparu grupās pa trim simboliem un katrai grupai jāuzraksta attiecīgais oktālais ekvivalents.
Piemērs: uzrakstīt oktālo ekvivalentu skaitlim 10110101110012
Risinājums:

1011010111001
13271

10110101110012=132718

Heksadecimālā sistēma

Heksadecimālās sistēmas bāze ir 16. Tātad sistēmā izmantoti 16 simboli: 10 cipari no 0 līdz 9 un 6 latīņu alfabēta lielie sākuma burti A, B, C, D, E, F. Pēc analoģijas ar oktālo sistēmu konstatējam, ka katram simbolam heksadecimālajā sistēmā atbilst četru pozīciju binārais skaitlis.
Pārejot no binārās uz heksadecimālo sistēmu binārais skaitlis jāsadala grupās pa četrām kārtām un katrai četru bināro simbolu grupai jāuzraksta heksadecimālais ekvivalents.

1|1100|1010|0111|01012 ←→ 1CA7516

Skatīt arī

Literatūras saraksts