ইলেকট্রন ক্যাপচার

ইলেক্ট্রন ক্যাপচার (কে-ইলেক্ট্রন ক্যাপচার, কে-ক্যাপচার, বা এল-ইলেক্ট্রন ক্যাপচার, এল-ক্যাপচার) হলো এমন এক প্রক্রিয়া যার মাধ্যমে বিদ্যুৎ নিরপেক্ষ পরমাণুর প্রোটন সমৃদ্ধ নিউক্লিয়াস সাধারণত কে বা এল শক্তিস্তর থেকে একটি অভ্যন্তরীণ পারমাণবিক ইলেক্ট্রন গ্রহণ করে। এই প্রক্রিয়া, একটি পারমাণবিক প্রোটনকে নিউট্রনে রূপান্তরিত করে এবং একই সাথে একটি ইলেক্ট্রনের নিউট্রিনোর নির্গমন ঘটায়।

ইলেক্ট্রন ক্যাপচারের দুইটি পদ্ধতি। উপরিভাগ: নিউক্লিয়াস একটি ইলেক্ট্রন শোষণ করছে। নিচের বামদিকে: একটি বহিরাগত ইলেকট্রন "অনুপস্থিত" ইলেকট্রনকে প্রতিস্থাপন করছে। ফলে, দুইটি ইলেক্ট্রন শক্তিস্তরের শক্তির পার্থক্যের সমান শক্তিতে একটি এক্স-রে নির্গত হচ্ছে। নিচের ডানদিকে: অগার ক্রিয়ায়, বাইরের ইলেক্ট্রনটি অভ্যন্তরীণ ইলেক্ট্রনকে প্রতিস্থাপন করে যখন শক্তি শুষে নেয় তখন অভ্যন্তরীণ ইলেক্ট্রনটি বহি ইলেক্ট্রনে পরিণত হয়। বাইরের ইলেক্ট্রনটি পরমাণু থেকে বের হয়ে যায় এবং পরমাণুটিকে একটি ধনাত্মক আয়নে পরিণত করে।

p
  + 
e
  → 
n
  + 
ν
e

যেহেতু নির্গত একক নিউট্রিনোটি পুরো অবক্ষয় শক্তি বহন করে, তাই এতে এই একক বৈশিষ্ট্যযুক্ত শক্তি থাকে। একইভাবে, প্রতিপদার্থ নিঃসরণের ভরবেগ অপত্য পরমাণুটিকে একক বৈশিষ্ট্যযুক্ত ভরবেগ দিয়ে প্রতিক্ষিপ্ত করে।

ফলস্বরূপ, অপত্য নিউক্লাইড যদি উত্তেজিত অবস্থায় থাকে তবে এটি নিম্ন শক্তিস্তরে পরিবর্তীত হয়। সাধারণত, এই রূপান্তরকালে একটি গামা রশ্মি নির্গত হয় তবে, এক্ষেত্রে অভ্যন্তরীণ রূপান্তরের মাধ্যমে পারমাণবিক অব-উত্তেজিতকরণও ঘটতে পারে।

পরমাণু থেকে একটি অভ্যন্তরীণ ইলেক্ট্রন ক্যাপচারের পরে, একটি বহি:স্থ ইলেক্ট্রন, ক্যাপচারকৃত ইলেক্ট্রনটিকে প্রতিস্থাপন করে এবং এক বা একাধিক বৈশিষ্ট্যযুক্ত এক্স-রে ফোটন নির্গত করে। মাঝে মধ্যে অগার ক্রিয়ার ফলেও ইলেক্ট্রন ক্যাপচার সংঘটিত হয় যেখানে, পরমাণুর ইলেক্ট্রনগুলির মধ্যে কম শক্তিস্তরে যাওয়ার প্রবণতায় সৃষ্ট পারস্পরিক মিথস্ক্রিয়ার কারণে পরমাণুর শক্তিস্তর থেকে একটি ইলেকট্রন বের হয়ে যায়।

ইলেক্ট্রন ক্যাপচারের ফলে, পারমাণবিক সংখ্যা এক হ্রাস পায়, নিউট্রন সংখ্যা এক বৃদ্ধি পায় এবং ভর সংখ্যা অপরিবর্তীত থাকে। সাধারণ ইলেকট্রন ক্যাপচার নিজে থেকেই একটি নিরপেক্ষ পরমাণু তৈরী করে যেখানে, ইলেকট্রনের শক্তিস্তর থেকে ইলেক্ট্রনের ক্ষয় ধনাত্মক পারমাণবিক আধান ক্ষয় দ্বারা সাম্যাবস্থা পায়। তবে, পরবর্তীকালে অগার ইলেকট্রন নিঃসরণের মাধ্যমে একটি ধনাত্মক পারমাণবিক আয়ন সৃষ্ট হতে পারে।

ইলেকট্রন ক্যাপচার দুর্বল নিউক্লিয় বলের অর্থাৎ চারটি মৌলিক বলের একটির উদাহরণ।

ইলেক্ট্রন ক্যাপচার হলো নিউক্লিয়াসে প্রোটনের আপেক্ষিক অতি প্রাচুর্য সম্পন্ন আইসোটোপগুলির প্রধান অবক্ষয় প্রণালী, তবে আইসোটোপ এবং এর সম্ভাব্য অপত্যের (একটি কম ধনাত্মক আধান সম্পন্ন আইসোবার) মধ্যে শক্তির পার্থক্য একটি নিউক্লাইড ক্ষয় করে পজিট্রন নিঃসরণের জন্য পর্যাপ্ত নয়। ইলেক্ট্রন ক্যাপচ্যার হলো তেজস্ক্রিয় আইসোটোপগুলির জন্য বিকল্প অবক্ষয় প্রণালী যা পজিট্রন নিঃসরণের মাধ্যমে অবক্ষয়ের জন্য পর্যাপ্ত শক্তি সম্পন্ন। ইলেক্ট্রন ক্যাপচারকে কখনও কখনও এক ধরনের বিটা ক্ষয় হিসাবে ধরা করা হয় কেননা, দুর্বল নিউক্লিয় বল দ্বারা মধ্যস্থতাকৃত প্রক্রিয়াদ্বয়ের প্রাথমিক পারমাণবিক প্রক্রিয়া একই। নিউক্লীয় পদার্থবিজ্ঞানে বিটা ক্ষয় এক ধরনের তেজস্ক্রিয় ক্ষয় যেখানে একটি পারমাণবিক নিউক্লিয়াস থেকে একটি বিটা কণিকা (স্থির শক্তিযুক্ত ইলেক্ট্রন বা পজিট্রন) এবং একটি নিউট্রিনো নির্গত হয়। ইলেক্ট্রন ক্যাপচারকে কখনও কখনও বিপরীত বিটা ক্ষয় বলা হয়,[১] যদিও এই শব্দটি সাধারণত একটি প্রোটনের সাথে একটি ইলেক্ট্রন প্রতিপদার্থের মিথস্ক্রিয়াকে বোঝায়।[২]

মাতৃ পরমাণু এবং অপত্য পরমাণুর শক্তি পার্থক্য ১.০২২ এর চেয়ে কম হলে, পজিট্রন নির্গমন প্রতিষিদ্ধ হয়ে যায় কারণ এক্ষেত্রে ক্ষয় করার জন্য পর্যাপ্ত অবক্ষয় শক্তি পাওয়া যায় না এবং এভাবে ইলেকট্রন ক্যাপচার হলো শুদ্ধ অবক্ষয় প্রণালী। উদাহরণস্বরূপ, রুবিডিয়াম-৮৩ (৩৭ টি প্রোটন, ৪৬ টি নিউট্রন) ইলেকট্রন ক্যাপচারের মাধ্যমে শুদ্ধভাবে ক্রিপটন-৮৩ তে (৩৬ টি প্রোটন, ৪৭ টি নিউট্রন) ক্ষয়ে যায় (শক্তির পার্থক্য বা অবক্ষয় শক্তি প্রায় ০.৯ MeV)।

ইতিহাস

ইলেক্ট্রন ক্যাপচারের তত্ত্বটি প্রথমে জিয়ান-কার্লো উইক ১৯৩৪ সালের একটি গবেষণাপত্রে আলোচনা করেন এবং পরবর্তীকালে হিদেকি ইউকাওয়া এবং অন্যান্যরা এর বিকাশ সাধন করেন। কে-ইলেক্ট্রন ক্যাপচার, সর্বপ্রথম লুইস ওয়াল্টার আলভারেজ কর্তৃক ভ্যানাডিয়াম-৮৮-তে পর্যবেক্ষীত হয়। তিনি ১৯৩৭ সালে এটি ফিজিক্যাল রিভিউ নামক একটি গবেষণাপত্রে জ্ঞাপিত করেন।[৩][৪][৫] পরবর্তীতে আলভারেজ গ্যালিয়াম-৬৭ এবং অন্যান্য নিউক্লাইডে ইলেক্ট্রন ক্যাপচার নিয়ে অধ্যয়ন চালিয়ে যান।[৬][৭]

বিক্রিয়ার বিশদ বর্ণনা

উদাহরণ:

26
13
Al
  + 
e
  →  26
12
Mg
  + 
ν
e
59
28
Ni
  + 
e
  →  59
27
Co
  + 
ν
e

40
19
K
  + 
e
  →  40
18
Ar
  + 
ν
e

আধৃত ইলেক্ট্রনটি কোনও নতুন, বহিরাগত ইলেকট্রন নয় বরং পরমাণুর একটি নিজস্ব ইলেকট্রন ঠিক যেমনটি উপরের বিক্রিয়াগুলি লিখার ধরনের মাঝে প্রকাশ পায়। শুদ্ধ ইলেক্ট্রন ক্যাপচার দ্বারা ক্ষয়প্রাপ্ত তেজস্ক্রিয় আইসোটোপগুলি সম্পূর্ণরূপে আয়নিত হলে এর তেজস্ক্রিয় ক্ষয় বাধা প্রাপ্ত হয় ("স্ট্রিপড" শব্দটি কখনো কখনো এই জাতীয় আয়নের বর্ণনায় ব্যবহৃত হয়)। এটি অনুমান করা হয় যে এই জাতীয় উপাদানগুলি, বিস্ফোরিত সুপারনোভাতে আর-প্রক্রিয়ায় গঠিত হলে, পুরোপুরি আয়নিত হয়ে যায়। তাই যতক্ষণ না তারা বাইরে ইলেক্ট্রনের মুখোমুখি না হয়, ততক্ষণ তাদের তেজস্ক্রিয় ক্ষয় হয় না। মনে করা হয়, ভৌতিক সংস্থানে অসঙ্গতিগুলি আংশিকভাবে ইলেক্ট্রন ক্যাপচারের প্রভাবে হয়ে থাকে। বিপরীত ক্ষয়গুলিও সম্পূর্ণ আয়নীকরণের কারণে প্রণোদিত হতে পারে; উদাহরণস্বরূপ, ১৬৩Ho ইলেক্ট্রন ক্যাপচারের মাধ্যমে ১৬৩Dy-তে ক্ষয়প্রাপ্ত হয়; যাইহোক, একটি সম্পূর্ণ আয়নিত ১৬৩Dy আবদ্ধ-দ্বশা বিটা ক্ষয় প্রক্রিয়ায় ক্ষয়প্রাপ্ত হয়ে আবদ্ধ-দ্বশার ১৬৩Ho তে পরিণত হয়।[৮]

রাসায়নিক বন্ধনগুলিও নিউক্লিয়াসে ইলেক্ট্রনের সন্নিধির উপর ভিত্তি করে ইলেক্ট্রন ক্যাপচারের হারকে অল্পকিছু প্রভাবিত করতে পারে (সাধারণত, ১% এরও কম)। উদাহরণস্বরূপ, Be তে, ধাতব এবং অন্তরক পরিবেশে অর্ধ-জীবনের মধ্যে ০.৯% এর পার্থক্য লক্ষ্য করা গেছে।[৯] এই অপেক্ষাকৃত বড় ফলাফলের কারণ হলো বেরিলিয়াম পরমাণুর গঠন। বেরিলিয়াম একটি ক্ষুদ্র পরমাণু যা তার যোজ্যতা ইলেকট্রনকে নিউক্লিয়াসের নিকটে ব্যাপৃত করে এবং এর কক্ষপথের কোনো কৌনিক ভরবেগ থাকে না। এস কক্ষপথের ইলেক্ট্রনগুলির (শক্তিস্তর বা প্রাথমিক কোয়ান্টাম সংখ্যা নির্বিশেষে) নিউক্লিয়াসের সাথে একটি সম্ভাব্য নিস্পন্দ বিন্দু রয়েছে এবং এই কারণে পি বা ডি শক্তিস্তরের ইলেকট্রনের তুলনায় এরা অধিক ইলেক্ট্রন ক্যাপচারের সাপেক্ষে রয়েছে, যাদের নিউক্লিয়াসের সাথে একটি সম্ভাব্য সঁচরণ বিন্দু রয়েছে।

পর্যায় সারণির মাঝের দিকের উপাদানের আইসোটোপগুলি একই উপাদানের স্থিতিশীল আইসোটোপের চেয়ে হালকা হলে ইলেক্ট্রন ক্যাপচারের মাধ্যমে এবং ভারী হলে ইলেকট্রন নিঃসরণের মাধ্যমে ক্ষয়প্রাপ্ত হয়। ইলেক্ট্রন ক্যাপচার বেশিরভাগ ক্ষেত্রেই ভারী নিউট্রনের ঘাটতি সম্পন্ন উপাদানগুলিতে ঘটে থাকে যেখানে ভরের পরিবর্তন সবচেয়ে কম এবং পজিট্রন নির্গমন সবসময় সম্ভব নয়। যখন পারমাণবিক বিক্রিয়ায় ভর ক্ষয় শূন্যের চেয়ে বেশি হয় কিন্তু ২এম[০-১e-] এর চেয়ে কম হয়, তখন প্রক্রিয়াটি পজিট্রন নিঃসরণ দ্বারা ঘটতে পারে না যদিও তা ইলেকট্রন ক্যাপচারের জন্য স্বাভাবিক।

সাধারণ উদাহরণ

যেসব তেজস্ক্রিয় আইসোটোপ যা ইলেকট্রন ক্যাপচারের মাধ্যমে ধিরে ধিরে ক্ষয় হয় তাদের উদাহরণ হলো:

তেজস্ক্রিয় আইসোটোপঅর্ধায়ু

Be
৫৩.২৮ দিন
৩৭
Ar
৩৫.০ দিন
৪১
Ca
১.০৩×১০ বছর
৪৪
Ti
৬০ বছর
৪৯
V
৩৩৭ দিন
৫১
Cr
২৭.৭ দিন
৫৩
Mn
৩.৭×১০ বছর
৫৫
Fe
২.৬ বছর
৫৭
Co
২৭১.৮ বছর
৫৯
Ni
৭.৫×১০ বছর
৬৭
Ga
৩.২৬০ দিন
৬৮
Ge
২৭০.৮ দিন
৭২
Se
৮.৫ দিন

পূর্ণ তালিকার জন্য, নিউক্লাইডের ছক দেখুন।

আরও দেখুন

তথ্যসূত্র

🔥 Top keywords: রাম নবমীমুজিবনগর দিবসপ্রধান পাতামুজিবনগর সরকারবিশেষ:অনুসন্ধানইন্ডিয়ান প্রিমিয়ার লিগএক্স এক্স এক্স এক্স (অ্যালবাম)বাংলাদেশবাংলা ভাষামিয়া খলিফারাজকুমার (২০২৪-এর চলচ্চিত্র)আনন্দবাজার পত্রিকাআবহাওয়ারামপহেলা বৈশাখউয়েফা চ্যাম্পিয়নস লিগইসরায়েলইরানরবীন্দ্রনাথ ঠাকুরমুজিবনগরইন্না লিল্লাহি ওয়া ইন্না ইলাইহি রাজিউনরিয়াল মাদ্রিদ ফুটবল ক্লাব২০২৪ ইন্ডিয়ান প্রিমিয়ার লিগক্লিওপেট্রাচর্যাপদভূমি পরিমাপশেখ মুজিবুর রহমানজনি সিন্সকাজী নজরুল ইসলামঈদুল আযহাফিলিস্তিনইউটিউবভারতবিকাশআসসালামু আলাইকুমসৌদি আরববাংলা প্রবাদ-প্রবচনের তালিকামুহাম্মাদ