Titán (elem)

kémiai elem, rendszáma 22, vegyjele Ti

A titán a periódusos rendszer kémiai elemeinek egyike. Vegyjele Ti, rendszáma 22., melynek régies magyar elnevezése a kemeny.[1] Standard hőmérsékleten és nyomáson világos, fénylő, ezüstös, kis sűrűségű és nagy szilárdságú átmenetifém, tulajdonságait tekintve nagyon hasonlít a szilíciumhoz és az ónhoz. A titán ellenáll a korróziónak a tengervízzel, klórral, lúgokkal és savakkal szemben, hiszen még a királyvíz sem oldja.

22 szkandiumtitánvanádium
-

Ti

Zr
   
               
               
                                 
                                   
                                                               
                                                               
   
22
Ti
Általános
Név, vegyjel, rendszámtitán, Ti, 22
Latin megnevezéstitanium
Elemi sorozatátmenetifémek
Csoport, periódus, mező4, 4, d
Megjelenésezüstös fémes
Atomtömeg47,867(1)  g/mol
Elektronszerkezet[Ar] 3d² 4s²
Elektronok héjanként2, 8, 10, 2
Fizikai tulajdonságok
Halmazállapotszilárd
Sűrűség (szobahőm.)4,506 g/cm³
Sűrűség (folyadék) az o.p.-on4,11 g/cm³
Hármaspont1941 K, 5,3 Pa
Olvadáspont1941 K
(1668 °C, 3034 °F)
Forráspont3560 K
(3287 °C, 5949 °F)
Olvadáshő14,15 kJ/mol
Párolgáshő 425 kJ/mol
Moláris hőkapacitás(25 °C) 25,060 J/(mol·K)
Gőznyomás
P/Pa1101001 k10 k100 k
T/K19822171(2403)269230643558
Atomi tulajdonságok
Kristályszerkezethexagonális
Oxidációs szám+4
(amfoter oxid)
Elektronegativitás1,54 (Pauling-skála)
Ionizációs energia1.: 658,8 kJ/mol
2.: 1309,8 kJ/mol
3.: 2652,5 kJ/mol
Atomsugár140 pm
Atomsugár (számított)176 pm
Kovalens sugár136 pm
Egyebek
Mágnességparamágneses
Fajlagos ellenállás(20 °C) 0,420 µΩ·m
Hőmérséklet-vezetési tényező(300 K) 21,9 W/(m·K)
Hőtágulási együttható(25 °C) 8,6 µm/(m·K)
Hangsebesség (vékony rúd)(szobahőm.) 5090 m/s
Young-modulus116 GPa
Nyírási modulus44 GPa
Kompressziós modulus110 GPa
Poisson-tényező0,32
Mohs-keménység6,0
Vickers-keménység970 MPa
Brinell-keménység716 HB
CAS-szám7440-32-6
Fontosabb izotópok
Fő cikk: A titán izotópjai
izotóptermészetes előfordulásfelezési időbomlás
módenergia (MeV)termék
44Timesterséges radionuklid63 yε-44Sc
γ0,07D, 0,08D-
46Ti8,0%Ti stabil 24 neutronnal
47Ti7,3%Ti stabil 25 neutronnal
48Ti73,8%Ti stabil 26 neutronnal
49Ti5,5%Ti stabil 27 neutronnal
50Ti5,4%Ti stabil 28 neutronnal
Hivatkozások

A titánt William Gregor fedezte fel Cornwallban 1791-ben, nevét pedig Martin Heinrich Klaprothtól kapta a görög mitológiai titánok után. Az elem számos ásványban előfordul, legfontosabbak ezek közül az ilmenit (FeTiO3) és a rutil (TiO2), melyek a földkéregben és a litoszférában nagy területen szétszórva találhatók meg. A titán szinte az összes élőlényben, a vizekben, sziklákban és a talajban is megtalálható.[2] A fémet elsődleges érceiből a Kroll-eljárással, vagy a Hunter-eljárással állítják elő.[3] A leggyakoribb vegyülete, a titán-dioxid népszerű fotokatalizátor, emellett fehér pigmentek gyártására is használják.[4] Egyéb vegyületei közé tartozik a titán-tetraklorid (TiCl4), egy katalizátor és a katonaságnál használt álcafüst egyik összetevője; és a titán(III)-klorid (TiCl3), melyet a polipropilén gyártásakor katalizátorként használnak.[2]

A titánt vassal, alumíniummal, vanádiummal, molibdénnel, vagy egyéb elemekkel ötvözve nagy szilárdságú és kis sűrűségű ötvözetek nyerhetők, melyeket a repülőgépiparban és az űrhajózásban (sugárhajtóművek, rakéták és űrhajók gyártása), a hadiiparban, autóiparban, különböző ipari folyamatokban (kémiai és petrolkémiai eljárások, sótalanítás, papírgyártás), protézisek gyártásában, fogászati eszközök és implantátumok, sportszerek, ékszerek távirányítható gépek és mobiltelefonok gyártásában, valamint még további sok egyéb területen is alkalmaznak.[2]

A fém két leghasznosabb tulajdonsága a korróziótűrése és a nagy szilárdság:sűrűség aránya, mely az összes fémes elem közül a legmagasabb.[5] Ötvözetlen formában a titán szilárdsága vetekszik egyes acélokéval, de sűrűsége kisebb azokénál.[6] A titánnak két allotrop módosulata[7] és öt természetes izotópja van a 46Ti-tól a 50Ti-ig terjedően, melyek közül a 48Ti fordul elő a legnagyobb mennyiségben (73,8 %-ban)[8] Annak ellenére, hogy a titánnak és a cirkóniumnak megegyező számú vegyértékelektronjuk van, számos kémiai és fizikai tulajdonságukban különböznek egymástól.

Tulajdonságai

Fizikai tulajdonságai

A titán nagy mechanikai szilárdságú, alacsony sűrűségű és (főleg oxigénmentes környezetben) jól alakítható,[2] fénylő, ezüstfehér fém,[9] mely főként nagy szilárdság-sűrűség arányáról ismert.[7] Viszonylag magas olvadáspontja (1650 °C) jó tűzálló fémmé teszi. A titán paramágneses tulajdonságú és a többi fémhez viszonyítva gyenge hő- és elektromos vezető.[2]

A kereskedelmi tisztaságú (99,2 %-os) titán szakítószilárdsága körülbelül 434 MPa, ami megegyezik a közönséges, gyengébb minőségű acélok szakítószilárdságával, de a titán ezeknél kisebb sűrűségű. A titán 60 %-kal nehezebb az alumíniumnál, de több mint kétszer olyan erős,[6] mint a leggyakrabban használt 6061-T6 alumíniumötvözet. Egyes titánötvözetek, például a Ti-3Al-8V-6Cr-4Zr-4Mo (BETA-C) szakítószilárdsága az 1400 MPa-t is meghaladhatja.[10] 430 °C feletti hőmérsékleten viszont a titán szilárdsága csökken.[11]

A titán nem olyan kemény, mint egyes hőkezelt acélok, nem mágneses, és a többi fémnél kevésbé vezeti a hőt és az elektromosságot. Rossz hővezetése megnehezíti megmunkálását, mert a forgács csak a fejlődő hő mintegy negyedét vezeti el, a fennmaradó rész közvetlenül melegíti a szerszámot. Ezért a megmunkáláshoz hőálló keményfém szerszámanyag és hatékony hűtés kell. Az acélszerkezetekhez hasonlóan a titánból készült szerkezeteknek is van kifáradási határértékük, ami garantálja a hosszú élettartamot egyes alkalmazásoknál.[9] Hosszabb használatot a gyógyászatban is eredményez, hiszen a titán lényegesen könnyebb, mint az acél de az ötvözet típusától függően az acéléval azonos szilárdságot ad. További előnye, hogy eközben a súlya csak körülbelül negyven százaléka annak, miközben biokompatibilis az emberi testbe beültetése esetén, például emiatt a kilökődés kockázata is kisebb.[12]

A fémnek két allotrop módosulata létezik, a hexagonális rácsszerkezetű α-módosulat és a tércentrált kockarácsú β-módosulat, ami 882 °C-on képződik az α-módosulatból.[11] Az α-módosulat hőkapacitása erre az átmeneti hőmérsékletre való melegítéskor drasztikusan nő, de utána ismét lecsökken és közel állandó marad a β-módosulatnál a hőmérséklettől függetlenül.[11] A cirkóniumhoz és a hafniumhoz hasonlóan egy omega-módosulat is létezik, ami nagy nyomáson stabil, de normális nyomáson metastabil. Ez a módosulat általában hexagonális (ideális), vagy trigonális (torzult).[13]

Kémiai tulajdonságai

A titán Pourbaix-diagramja tiszta vízben, perklórsavban vagy nátrium-hidroxidban
Függőleges tengely: redox potenciál; vízszintes tengely: pH[14]

Az alumíniumhoz és a magnéziumhoz hasonlóan a titánon és ötvözetein levegő hatására azonnal oxidréteg alakul ki. A titán könnyedén reagál oxigénnel levegőn 1200 °C-on, tiszta oxigénben pedig 610 °C-on titán-dioxidot képezve.[7] Vízzel és a levegővel közönséges körülmények közt nem, vagy csak lassan reagál a felületén kialakuló passzív oxidréteg miatt, ami megvédi a fémet a további oxidációtól.[2] Ez a védőréteg kialakulásakor mindössze 1–2 nanométer vastag, de lassan növekszik és négy év alatt 25 nanométeres vastagságot ér el.[15]

A passzivációnak köszönhetően a titán kitűnően ellenáll a korróziónak, közel ugyanannyira, mint a platina. A titán ellenálló a híg kénsavval, a sósavval, a klorid-oldatokkal és a legtöbb szerves savval szemben.[3] A forró tömény ásványi savak viszont megtámadják, a hidrogén-fluorid pedig jól oldja.[16] Negatív standardpotenciáljából következően a titán termodinamikailag egy igen reaktív fém, normál atmoszférában már az olvadáspontja előtt elég. Így az olvasztása egyedül inert atmoszférában, vagy vákuumban lehetséges. 550 °C-on reagál a klórgázzal.[3] Emellett reagál a többi halogénnel is és megköti a hidrogént.[4]

A titán azon kevés elemek egyike, melyek tiszta nitrogéngázban égnek: a reakció 800 °C-on megy végbe és titán-nitrid keletkezik, amelyre a törékenység jellemző.[17] Az oxigénnel, nitrogénnel és néhány más gázzal való nagyfokú reakcióképessége miatt az úgynevezett titán-szublimációs szivattyúkban fel lehet használni olcsó és megbízhatóan ultranagy vákuum kialakítására.

Izotópjai

A természetben előforduló titán (Ti) öt stabil izotópból áll: 46Ti, 47Ti, 48Ti, 49Ti és 50Ti, ezek közül a 48Ti részaránya a legmagasabb (természetes előfordulása 73,8%). Huszonegy radioizotópját írták le, ezek közül a legstabilabbak: 44Ti (felezési ideje 60 év), 45Ti (felezési ideje 184,8 perc), 51Ti (5,76 perces felezési idő) és 52Ti (felezési ideje 1,7 perc). A többi radioaktív izotóp felezési ideje 33 másodpercnél kevesebb, többségüké a fél másodpercet sem éri el.[8] A legkevésbé a 61Ti stabil, felezési ideje valamivel több mint 300 nanomásodperc.

A titánizotópok atomtömege 38,01 (38Ti) és 62,99 (63Ti) atomi tömegegység közé esik. A leggyakoribb (48Ti) izotópnál könnyebbek főként elektronbefogással, a nehezebbek β-bomlással alakulnak át. A 48Ti előtti izotópok elsődleges bomlásterméke főként szkandium-, a nehezebbeké elsősorban vanádiumizotóp.[8]

A titán deutérium-atommagokkal való bombázáskor radioaktívvá válik, főként pozitronok és gamma-sugárzás kibocsátása közben.[3]

Története

Martin Heinrich Klaproth a titánt a görög mitológia titánjairól nevezte el.

A titánt William Gregor lelkész és amatőr geológus fedezte fel 1791-ben Cornwallban, a helyi Helford folyóból származó homokot vizsgálva.[18] A homokból mágnessel sikerült elkülönítenie egy fekete színű anyagot,[18] amit ma ilmenitnek neveznek.[4] Az anyagból sósavval kioldotta a vasat, de a hátramaradó 45,25%-nyi fehér színű fém-oxidot képtelen volt azonosítani.[19] Miután ráébredt arra, hogy az ismeretlen oxid egy olyan fémet tartalmazott, ami nem egyezett egy ismert elemmel sem, Gregor felfedezéséről beszámolt a Cornwalli Királyi Geológiai Társaság előtt, valamint egy német tudományos folyóiratban, a Crell's Annalen-ben.[18][20][21]

Nagyjából ugyanebben az időben Franz-Joseph Müller von Reichenstein előállított egy hasonló vegyületet, de nem tudta azonosítani.[4] Az oxidot Gregortól függetlenül 1795-ben Martin Heinrich Klaproth porosz vegyész újra felfedezte a felvidéki Bajmócskáról származó rutilban.[18][22] Klaproth felfedezte, hogy az oxid egy új elemet tartalmazott, és azt a titánokról nevezte el. Ők a görög mitológiában Gaia és Uranosz gyermekei, az erő megtestesítői voltak, akiket Kronosz bukása után arra kárhoztattak, hogy a Föld mélyének rejtett tüzei között éljenek.[23] Miután értesült Gregor korábbi felfedezéséről, megszerzett egy mintát a vizsgált anyagból és bebizonyította, hogy az tényleg titánt tartalmazott.

A ma ismert eljárások a titán különféle érceiből való előállítására költségesek és sok munkát igényelnek. Az érc szénnel való hevítéssel történő redukálása (mint a nyersvasgyártásban) nem lehetséges, mert a titán reagál a szénnel titán-karbidot alkotva.[18] A fémet szennyezett formában először Jöns Jakob Berzelius állította elő 1825-ben, de nagy tisztaságú (99,9%-os) titánt először csak 1910-ben Matthew A. Hunter állított elő a TiCl4 nátriummal 700–800 °C-on és nagy nyomáson való hevítésével,[24] ezt ma Hunter-eljárásként ismerik.[3] A titánt a laboratóriumon kívül nem nagyon használták egészen 1932-ig, amikor William Justin Kroll felfedezte, hogy titán-tetraklorid (TiCl4) kalciummal való redukálásával is elő lehet azt állítani.[25] Nyolc évvel később az eljárást magnéziummal és nátriummal is véghez vitte.[25] Bár ma is zajlik a kutatás költséghatékonyabb módszerek kidolgozására, a Kroll-eljárás még mindig a legelterjedtebb mód a titán előállítására.[3][4]

Kroll-eljárással készült titán „szivacs”

Nagyon nagy tisztaságú fémet kis mennyiségben először akkor állítottak elő, amikor Anton Eduard van Arkel és Jan Hendrik de Boer 1925-ben a titánt jóddal reagáltatta, majd a keletkező tetrajodidot elpárologtatás után izzó fémszálon bontotta, így tiszta fémet nyerve.[26]

Az 1950-es és 60-as években a Szovjetunió úttörő módon kezdte alkalmazni a titánt katonai célokra és tengeralattjárókban (Alfa-osztály, K-278 Komszomolec)[27] a hidegháborúhoz kapcsolódó programjai részeként.[28] Az 1950-es évektől kezdődően a titánt kiterjedten kezdték használni a katonai repülőgépeknél, különösen a nagyteljesítményű sugárhajtóművekben kezdve a F–100 Super Sabre-rel, a Lockheed A-12-vel és a SR–71 Blackbirddel. Felismerve a titán stratégiai fontosságát,[29] az Amerikai Védelmi Minisztérium támogatta a fém termelésének üzleti alapokra helyezésére irányuló korai törekvéseket.[30]

A hidegháború alatt az Amerikai Egyesült Államok kormánya a titánra stratégiai erőforrásként tekintett és ezért hatalmas készletet halmoztak fel belőle, ami csak a 2000-es évekre fogyott el.[31] 2006-os adatok szerint a világ legnagyobb termelője, az oroszországi központú VSMPO-Avisma cég világpiaci részesedését 29%-ra becsülik.[32] 2015-ben titán-fémszivacsot hat országban gyártottak, ezek a termelés sorrendjében: Kína, Japán, Oroszország, Kazahsztán, az Egyesült Államok, Ukrajna és India.[33][34]

2006-ban a DARPA 5,7 millió dollárral jutalmazott egy két cégből álló konzorciumot egy új eljárás kifejlesztéséért, amivel titánport lehet előállítani. Nagy nyomáson és hőmérsékleten a porból erős és könnyű tárgyakat lehet gyártani a páncélzattól kezdve a repülőgép- és űrhajóalkatrészeken át az autóipar és kémiai feldolgozóipar számára szükséges alkatrészekig.[35]

Vegyületei

Titán-nitrid bevonatú csigafúró

A titán oxidációs száma a vegyületeiben leggyakrabban +4,[36] ritkábban +2 vagy +3.[37] A titán vegyületei általában oktaéderes koordinációjak, ez alól kivétel a tetraéderes szerkezetű TiCl4. A +2-es oxidációs számú titánt tartalmazó titánvegyületek ionosak, a magasabb oxidációs fokú titánvegyületek többnyire kovalens jellegűek. A titán(III)-sók redukáló hatásúak, az analitikában redukálószerként használják őket. A legtöbb átmenetifémmel ellentétben a titán egyszerű akvakomplexei nem ismertek.

Oxidok és szulfidok

A titán oxidjai közül messze a legfontosabb a titán-dioxid (TiO2), egy fehér színű, vízben oldhatatlan, atomrácsos jellegű szilárd vegyület. Savakkal, lúgokkal szemben ellenálló, a tömény kénsav oldja, a reakcióban titán(IV)-szulfát (Ti(SO4)2) keletkezik. A titán-dioxid szobahőmérsékleten három módosulat - az anatáz, a rutil és a brookit formájában fordul elő. Mindhárom módosulat polimer szerkezetet alakít ki, ahol a titánatomokat oktaéderes elrendeződésben hat oxigénatom veszi körül, melyek mindegyike egy-egy további titánhoz kapcsolódik. A három módosulat közül a rutil a leggyakoribb mind a természetben, mind a kereskedelmi termékek között és melegítés hatására a másik két módosulat is rutillá alakul.[38]

Bár a titán-dioxid meglehetősen inert vegyület, de magas hőmérsékletre hevítve és sztöchiometrikus mennyiségű alkalmas oxiddal megömlesztve vagy elégetve számos vegyes oxidot, vagyis titanátot lehet előállítani. A titanátoknak két típusa létezik, az ortotitanátok (M2IITiO4) és a metatitanátok (MIITiO3). Ha a fémion mérete közel azonos a titán(IV)-ion méretével (magnézium, mangán, vas, kobalt, vagy nikkel esetén), akkor a metatitanát szerkezete ilmenit (FeTiO3) típusú, ha viszont annál lényegesen nagyobb (kalcium, stroncium, vagy bárium esetén), akkor inkább perovszkit (CaTiO3) szerkezet alakul ki.Ez utóbbira példa a bárium-titanát, ahol a nagy méretű bárium-ion oly mértékben kitágítja a perovszkitrácsot, hogy a titán túl kicsi lesz ahhoz, hogy kitöltse az oktaéderes térközöket, és ez ferroelektromos és piezoelektromos tulajdonságot eredményez.[38] A csillagzafírok és a rubinok aszterizmusáért (csillagszerű fényvisszaverődésért) a titán-dioxid szennyeződések a felelősök.[15]

A titánnak jó néhány redukált oxidja is ismert. A Ti3O5, amely Ti(IV)-Ti(III) vegyes oxidként írható le egy kékesfekete félvezető anyag, ami TiO2-ból hidrogénnel való redukcióval állítható elő 900 °C-on,[39] és az iparban a felületek titán-dioxiddal való gőzfázisú bevonására használható.[40] Ismert még a titán(III)-oxid (Ti2O3), egy korund szerkezetű, sötét ibolyaszínű anyag, melyet a titán-dioxid és titán 1600 °C-on végbemenő reakciójával lehet előállítani; illetve a titán(II)-oxid, egy bronzszínű, nemsztöchiometrikus, kősó szerkezetű vegyület.[41]

A TiCl4 alkoholokkal való reakciójával előállítható titán(IV)-alkoxidok (alkanoátok) színtelen vegyületek, melyek vízzel reagálva titán-dioxiddá alakulnak. Ezeket a vegyületek az iparban szilárd TiO2 rétegek előállítására használhatók a szol-gél módszer útján. A titán-izopropoxidot királis szerves vegyületek szintézisében használják a Sharpless-epoxidálás során.

A titán számos szulfidot is alkot, de közülük egyedül a titán-diszulfid kapott nagyobb figyelmet. A titán-diszulfid réteges szerkezetet alakít ki, és korábban lítiumelemek katódjaként alkalmazták. Mivel a Ti(IV) egy "kemény kation", a titán szulfidjai instabilak és hidrogén-szulfid felszabadulása mellett hajlamosak oxidokká hidrolizálni.

Boridok, karbidok és nitridek

A titán-borid (TiB2), a titán-karbid (TiC) és a titán-nitrid (TiN) kiemelkedően nagy keménységű, kémiailag inert tűzálló anyagok. Olvadáspontjuk megközelíti, vagy meghaladja a 3000 °C-ot (TiB2: 2980 °C, TiC: 3160 °C, TiN: 2930 °C), Mohs-keménységük eléri a 9,0-s értéket, ami egyenlő a korund keménységével.[42] Nagy keménységük és hőálló képességük miatt kopásálló bevonatok készítésére alkalmazzák őket, például vágószerszámoknál, fúrófejeknél, turbinalapátoknál, égetőkamráknál és rakétafúvókáknál.[43][44] Emellett használják még őket magas hőmérsékletű reaktoredények, párologtató csészék, tégelyek és szivattyúlapátok gyártására, valamint elektromos hőmérők burkolására. A titán-nitridet arany színe miatt dekoratív bevonatok készítésére, illetve a mikroelektronikában a félvezetőgyártásban is használják.[45]

Halogenidek

A titán(III)-vegyületek jellegzetes ibolyaszínűek

A titán legjelentősebb halogénvegyületei a titán(II)-klorid (TiCl2) és a titán-tetraklorid (TiCl4). A TiCl2 szilárd halmazállapotú, rétegrácsos szerkezetű ionvegyület. A TiCl4 folyékony halmazállapotú, molekularácsos vegyület. A TiCl4 füstöl, és nedves levegőn teljesen hidrolizál, a reakcióban TiO2 (titán-dioxid, titán(IV)-oxid) keletkezik.[46] Vizes sósavoldatban különböző intermedier hidrolízistermékek, például TiOCl2 (titanil-klorid) is keletkezhetnek.[47]

A Kroll-eljárásban a titán-tetrakloridot a klórgáz hevített titán-dioxid fölötti átvezetésével, redukálószer (például szén) jelenlétében állítják elő.[48] A szerves kémiában széles körben alkalmazzák Lewis-savként, például a Mukaiyama-aldol addícióban.[49] A van Arkel-eljárás során titán-tetrajodidot (TiI4) állítanak elő a nagytisztaságú titán fém előállítása céljából.

A titán(III) és titán(II) stabil kloridjai is léteznek. A titán(III)-kloridot (TiCl3) például poliolefinek gyártásában katalizátorként, a szerves kémiában pedig redukálószerként alkalmazzák.

Fémorganikus vegyületek

A titánvegyületek polimerizációs katalizátorként való jelentős szerepük miatt a Ti-C kötést tartalmazó vegyületeket intenzíven tanulmányozták. A legközönségesebb titánorganikus komplex vegyület a titanocén-diklorid ((C5H5)2TiCl2). Hasonló vegyületei a Tebbe-reagens és a Petasis-reagens. A titán karbonil komplexeket is alkot, ilyen például a titanocén-dikarbonil ((C5H5)2Ti(CO)2).[50]

Természetes előfordulásai

A rutil és ilmenit termelése 2011-ben (Oroszország nélkül)[51]
Országezer
tonna
az összes %-a
 Ausztrália130019,4
 Dél-afrikai Köztársaság116017,3
 Kanada70010.4
 India5748.6
 Mozambik5167,7
 Kína5007,5
 Vietnam4907,3
 Ukrajna3575,3
Világ összesen6700100

A legnagyobb termelők 2022-ben (ilmenit + rutil, 1000 t, Oroszország nélkül):[52]

  • Kína — 3400 + 0
  • Mozambik — 1200 + 8
  • Dél-Afrika — 900 + 95
  • Ausztrália — 660 + 190
  • Szenegál — 520 + 90
  • Kanada — 470 + 0
  • Norvégia — 420 + 0
  • Madagaszkár — 300 + 0
  • Ukrajna — 200 + 59
  • USA — 200
  • India — 200 + 11
  • Kenya 180 + 73

A földkéreg 0,63 tömegszázalékát kitevő[19] titán nagyon gyakori elem: a kilencedik leggyakoribb az összes elem közül, a fémek közül a hetedik, az átmenetifémek közül pedig a második leggyakoribb. Régen ennek ellenére kevéssé ismerték, ami annak tulajdonítható, hogy a tiszta fémet igen nehéz volt előállítani, emellett dúsulásra kevéssé hajlamos. Oxidjai előfordulnak a legtöbb magmás kőzetben és az azok lepusztulásávak képződő üledékekben, az élőlényekben és a természetes vizekben.[2][3] Az Amerikai Földtani Intézet által tanulmányozott 801-féle magmás kőzetből 784 tartalmazott kimutatható mennyiségű titánt. A talajban a tömegaránya hozzávetőlegesen 0,5–1,5%.[19]

Titanit kristályok amfibolon

Gyakori ásványai az anatáz, a brookit, az ilmenit, a perovszkit, a rutil és a titanit.[15] Közülük a rutilnak és az ilmenitnek van gazdasági jelentősége, de még ezeket is nehéz nagyobb koncentrációban föllelni. Ezekből az ásványokból 6,0, illetve 0,7 millió tonnányit termeltek 2011-ben.[51] Jelentős ilmenitlelőhelyek vannak Nyugat-Ausztráliában, Kanadában, Kínában, Indiában, Mozambikban, Új-Zélandon, Norvégiában, Ukrajnában és Dél-Afrikában.[15] 2011-ben körülbelül 186 000 tonna titán fémhabot állítottak elő, ebből a legtöbbet Kínában (60 000 tonnát), Japánban (56 000), Oroszországban (40 000), az Amerikai Egyesült Államokban (32 000) és Kazahsztánban (20 700). Magyarországon a nyirádi bauxitércben is jelen van; ipari előállításával Gillemot László professzor foglalkozott először. Munkájáért 1957-ben Kossuth-díjat kapott, a kohászati kutatási eredményei alapján a Szovjetunióba szállított magyar bauxitból jelentős mennyiségű titánt nyertek ki.[53]

Az óceánokban a titán koncentrációja körülbelül 4 pikomólos. 100 °C-on a titán koncentrációja a vízben kevesebb mint 10−7 M 7-es pH-nál. A vizes oldatokban lévő titánionokat a titán kis oldhatósága és az érzékeny spektroszkópiai módszerek hiánya miatt nem ismerjük. Humánbiológiai szerepe nem igazolt, bár egyes élőlények koncentráciit halmozzák fel.[54]

Kimutatták meteoritokból, a Napból és az M színképtípusú csillagokból[3] — ezek a leghidegebb csillagok, amelyek felszíni hőmérséklete mindössze 3200 °C.[23] Az Apollo–17 küldetésen a Holdról hozott kőzetek körülbelül 12,1 % titán-dioxidot tartalmaztak.[3] Megtalálható még a kőszén hamujában, növényekben, sőt az emberi testben is. A tiszta, elemi titán nagyon ritka a természetben.[55]

Előállítása és felhasználása

1932-ben a luxemburgi William Justin Kroll állította elő a titán-kloridot fém kalciummal (Ca), majd később magnéziummal (Mg), illetve nátriummal reagáltatva. Ezen eljárások költségessége megakadályozta a titán kereskedelmi hasznosítását, pedig azt kedvező tulajdonságai (kis sűrűség, jó mechanikai szilárdság, előnyös ötvöző tulajdonságok) indokolták. Fő felhasználási területe még ma is a repülőgépipar, mind sugárhajtóművek, mind repülőgépsárkányok részeinek előállításához, de széleskörűen használják vegyipari berendezések és hajók gyártásához is. A gyógyászatban az implantátum anyagaként alkalmazzák, mivel a tiszta, ötvözetlen titánt az élő szervezet elfogadja. Előállítására még ma is a Kroll-módszer a legelterjedtebb: ilmenitet vagy rutilt hevítenek klór (Cl2) és szén (C) jelenlétében 900 °C-on:

A TiCl4 argonatmoszférában zárt kemencében magnéziumolvadékkal 900 °C-on redukálható:

A titán allergénmentes fémként ismert, de azért egyseknél a titánból készült implantátum vagy ékszer is okozhat allergiás reakciót.[56]

Jegyzetek

Fordítás

Ez a szócikk részben vagy egészben a Titanium című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.

Források

  • Nyilasi János: Szervetlen kémia. Budapest: Gondolat. 1975. 175–176. o.  

További információk