Calor específica

A calor específica é unha magnitude física que se define como a cantidade de calor que hai que subministrar á unidade de masa dunha substancia ou sistema termodinámico para elevar a súa temperatura nunha unidade (kelvin ou grao Celsius). En xeral, o valor da calor específica depende da temperatura inicial.[1] Represéntase coa letra .

De forma análoga, defínese a capacidade calorífica como a cantidade de calor que hai que subministrar a toda a masa dunha substancia para elevar a súa temperatura nunha unidade (kelvin ou grao Celsius). Represéntase coa letra .

Polo tanto, a calor específica é a capacidade calorífica específica, isto é onde é a masa da substancia.[1]

Introdución

A calor específica é unha propiedade intensiva da materia, polo que é representativa de cada materia; pola contra, a capacidade calorífica é unha propiedade extensiva, representativa de cada corpo ou sistema particular.[2]

Canto maior é a calor específica das substancias, máis enerxía calorífica se necesita para incrementar a temperatura. Por exemplo, se require oito veces máis enerxía para incrementar a temperatura dun lingote de magnesio que para un lingote de chumbo da mesma masa.[3]

O termo "calor específica" ten a súa orixe nos traballos do físico británico Joseph Black,[4] que realizou variadas medidas calorimétricas e usou a frase "capacidade para a calor".[5] Na súa época a mecánica e a termodinámica considerábanse ciencias independentes, polo que actualmente o termo podería parecer inapropiado; talvez un mellor nome podería ser transferencia de enerxía calorífica específica, pero o termo clásico está demasiado arraigado como para ser cambiado.[6]

Ecuacións básicas

A calor específica media ( ) correspondente a un certo intervalo de temperaturas defínese na forma:


onde é a transferencia de enerxía en forma calorífica entre o sistema e o seu contorno ou outro sistema, é a masa do sistema (úsase un n cando se trata da calor específica molar) e é o incremento de temperatura que experimenta o sistema.

A calor específica ( ) correspondente a unha temperatura dada defínese como:


A calor específica ( ) é unha función da temperatura do sistema; isto é, . Esta función é crecente para a maioría das substancias (excepto para os gases monoatómicos e diatómicos). Isto débese a efectos cuánticos que fan que os modos de vibración estean cuantizados e só van sendo accesíbeis a medida que aumenta a temperatura. Coñecida a función , a cantidade de calor asociada cun cambio de temperatura do sistema desde a temperatura inicial á final calcúlase mediante a integral seguinte:


Nun intervalo onde a capacidade calorífica sexa aproximadamente constante a fórmula anterior pode escribirse simplemente como:


Cantidade de substancia

Cando se mide a calor específica en ciencia e enxeñaría como cantidade de materia úsase frecuentemente a masa, ben expresada en gramos ou en quilogramos, ambas as unidades do SI. Pero especialmente en química, porén, convén empregar, para medir a calor específica, a unidade de cantidade de substancia, o mol.[7] Cando a unidade da cantidade de materia é o mol, o termo calor específica molar pódese usar para referirse de maneira explícita a esta medida, ou ben podemos usar, no outro caso, o termo calor específica másica para indicar que se usa unha unidade de masa (e non de cantidade de substancia).

Conceptos relacionados

Hai dúas condicións notabelmente distintas baixo as que se mide a calor específica, que se notan con subíndices na letra . A calor específica dos gases mídese normalmente baixo condicións de presión constante (Símbolo: ). Das medicións a presión constante resultan valores maiores que os daquelas que se realizan a volume constante ( ), debido a que no primeiro caso realízase un traballo de expansión.

O cociente entre as calores específicas a presión constante e a volume constante para unha mesma substancia ou sistema termodinámico denomínase coeficiente (de dilatación) adiabático, e desígnase mediante a letra grega (gamma).[8] Este parámetro aparece en fórmulas físicas, como por exemplo a da velocidade do son nun gas ideal.

A calor específica das substancias distintas dos gases monoatómicos non vén dada por constantes fixas e pode variar un pouco dependendo da temperatura.[9] Polo tanto, debe especificarse con precisión a temperatura á cal se fai a medición. Así, por exemplo, a calor específica da auga presenta un valor mínimo de 0,99795 cal/g·K para a temperatura de 34,5 °C, en tanto que vale 1,00738 cal/g·K a 0 °C. Por conseguinte, a calor específica da auga varía menos do 1 % respecto do seu valor de 1 cal/g·K a 15 °C, polo que a miúdo se considera como constante.

A presión á que se mide a calor específica é especialmente importante para gases e líquidos.

Unidades

Unidades de calor

A unidade de medida da calor no Sistema Internacional é o joule (J).[10] A caloría (cal), usada antigamente, tamén se usa hoxe frecuentemente nas aplicacións científicas e tecnolóxicas. A caloría defínese como a cantidade de calor necesaria para aumentar en 1 °C a temperatura dun gramo de auga destilada, nointervalo de 14,5 °C a 15,5 °C. É dicir, ten unha definición baseada na calor específica.

Unidades de calor específica

No Sistema Internacional de Unidades, a calor específica exprésase en joules por quilogramo e por kelvin (J·kg−1·K−1); outra unidade, non pertencente ao SI, é a caloría por gramo e por kelvin (cal·g−1·K−1). Así, a calor específica da auga é aproximadamente 1 cal/(g·K) nun amplo intervalo de temperaturas, á presión atmosférica; e exactamente 1 cal·g−1·K−1 no intervalo de 14,5 °C a 15,5 °C (pola definición da unidade caloría).

Nos Estados Unidos, e noutros poucos países onde segue a utilizarse o Sistema inglés ou Sistema anglosaxón de unidades', en aplicacións non científicas,[11] a calor específica adoita medirse en BTU[12] (unidade de calor) por libra [13] (unidade de masa) e o grao Fahrenheit (unidade de temperatura).

A BTU defínese como a cantidade de calor que se require para elevar nun grao Fahrenheit a temperatura dunha libra de auga en condicións atmosféricas normais.

Factores que afectan á calor específica

Graos de liberdade

Artigo principal: Graos de liberdade.
As moléculas teñen unha estrutura interna porque están compostas de átomos que teñen diferentes formas de moverse nas moléculas. A enerxía cinética almacenada nestes graos de liberdade internos non contribúe á temperatura da substancia senón á súa calor específica.

O comportamento termodinámico das moléculas dos gases monoatómicos, como o helio, e dos gases diatómicos, como o hidróxeno, é moi diferente. Nos gases monoatómicos, a enerxía interna corresponde unicamente a movementos de translación. Os movementos translacionais son movementos de corpo completo nun espazo tridimensional no que as partículas se moven e intercambian enerxía en colisións en forma similar a como o farían pelotas de goma encerradas nun recipiente que se axitara con forza. (véxase a animación aquí).Estes movementos simples nos eixes dimensionais X, Y, e Z implican que os gases monoatómicos só teñen tres graos de liberdade translacionais.

As moléculas con maior atomicidade, en cambio, teñen varios graos de liberdade internos adicionais, rotacionais e vibracionais, xa que son obxectos complexos. Compórtanse como unha poboación de átomos que poden moverse dentro dunha molécula de distintas formas (véxase a animación á dereita). A enerxía interna almacénase nestes movementos internos. Por exemplo, o nitróxeno, que é unha molécula diatómica, ten cinco graos de liberdade dispoñíbeis: os tres translacionais máis dous rotacionais de liberdade interna.

Cabe destacar que a capacidade calorífica molar a volume constante dos gases monoatómicos é , sendo R a constante universal dos gases ideais, mentres que para o nitróxeno (diatómico) vale , o cal mostra claramente a relación entre os graos de liberdade e a calor específica.

Masa molar

Artigo principal: Masa molar.

Unha das razóns polas que a calor específica adopta diferentes valores para diferentes substancias é a diferenza en masas molares, que é a masa dun mol de calquera elemento, a cal é directamente proporcional á masa molecular do elemento, suma dos valores das masas atómicas da molécula en cuestión. A enerxía calorífica almacénase grazas á existencia de átomos ou moléculas vibrando. Se unha substancia ten unha masa molar máis lixeira, entón cada gramo dela ten máis átomos ou moléculas dispoñíbeis para almacenaren enerxía. É por iso polo que o hidróxeno, a substancia coa menor masa molar, ten unha calor específica tan elevada; porque un gramo desta substancia contén unha cantidade moi grande de moléculas.

Unha consecuencia deste fenómeno é que, cando se mide a calor específica en termos molares, a diferenza entre substancias faise menos pronunciada, e a calor específica do hidróxeno deixa de ser atípica. En forma correspondente, as substancias moleculares (que tamén absorben calor nos seus graos internos de liberdade), poden almacenar grandes cantidades de enerxía por mol se se trata de moléculas grandes e complexas e, en consecuencia, a súa calor específica medida en termos másicos é menos notábel.

Xa que a densidade media dun elemento químico está moi relacionada coa súa masa molar, existe, en termos xerais, unha gran correlación inversa entre a densidade dun sólido e a súa cp (calor específica a presión constante medida en termos másicos). Grandes lingotes de sólidos de baixa densidade tenden a absorberen máis calor que un lingote pequeno dun sólido da mesma masa, pero de maior densidade, xa que o primeiro polo xeral contén máis átomos. En consecuencia, en termos xerais, hai unha correlación próxima entre o volume dun elemento sólido e a súa capacidade calorífica total. Existen, porén, moitas desviacións desta correlación xeral.

Enlaces por pontes de hidróxeno

Artigo principal: Ponte de hidróxeno.

As moléculas que teñen enlaces polares de hidróxeno teñen a capacidade de almacenar enerxía calorífica nestes enlaces, coñecidos como pontes de hidróxeno.

Impurezas

No caso das aliaxes, hai certas condicións nas cales pequenas cantidades de impurezas poden alterar en gran medida a calor específica medida. As aliaxes poden mostrar unha marcada diferenza no seu comportamento incluso se a impureza en cuestión é un dos elementos que forman a aliaxe; por exemplo, as impurezas en aliaxes semicondutoras ferromagnéticas poden levar a medicións moi diferentes, tal como predixeron por primeira vez White e Hogan.[14]

Táboa de calores específicas

SubstanciaFasecp
(másico)
kJ·kg−1·C°−1
cp
(molar)
J·mol−1·K−1
cv
(molar)
J·mol−1·K−1
Capacidade calorífica
volumétrica

J cm−3 K−1
Gases monoatómicos (ideais)gas R = 20,8 R = 12,5
Argongas0,520320,812,5
Heliogas5,193220,812,5
Gases diatómicos (ideais)gas R = 29.1 R = 20.8
Hidróxenogas14,3028,8220.4
Nitróxenogas1,04029,1220,8
oxíxenogas0,91829,421,1
Aire (en condicións normais[15])gas1,01229,19
Aluminiosólido0,89724,22,422
Amoníacolíquido4,70080,083,263
Antimoniosólido0,20725,21,386
Arsénicosólido0,32824,61,878
Augagas (100 °C)2,08037,4728,03
Augalíquido (25 °C)4,181375,32774,53 4,184
Augasólido (0 °C)2,11438,091,938
Beriliosólido1,8216,43,367
Chumbosólido0,12926,41,44
Cobresólido0,38524,473,45
Diamantesólido0,50916,1151,782
Etanollíquido2,441121,925
Ferrosólido0,45025,13,537
Gasolinalíquido2,22228
Grafitosólido0,7108,531,534
Litiosólido3,5824,81,912
Magnesiosólido1,0224,91,773
Mercuriolíquido0,139527,981,888
Neongas1,030120,786212,4717
Ourosólido0,129125,422,492
Parafinasólido2,59002,325
Sílicesólido0,70342,21,547
Uraniosólido0,11627,72,216
Todas as medidas son a 25 °C a menos que se indique o contrario,
Os mínimos e máximos notábeis móstranse en letra grosa.

Materiais de construción

Estes datos son de utilidade para calcular os efectos da calor sobre os materiais que formen un edificio:

SubstanciaEstado de agregacióncp
J g−1 K−1
Areasólido0,835
Asfaltosólido0,92
Formigónsólido0,88
Granitosólido0,790
Ladrillosólido0,84
Madeirasólido0,48
Mármoresólido0,880
Solo (terra)sólido0,80
Vidro, sílicesólido0,84
Vidro, crownsólido0,67
Vidro, flintsólido0,503
Vidro, pyrexsólido0,876
Xesosólido1,09

Notas

Véxase tamén

Bibliografía

  • Resnik, Robert (2002). "Primera Ley de la Termodinámica". Física 1. México D.F.: CECSA. ISBN 970-24-0257-3. 
  • Raymond A., Serway; Jewet, John W. (2003). "Calor específico". Física 1. México D.F.: Thomson. ISBN 970-686-339-7. 

Outros artigos

Ligazóns externas

🔥 Top keywords: