Inhibidor do activador do plasminóxeno 2

O inhibidor do activador do plasminóxeno 2 (PAI-2), tamén chamado inhibidor do activador do plasminóxeno placentario ou serpina B2, é un encima serina protease con función inhibidora, da superfamilia da serpina, que é un factor de coagulación que inactiva o tPA e a uroquinase, regulando a coagulación. O PAI-2 existe en dúas formas, unha forma de 60 kDa extracelular glicosilada e outra forma 43 kDa intracelular.

SERPINB2
Estruturas dispoñibles
PDBBuscar ortólogos: PDBe, RCSB
Identificadores
SímbolosSERPINB2 (HGNC: 8584) SERPINB2, HsT1201, PAI, PAI-2, PAI2, PLANH2, serpina familia B membro 2
Identificadores
externos
LocusCr. 18 q21.33-q22.1
Padrón de expresión de ARNm
Máis información
Ortólogos
Especies
Humano Rato
Entrez
5055 18788
Ensembl
Véxase HS Véxase MM
UniProt
P05120 P12388
RefSeq
(ARNm)
NM_002575 NM_001174170
RefSeq
(proteína) NCBI
NP_001137290 NP_001167641
Localización (UCSC)
Cr. 18:
63.87 – 63.9 Mb
Cr. 1:
107.51 – 107.54 Mb
PubMed (Busca)
5055


18788
A fibrinólise (simplificada). As frechas azuis indican estimulación e as vermellas inhibición.

Está presente na maioría das células, especialmente en monocitos/macrófagos. Porén, no sangue está presente só en cantidades detectables durante o embarazo, xa que se produce na placenta, e isto pode explicar parcialmente o incremento da taxa de tromboses durante o embarazo. A maioría do PAI-2 expresado permanece dentro das células sen segregar debido á presenza dun péptido sinal interno ineficaz.

Interaccións

O PAI-2 únese a unha serie de proteínas intracelulares e extracelulares. Aínda hai controversia sobre se a función fisiolóxica do PAI-2 é a inhibición da protease extracelular uroquinase ou se ten actividades intracelulares. Polo menos unha das funcións fisiolóxicas do PAI-2 pode implicar a regulación da inmunidade adaptativa.[1]

Estrutura e polimerización

Igual que outras serpinas, o PAI-2 ten tres follas beta (A, B, C) e nove hélices alfa (hA-hI).[2][3] Resolveuse a estrutura de mutantes de PAI-2, nos cales se produciu a deleción do bucle de 33 aminoácidos que conecta as hélices C e D. Este bucle CD é especialmente flexible e difícil de estabilizar, xa que se sabe que o bucle se transloca a unha distancia de 54 Å durante a formación de pontes disulfuro intramoleculares.[4] Ademais do bucle CD, outros motivos notables son o bucle do centro reactivo (RCL, do inglés reactive center loop), que se estende entre os aminoácidos 379 e 383 e unha secuencia sinal hidrofóbica N-terminal.

Bucle do centro reactivo (RCL) do inbibidor do activador do plasminóxeno 2. Imaxe de PyMol de PDB 2ARR.

Malia que o o PAI-2 ten as mesmas dianas para inhibición que o PAI-1, o PAI-2 está filoxeneticamente distante del. Como membro da familia da serpina relacionada coa ovoalbumina, o PAI-2 é xeneticamente similar á ovoalbumina de polo, e é un homólogo de mamíferos moi próximo.[5] Tanto a ovoalbumina coma o PAI-2 son segregados grazas a péptidos sinal secretores non clivados, aínda que a secreción de PAI-2 é relativamente moito menos eficaz.[6]

O PAI-2 pode encontrarse en tres estados poliméricos: monomérico, polimerixénico e polímero (estado inactivo). A polimerización ocorre polo mecanismo denominado "bucle-folla", no cal o bucle do centro reactivo dunha molécula é inserido secuencialmente na A-folla beta da seguinte molécula. Este proceso ocorre preferentemente cando o PAI-2 está na súa forma polimerixénica, que está estabilizada por unha ponte disulfuro entre a Cys-79 (localizada no bucle CD) e a Cys-161.[7] Cando o PAI-2 está na forma monómera, o bucle CD está moi fóra de posición para poder formar esta ponte disulfuro e debe translocaarse unha distancia de 54 Å para estar o suficientemente próximo á Cys-161. Non obstante, como o bucle CD é bastante flexible, as formas monómera e polimerixénica son completamente interconvertibles, e un estado pode ser favorecido sobre o outro alterando o ambiente redox da proteína.[4] A polimerización do PAI-2 ocorre espontaneamente en condicións fisiolóxicas, por exemplo no citosol das células placentarias.[8] O PAI-2 citosólico tende a ser monómero, mentres que o PAI-2 en orgánulos secretores (que adoitan ser máis oxidantes que o citosol) ten máis tendencia á polimerización.[7] Por todas estas razóns, pénsase que o PAI-2 pode percibir e responder ao potencial redox do seu ambiente.[4]

Mecanismo

O PAI-2 usa un mecanismo de inhibición suicida (un mecanismo común nas serpinas) para inactivar irreversiblemente o activador do plasminóxeno tisular (tPA) e a uroquinase (uPA).[2] Primeiro, a serina protease diana atraca no PAI-2 e cataliza a clivaxe do RCL, entre os residuos Arg-380 e Thr-381. Nese momento, son posibles dous resultados: a protease escapa, deixando un PAI-2 inactivo; ou a protease forma un complexo permanente unido covalentemente co PAI-2, no cal a protease está significativamente distorsionada.

Funcións biolóxicas

Aínda que o PAI-2 extracelular (glicosilado) funciona regulando a fibrinólise, segue sen estar claro se este papel inhibidor é a principal función do PAI-2. O PAI-2 é predominantemente intracelular. O péptido sinal secretor de PAI-2 é relativamente ineficaz, quizais por deseño evolutivo, xa que varias mutacións na secuencia sinal poden aumentar significativamente a eficacia da secreción.[6] O PAI-2 é indetectable no plasma adulto, e normalmente só é detectable no embarazo, nas leucemias mielomonocíticas ou no fluído crevicular xenxival; ademais, o PAI-2 é un inhibidor máis lento que o PAI-1 en varias ordes de magnitude (baseada en cinética de segunda orde).[9] Por outra parte, os papeis intracelulares detallados do PAI-2 non foron aínda claramente establecidos.

O PAI-2 é regulado á alza durante o embarazo e as respostas inmunes. Durante o embarazo, o PAI-2 está especialmente presente na decidua e o líquido amniótico, onde pode protexer as membranas da dixestión e axuda na remodelación fetal e os tecidos uterinos.[10] O PAI-2 axuda o PAI-1 na regulación da fibrinólise e pode axudar a impedir a sobreexpresión do PAI-1, o que incrementa o risco de trombose.[10][11] Durante o embarazo, a concentración plasmática do PAI-2 elévase desde niveis case indetectables a 250 ng/mL (principalmente na forma glicosilada).[9]

Entre as células inmunitarias, os macrófagos son os principais produtores de PAI-2, pero nin os linfocitos B nin os T producen cantidades significativas.[12] O PAI-2 xoga un papel nas resposta inflamatorias e as infeccións, potencialmente ao regular á baixa as células T que segregan IgG2c e interferón de tipo II.[12]

Debido á súa posición no cromosoma 18 preto do protooncoxene bcl-2 e outras varias serpinas, investigouse o papel do PAI-2 na apoptose, pero as evidencias actuais non son concluíntes.[9][13] Un estudo recente suxire que o PAI-2 pode ser unha diana directa augas abaixo e un activador de p53, e pode estabilizar directamente p21; ademais, a expresión do PAI-2 increméntase en fibroblastos senescentes e poden deter o crecemento de fibroblastos novos.[14]

Posibles papeis no cancro

O papel do PAI-2 no crecemento e metástase do cancro é complexo, xa que o PAI-2 pode ter efectos promotores ou inhibidores de tumores. En particular, é a súa alta expresión en células tumorais, non no organismo hóspede do tumor, o que influencia o crecemento do cancro.[15] As células do cancro poden facilitar a exportación do PAI-2 por medio de micropartículas.[15]

O PAI-2 proporciona protección ás células cancerosas contra a morte celular inducida pola plasmina, proteína que pode exercer un efecto letal nos tumores. Esta protección é especialmente salientable nas metástases cerebrais, que adoitan expresar altos niveis do PAI-2 e neuroserpina, e cuxo crecemento pode ser parcialmente inhibido polo knockout de PAI-2.[16] Debido á súa alta expresión en células tumorais, o PAI-2 foi utilizado para rastrear e estudar o espallamento de células de melanoma anxiotrópico.[17]

Aínda que a expresión do PAI-2 pode promover a metástase ao cerebro, noutros casos a expresión alta de PAI-2 descende significativamente a metástase nos pulmóns e outros órganos.[15][18] Os efectos particulares do PAI-2 sobre a metástase poden depender do tipo de cancro e a súa localización no corpo.

Notas

Véxase tamén

Outros artigos

Bibliografía

Ligazóns externas