വിഷ്വൽ സിസ്റ്റം

പരിസ്ഥിതിയിലെ വസ്തുക്കൾ പ്രതിഫലിപ്പിക്കുന്ന ദൃശ്യ സ്പെക്ട്രത്തിലെ പ്രകാശം ഉപയോഗിച്ച് ചുറ്റുമുള്ള പരിസ്ഥിതിയെ വ്യാഖ്യാനിക്കാനുള്ള കഴിവാണ് വിഷ്വൽ പെർസെപ്ഷൻ അഥവാ കാഴ്ച. കാഴ്ച എന്ന അനുഭവം സാധ്യമാക്കുന്നതിൽ ഉൾപ്പെടുന്ന കണ്ണിലെയും തലച്ചോറിലെയും എല്ലാ ഭാഗങ്ങളെയും കൂടി ഒരുമിച്ച് പറയുന്ന പേരാണ് വിഷ്വൽ സിസ്റ്റം. വിഷ്വൽ സിസ്റ്റം കേന്ദ്ര നാഡീവ്യവസ്ഥയുടെ ഭാഗമാണ്. ചുറ്റുമുള്ള പരിസ്ഥിതിയുടെ പ്രാതിനിധ്യം സൃഷ്ടിക്കുന്നതിന് ദൃശ്യപ്രകാശത്തിൽ നിന്നുള്ള വിവരങ്ങൾ കണ്ടെത്തുകയും വ്യാഖ്യാനിക്കുകയും ചെയ്യുന്നതിനോടൊപ്പം വിഷ്വൽ സിസ്റ്റം മറ്റ് ഇമേജ് ഇതര ഫോട്ടോ പ്രതികരണ പ്രവർത്തനങ്ങളുടെ രൂപീകരണവും പ്രാപ്തമാക്കുന്നു. പ്രകാശത്തിന്റെ സ്വീകരണവും മോണോക്യുലർ പ്രാതിനിധ്യങ്ങളുടെ രൂപീകരണവും ഉൾപ്പെടെ നിരവധി സങ്കീർണ്ണമായ ജോലികൾ വിഷ്വൽ സിസ്റ്റം നിർവഹിക്കുന്നു. ഒരു ജോഡി ദ്വിമാന പ്രൊജക്ഷനിൽ നിന്ന് ബൈനോക്കുലർ പെർസെപ്ഷൻ നിർമ്മിക്കുന്നത്; വിഷ്വൽ വസ്തുക്കളുടെ തിരിച്ചറിയലും വർഗ്ഗീകരണവും; വസ്തുക്കളിലേക്കും അവയിലേക്കും ഉള്ള ദൂരം വിലയിരുത്തൽ; ഒപ്പം കണ്ട വസ്തുക്കളുമായി ബന്ധപ്പെട്ട് ശരീര ചലനങ്ങളെ നയിക്കുക എന്നിവയെല്ലാം ചെയ്യുന്നത് വിഷ്വൽ സിസ്റ്റമാണ്. വിഷ്വൽ പെർസെപ്ഷൻറെ അഭാവത്തെ അന്ധത എന്ന് വിളിക്കുന്നു. വിഷ്വൽ പെർസെപ്ഷനിൽ നിന്ന് വിഭിന്നമായി ഇമേജ് രൂപപ്പെടുത്താത്ത വിഷ്വൽ ഫംഗ്ഷനുകളിൽ പ്യൂപ്പിലറി ലൈറ്റ് റിഫ്ലെക്സ് (പി‌എൽ‌ആർ), സിർ‌കാഡിയൻ ഫോട്ടോ എൻട്രെയിൻ‌മെന്റ് എന്നിവ ഉൾപ്പെടുന്നു.

വിഷ്വൽ സിസ്റ്റം
വിഷ്വൽ സിസ്റ്റത്തിൽ കണ്ണുകളും, ററ്റിനയെ വിഷ്വൽ കോർട്ടക്സിലേക്കും തലച്ചോറിന്റെ മറ്റ് ഭാഗങ്ങളിലേക്കും ബന്ധിപ്പിക്കുന്ന പാതകളും ഉൾപ്പെടുന്നു.
കണ്ണ് വിഷ്വൽ സിസ്റ്റത്തിന്റെ സെൻസറി അവയവമാണ്.
Identifiers
FMA7191
Anatomical terminology

ഈ ലേഖനം കൂടുതലും സസ്തനികളുടെ, പ്രത്യേകിച്ചും മനുഷ്യരുടെ വിഷ്വൽ സിസ്റ്റത്തെ വിവരിക്കുന്നു.

സിസ്റ്റം അവലോകനം

മനുഷ്യന്റെ തലച്ചോറിലെ പ്രസക്തമായ അന്തിമ പോയിന്റുകളിലേക്ക് കാഴ്ച അനുവദിക്കുന്ന അറിയപ്പെടുന്ന എല്ലാ ഘടനകളുടെയും പ്രവചനങ്ങൾ ഈ രേഖാചിത്രം ട്രാക്കുചെയ്യുന്നു. ചിത്രം വലുതാക്കാൻ ക്ലിക്കുചെയ്യുക.
ഒരേസമയം രണ്ട് കണ്ണുകൾക്കുമുള്ള ഓരോ 4 ക്വാഡ്രന്റുകളിൽ നിന്നുമുള്ള ഒപ്റ്റിക് പാതകളുടെ പ്രാതിനിധ്യം.

മെക്കാനിക്കൽ

കോർണിയയും ലെൻസും ഒരുമിച്ച് പ്രകാശത്തെ ഒരു ചെറിയ ചിത്രമാക്കി മാറ്റി റെറ്റിനയിൽ പതിപ്പിക്കുന്നു. റെറ്റിന ഈ ചിത്രം റോഡ് കോശങ്ങളും കോൺ കോശങ്ങളും ഉപയോഗിച്ച് വൈദ്യുത പൾസുകളിലേക്ക് മാറ്റുന്നു. ഒപ്റ്റിക് നാഡി ഈ പൾസുകളെ ഒപ്റ്റിക് കനാലിലൂടെ കൊണ്ടുപോകുന്നു. ഒപ്റ്റിക് കയാസ്മയിൽ എത്തുമ്പോൾ നാഡി നാരുകൾ വിഘടിക്കുന്നു (ഇടത് വശത്തെ പകുതി വലത്തേക്ക് മാറുന്നു). നാരുകൾ പിന്നീട് മൂന്ന് സ്ഥലങ്ങളിൽ ശാഖകളായി അവസാനിക്കുന്നു.[1] [2] [3] [4] [5] [6] [7]

ന്യൂറൽ

ഒപ്റ്റിക് നാഡി നാരുകൾ മിക്കതും ലാറ്ററൽ ജെനിക്യുലേറ്റ് ന്യൂക്ലിയസിൽ (എൽജിഎൻ) അവസാനിക്കുന്നു. എൽ‌ജി‌എൻ‌ പൾ‌സുകളെ വിഷ്വൽ‌ കോർ‌ടെക്സിന്റെ (പ്രൈമറി) വി1 ലേക്ക് ഫോർ‌വേർ‌ഡുചെയ്യുന്നതിനുമുമ്പ്, അത് ഒബ്‌ജക്റ്റുകളുടെ വ്യാപ്തി അളക്കുകയും എല്ലാ പ്രധാന ഒബ്‌ജക്റ്റുകളും വേഗത ടാഗ് ഉപയോഗിച്ച് ടാഗുചെയ്യുകയും ചെയ്യുന്നു. ഈ ടാഗുകൾ ഒബ്ജക്റ്റ് ചലനം പ്രവചിക്കുന്നു.

എൽജിഎൻ വി2, വി3 എന്നിവയിലേക്കും ചില നാരുകൾ അയയ്ക്കുന്നു.[8] [9] [10] [11] [12]

സ്പേഷ്യൽ ഓർഗനൈസേഷൻ മനസിലാക്കാൻ വി1 എഡ്ജ്-ഡിറ്റക്ഷൻ നടത്തുന്നു (തുടക്കത്തിൽ, 40 മില്ലിസെക്കൻഡിൽ, ചെറിയ സ്പേഷ്യൽ, വർണ്ണ വ്യതിയാനങ്ങളിൽ പോലും ശ്രദ്ധ കേന്ദ്രീകരിക്കുന്നു. വിവർത്തനം ചെയ്‌ത എൽ‌ജി‌എൻ‌, വി2, വി3 വിവരങ്ങൾ‌ ലഭിച്ചുകഴിഞ്ഞാൽ‌ 100 മില്ലിസെക്കൻഡിൽ‌ ആഗോള ഓർ‌ഗനൈസേഷനിൽ‌ ശ്രദ്ധ കേന്ദ്രീകരിക്കാൻ‌ ആരംഭിക്കുന്നു). ശ്രദ്ധയോ ഗേസ് ഷിഫ്റ്റോ നയിക്കാനായി, വി 1 ഒരു ബോട്ടം-അപ്പ് സാലിയൻസി മാപ്പ് സൃഷ്ടിക്കുന്നു.[13]

വി2 (നേരിട്ടും പൾ‌വിനാർ‌ വഴിയും) വി1 ലേക്ക് പൾ‌സുകൾ‌ അയക്കുകയും സ്വീകരിക്കുകയും ചെയ്യുന്നു. പൾവിനാർ, സാക്കേഡിനും വിഷ്വൽ ശ്രദ്ധയ്ക്കും ഉത്തരവാദിയാണ്. വി2 വി1 ന് സമാനമായ പ്രവർത്തനമാണ് നൽകുന്നത്, എന്നിരുന്നാലും, ഇത് മിഥ്യാധാരണകൾ കൂടി കൈകാര്യം ചെയ്യുന്നുഇത് ഇടത്, വലത് പൾസുകൾ (2 ഡി ഇമേജുകൾ), ഫോർഗ്രൗണ്ട് വേർതിരിവ് എന്നിവ താരതമ്യപ്പെടുത്തി ആഴം നിർണ്ണയിക്കുന്നു. വി2, വി1 മുതൽ വി5 വരെയുള്ളതിലേക്ക് ബന്ധപ്പെടുന്നു.

വസ്തുക്കളുടെ 'ആഗോള ചലനം' (ദിശയും വേഗതയും) പ്രോസസ്സ് ചെയ്യാൻ വി3 സഹായിക്കുന്നു. വി3, വി1 (ദുർബലമായ), വി2, ഇൻഫീരിയർ ടെമ്പറൽ കോർട്ടെക്സ് എന്നിവയുമായി ബന്ധപ്പെടുന്നു.[14] [15]

വി4, വി1 (ശക്തമായ), വി2, വി3, എൽജിഎൻ, പൾവിനാർ എന്നിവയിൽ നിന്ന് ഇൻപുട്ട് നേടി ലളിതമായ രൂപങ്ങൾ തിരിച്ചറിയുന്നു.[16] വി5 ന്റെ ഔട്ട്‌പുട്ടുകളിൽ വി4 ഉം അതിന്റെ ചുറ്റുമുള്ള പ്രദേശവും, കണ്ണ്-ചലന മോട്ടോർ കോർട്ടീസുകളും (ഫ്രോണ്ടൽ ഐ-ഫീൽഡ്, ലാറ്ററൽ ഇൻട്രാപാരിയറ്റൽ ഏരിയ) എന്നിവ ഉൾപ്പെടുന്നു.

വി5 ന്റെ പ്രവർത്തനം മറ്റ് 'വി' കളുടെ പ്രവർത്തനത്തിന് സമാനമാണ്, എന്നിരുന്നാലും, ഇത് പ്രാദേശിക ഒബ്ജക്റ്റ് ചലനത്തെ സങ്കീർണ്ണമായ തലത്തിൽ ആഗോള ചലനവുമായി സമന്വയിപ്പിക്കുന്നു. ചലന വിശകലനത്തിൽ വി5 യുമായി ചേർന്ന് വി6 പ്രവർത്തിക്കുന്നു. വി5 സ്വയം ചലനത്തെ വിശകലനം ചെയ്യുന്നു, അതേസമയം വി6 പശ്ചാത്തലവുമായി ബന്ധപ്പെട്ട വസ്തുക്കളുടെ ചലനത്തെ വിശകലനം ചെയ്യുന്നു. വി6 ന്റെ പ്രാഥമിക ഇൻപുട്ട് വി1 ആണ്, വി5 കൂടി ചേരുന്നുണ്ട്. വി6 ൽ കാഴ്ചയ്ക്കുള്ള ടോപ്പോഗ്രാഫിക്കൽ മാപ്പ് ഉൾക്കൊള്ളുന്നു. വി6 ചുറ്റുമുള്ള പ്രദേശത്തേക്ക് നേരിട്ട് ഔട്ട്‌പുട്ട് ചെയ്യുന്നു (വി6എ). പ്രീമോട്ടോർ കോർട്ടെക്സ് ഉൾപ്പെടെയുള്ള ആർം മൂവിങ് കോർട്ടീസുകളിലേക്ക് വി6എ യ്ക്ക് നേരിട്ട് കണക്ഷനുകളുണ്ട്.[17] [18]

ഇൻഫീരിയർ ടെമ്പറൽ ഗൈറസ് സങ്കീർണ്ണമായ ആകൃതികൾ, വസ്തുക്കൾ, മുഖങ്ങൾ എന്നിവ തിരിച്ചറിയുന്നു അല്ലെങ്കിൽ ഹിപ്പോകാമ്പസുമായി ചേർന്ന് പുതിയ ഓർമ്മകൾ സൃഷ്ടിക്കുന്നു. [19] ഏഴ് അദ്വിതീയ ന്യൂക്ലിയസുകളാണ് പ്രീടെക്ടൽ ഏരിയ. മുൻ‌വശത്തെ, പിൻ‌വശത്തെ, മധ്യഭാഗത്തെ എന്നിങ്ങനെ മൂന്ന് പ്രിറ്റെക്ടൽ ന്യൂക്ലിയുകൾ യഥാക്രമം വേദനയെ (പരോക്ഷമായി) തടയുന്നു, ദ്രുത നേത്ര ചലനത്തെ സഹായിക്കുന്നു, അക്കൊമഡേഷൻ റിഫ്ലെക്സിനെ സഹായിക്കുന്നു. [20] എഡിംഗർ-വെസ്റ്റ്ഫാൾ ന്യൂക്ലിയസ്, പ്യൂപ്പിൾ ഡൈലേഷനോടൊപ്പം കൺവർജൻസ്, ലെൻസ് ക്രമീകരണം എന്നിവയ്ക്കും സഹായിക്കുന്നു. [21] ഒപ്റ്റിക് ട്രാക്റ്റ് ന്യൂക്ലിയുകൾ സുഗമമായ പിന്തുടരൽ കണ്ണ് ചലനത്തിലും അക്കൊമഡേഷൻ റിഫ്ലെക്സിലും ദ്രുത നേത്ര ചലനത്തിലും ഉൾപ്പെടുന്നു.

ആദ്യ വെളിച്ചത്തിൽ തന്നെ മെലറ്റോണിന്റെ (പരോക്ഷമായി) ഉത്പാദനം നിർത്തുന്ന ഹൈപ്പോതലാമസ് മേഖലയാണ് സുപ്രാകയാസ്മാറ്റിക് ന്യൂക്ലിയസ്. [22]

ഘടന

മനുഷ്യന്റെ കണ്ണ്
  • കണ്ണ്, പ്രത്യേകിച്ച് റെറ്റിന
  • ഒപ്റ്റിക് നാഡി
  • ഒപ്റ്റിക് കയാസ്മ
  • ഒപ്റ്റിക് ട്രാക്റ്റ്
  • ലാറ്ററൽ ജെനിക്യുലേറ്റ് ബോഡി
  • ഒപ്റ്റിക് റേഡിയേഷൻ
  • വിഷ്വൽ കോർട്ടെക്സ്
  • വിഷ്വൽ അസോസിയേഷൻ കോർട്ടെക്സ് .

ഇവ മുൻ‌, പിൻ‌ പാത്ത്വേകളായി തിരിച്ചിരിക്കുന്നു. ലാറ്ററൽ ജെനിക്യുലേറ്റ് ന്യൂക്ലിയസിന് മുമ്പുള്ള കാഴ്ചയിൽ ഉൾപ്പെട്ടിരിക്കുന്ന ഘടനകളെയാണ് മുൻ വിഷ്വൽ പാത്ത്വേ സൂചിപ്പിക്കുന്നത്. ഈ പോയിന്റിനുശേഷമുള്ള ഘടനകളെ പിൻ‌ വിഷ്വൽ പാത്ത്വേ സൂചിപ്പിക്കുന്നു.

കണ്ണ്

കണ്ണിലേക്ക് പ്രവേശിക്കുന്ന പ്രകാശം കോർണിയയിലൂടെ കടന്നുപോകുമ്പോൾ റിഫ്രാക്റ്റ് ചെയ്യപ്പെടുന്നു. അത് പിന്നീട് പ്യൂപ്പിളിലൂടെ കടന്ന് (ഐറിസ് നിയന്ത്രിക്കുന്നത്) ലെൻസ് വഴി റെറ്റിനയിൽ പതിക്കുന്നു. റെറ്റിനയിലേക്ക് ചിത്രം പ്രൊജക്റ്റ് ചെയ്യുന്നതിന് കോർണിയയും ലെൻസും ഒരു കോമ്പൗണ്ട് ലെൻസായി പ്രവർത്തിക്കുന്നു.

റെറ്റിന

എസ്. റാമോൺ വൈ കാജൽ, സസ്തനികളുടെ റെറ്റിനയുടെ ഘടന, 1900

റെറ്റിനയിൽ ഓപ്സിൻ എന്ന് അറിയപ്പെടുന്ന പ്രത്യേക പ്രോട്ടീൻ തന്മാത്രകൾ ഉൾക്കൊള്ളുന്ന ഫോട്ടോറിസപ്റ്റർ കോശങ്ങളുടെ ഒരു വലിയ സംഖ്യ അടങ്ങിയിരിക്കുന്നു. മനുഷ്യരിൽ, ബോധപൂർവമായ കാഴ്ചയിൽ റോഡ് ഓപ്‌സിനുകൾ, കോൺ ഓപ്‌സിനുകൾ എന്നിങ്ങനെ രണ്ട് തരത്തിലുള്ള ഓപ്‌സിനുകൾ ഉൾപ്പെടുന്നു. (മൂന്നാമത്തെ തരമായ മെലനോപ്സിൻ ബോഡി ക്ലോക്ക് മെക്കാനിസത്തിന്റെ ഭാഗമാണ്, ഇത് ബോധപൂർവമായ കാഴ്ചയിൽ ഉൾപ്പെടുന്നില്ല.[23] ഒരു ഓപ്‌സിൻ ഒരു ഫോട്ടോൺ (പ്രകാശത്തിന്റെ ഒരു കണിക) ആഗിരണം ചെയ്യുകയും സിഗ്നൽ ട്രാൻസ്‌ഡക്ഷൻ പാതയിലൂടെ സെല്ലിലേക്ക് ഒരു സിഗ്നൽ കൈമാറുകയും ചെയ്യുന്നു, അതിന്റെ ഫലമായി ഫോട്ടോറിസെപ്റ്ററിന്റെ ഹൈപ്പർ-പോളറൈസേഷൻ ഉണ്ടാകുന്നു.

റോഡുകളും കോണുകളും പ്രവർത്തനത്തിൽ വ്യത്യാസപ്പെട്ടിരിക്കുന്നു. റോഡുകൾ പ്രാഥമികമായി മാക്യുലക്ക് വെളിയിൽ കാണപ്പെടുന്നു, ഇത് കുറഞ്ഞ പ്രകാശത്തിലെ കാഴ്ചയ്ക്ക് സഹായിക്കുന്നു. പ്രധാനമായും റെറ്റിനയുടെ മധ്യഭാഗത്താണ് (അല്ലെങ്കിൽ ഫോവിയ) കോണുകൾ കാണപ്പെടുന്നത്.[24] ആഗിരണം ചെയ്യുന്ന പ്രകാശത്തിന്റെ തരംഗദൈർഘ്യത്തിൻറെ വ്യത്യാസത്തിനനുസരിച്ച് മൂന്ന് തരം കോണുകൾ ഉണ്ട്. നല്ല പ്രകാശത്തിലെ വ്യക്തമായ കാഴ്ചകൾക്കും, ദൃശ്യ ലോകത്തിന്റെ നിറവും മറ്റ് സവിശേഷതകളും വേർതിരിച്ചറിയാൻ പ്രധാനമായും കോണുകൾ ഉപയോഗിക്കുന്നു.

റെറ്റിനയിൽ, ഫോട്ടോറിസെപ്റ്ററുകൾ നേരിട്ട് ബൈപോളാർ സെല്ലുകളിലേക്ക് സിനാപ്സ് ചെയ്യുന്നു, അവിടുന്ന് പുറം പാളിയിലെ ഗാംഗ്ലിയൻ സെല്ലുകളിലേക്ക് സിനാപ്സ് ചെയ്യുന്നു, അവിടുന്ന് ആക്ഷൻ പൊട്യൻഷലുകൾ തലച്ചോറിലേക്ക് സഞ്ചരിക്കും. റെറ്റിനയിലെ ന്യൂറോണുകൾ തമ്മിലുള്ള ആശയവിനിമയത്തിന്റെ രീതികളിൽ നിന്ന് ഗണ്യമായ അളവിൽ വിഷ്വൽ പ്രോസസ്സിംഗ് ഉണ്ടാകുന്നു. 130 ദശലക്ഷം ഫോട്ടോ റിസപ്റ്ററുകൾ പ്രകാശത്തെ ആഗിരണം ചെയ്യുന്നു, ഏകദേശം 1.2 ദശലക്ഷം ഗാംഗ്ലിയൺ സെൽ ആക്സോണുകൾ റെറ്റിനയിൽ നിന്ന് തലച്ചോറിലേക്ക് വിവരങ്ങൾ കൈമാറുന്നു. റെറ്റിനയിലെ പ്രോസസ്സിംഗിൽ റെറ്റിനയിലെ ബൈപോളാർ, ഗാംഗ്ലിയൻ സെല്ലുകളുടെ സെന്റർ-സറൗണ്ട് റിസപ്റ്റീവ് ഫീൽഡുകളുടെ രൂപവത്കരണവും ഫോട്ടോറിസെപ്റ്ററിൽ നിന്ന് ബൈപോളാർ സെല്ലിലേക്ക് ഒത്തുചേരലും വ്യതിചലനവും ഉൾപ്പെടുന്നു. കൂടാതെ, റെറ്റിനയിലെ മറ്റ് ന്യൂറോണുകൾ, പ്രത്യേകിച്ച് ഹൊറിസോണ്ടൽ, അമക്രൈൻ സെല്ലുകൾ, വിവരങ്ങൾ പാർശ്വസ്ഥമായി കൈമാറുന്നു (ഒരു പാളിയിലെ ഒരു ന്യൂറോണിൽ നിന്ന് അതേ പാളിയിലെ അടുത്തുള്ള ന്യൂറോണിലേക്ക്), ഇതിന്റെ ഫലമായി വർണ്ണത്തോട് നിസ്സംഗതയോ ചലനത്തോട് സംവേദനക്ഷമതയോ അല്ലെങ്കിൽ നിറത്തോട് സംവേദനക്ഷമതയോടും ചലനത്തോട് നിസ്സംഗതയോ ഉള്ള കൂടുതൽ സങ്കീർണ്ണമായ റിസപ്റ്റീവ് ഫീൽഡുകളിൽ എത്തിച്ചേരും.

വിഷ്വൽ സിഗ്നലുകൾ സൃഷ്ടിക്കുന്നതിനുള്ള സംവിധാനം: റോഡുകളുടെ ഉപയോഗത്തിലൂടെ പ്രകാശത്തിലെ മാറ്റങ്ങളോട് റെറ്റിന പൊരുത്തപ്പെടുന്നു. ഇരുട്ടിൽ, ക്രോമോഫോർ റെറ്റിനാലിന്, സിസ്-റെറ്റിനൽ എന്ന് വിളിക്കുന്ന വളഞ്ഞ ആകൃതി ഉണ്ട്. പ്രകാശം റെറ്റിനലുമായി സംവദിക്കുമ്പോൾ, അത് ഓപ്‌സിനിൽ നിന്ന് അകന്ന് ട്രാൻസ്-റെറ്റിന എന്ന നേരായ രൂപത്തിലേക്ക് മാറുന്നു. വെളിച്ചത്തിൽ, ശുദ്ധ റോഡോപ്സിൻ വയലറ്റിൽ നിന്ന് നിറമില്ലാത്തതായി മാറുന്നതിനാൽ ഇതിനെ ബ്ലീച്ചിംഗ് എന്ന് വിളിക്കുന്നു. ഇരുട്ടിൽ റോഡോപ്സിൻ പ്രകാശത്തെ ആഗിരണം ചെയ്യാതെ ബൈപോളാർ സെല്ലിനെ തടയുന്ന ഗ്ലൂട്ടാമേറ്റ് പുറത്തുവിടുകയും ചെയ്യുന്നു. ഇത് ബൈപോളാർ സെല്ലുകളിൽ നിന്ന് ഗാംഗ്ലിയൻ സെല്ലിലേക്ക് ന്യൂറോ ട്രാൻസ്മിറ്ററുകളുടെ പ്രവേശിക്കുന്നത് തടയുന്നു. പ്രകാശം ഉള്ളപ്പോൾ, ഗ്ലൂട്ടാമേറ്റ് സ്രവണം ബൈപോളാർ സെല്ലിനെ ഗാംഗ്ലിയൻ സെല്ലിലേക്ക് ന്യൂറോ ട്രാൻസ്മിറ്ററുകൾ വിടുന്നത് തടയുന്നില്ല, അതിനാൽ കാഴ്ച ഉണ്ടാകും.[25] [26]

ഈ പ്രോസസ്സിംഗിന്റെ അന്തിമഫലം വിഷ്വൽ (ഇമേജ് രൂപപ്പെടുത്തൽ, ഇമേജ് രൂപപ്പെടുത്തൽ) വിവരങ്ങൾ തലച്ചോറിലേക്ക് അയയ്ക്കുന്ന അഞ്ച് വ്യത്യസ്ത ഗാംഗ്ലിയൻ സെല്ലുകളാണ്:

  1. ആഴത്തിൽ സംവേദനക്ഷമതയുള്ളതും നിറത്തോട് നിസ്സംഗത പുലർത്തുന്നതും ഉത്തേജകവുമായി അതിവേഗം പൊരുത്തപ്പെടുന്നതുമായ വലിയ സെന്റർ-സറൗണ്ട് റിസപ്റ്റീവ് ഫീൽഡുകളുള്ള എം സെല്ലുകൾ;
  2. നിറത്തിനും രൂപത്തിനും സംവേദനക്ഷമതയുള്ള ചെറിയ സെന്റർ-സറൗണ്ട് റിസപ്റ്റീവ് ഫീൽഡുകളായ പി സെല്ലുകൾ;
  3. വർ‌ണ്ണത്തോട് സംവേദനക്ഷമതയുള്ളതും ആകൃതിയിലോ ആഴത്തിലോ നിസ്സംഗത പുലർത്തുന്ന വളരെ വലിയ കേന്ദ്രം മാത്രം സ്വീകരിക്കുന്ന ഫീൽ‌ഡുകളായ കെ സെല്ലുകൾ‌;
  4. ആന്തരികമായി ഫോട്ടോസെൻസിറ്റീവ് ആയ മറ്റൊരു കൂട്ടം ; ഒപ്പം
  5. നേത്രചലനത്തിനായി ഉപയോഗിക്കുന്ന അവസാന കൂട്ടം.

2006 ലെ യൂണിവേഴ്സിറ്റി ഓഫ് പെൻ‌സിൽ‌വാനിയ പഠനം മനുഷ്യ റെറ്റിനകളുടെ ഏകദേശ ബാൻഡ്‌വിഡ്ത്ത് സെക്കൻഡിൽ 8960 കിലോബിറ്റ് ആയി കണക്കാക്കിയിരുന്നു, അതേസമയം ഗിനിയ പിഗ് റെറ്റിനകളുടേത് 875 കിലോബിറ്റും ആണ്.[27]

2007-ൽ അറ്റ്ലാന്റിക് സമുദ്രത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള സൈദിയും സഹ ഗവേഷകരും, റോഡുകളും കോണുകളും ഇല്ലാത്ത രോഗികളിൽ നടത്തിയ പഠനത്തിൽ, മനുഷ്യരിലെ ഫോട്ടോറെസെപ്റ്റീവ് ഗാംഗ്ലിയൻ സെല്ലിന് ബോധപൂർവവും അബോധാവസ്ഥയിലുള്ളതുമായ വിഷ്വൽ പെർസെപ്ഷനിൽ പങ്കുണ്ടെന്ന് കണ്ടെത്തി.[28] ഏറ്റവും ഉയർന്ന സ്പെക്ട്രൽ സംവേദനക്ഷമത 481 നാനോമീറ്റർ ആയിരുന്നു. റെറ്റിനയിൽ കാഴ്ചയ്ക്കായി രണ്ട് വഴികളുണ്ടെന്ന് ഇത് കാണിക്കുന്നു - ഒന്നമത്തേത് ക്ലാസിക് ഫോട്ടോറിസെപ്റ്ററുകളെ (റോഡുകളും കോണുകളും) അടിസ്ഥാനമാക്കിയുള്ളതാണ് മറ്റൊന്ന് പുതുതായി കണ്ടെത്തിയതും അടിസ്ഥാന വിഷ്വൽ ബ്രൈറ്റ്നെസ് ഡിറ്റക്ടറുകളായി പ്രവർത്തിക്കുന്ന ഫോട്ടോ-റിസപ്റ്റീവ് ഗാംഗ്ലിയൻ സെല്ലുകളെ അടിസ്ഥാനമാക്കിയതാണ്.

ഫോട്ടോകെമിസ്ട്രി

ബാഹ്യ വസ്തുക്കളിൽ നിന്ന് പ്രകാശത്തെ ഒരു സെൻസിറ്റീവ് മീഡിയത്തിലേക്ക് ഫോക്കസ് ചെയ്യുന്നു എന്നതിനാൽ ഒരു ക്യാമറയുടെ പ്രവർത്തനം പലപ്പോഴും കണ്ണിന്റെ പ്രവർത്തനങ്ങളുമായി താരതമ്യപ്പെടുത്താറുണ്ട്. ക്യാമറയുടെ കാര്യത്തിൽ സെൻസിറ്റീവ് മീഡിയം ഫിലിം അല്ലെങ്കിൽ ഇലക്ട്രോണിക് സെൻസറാണെങ്കിൽ കണ്ണിന്റെ കാര്യത്തിൽ ഇത് വിഷ്വൽ റിസപ്റ്ററുകളുടെ ഒരു നിരയാണ്. ഒപ്റ്റിക്‌സിന്റെ നിയമങ്ങളെ അടിസ്ഥാനമാക്കി ലളിതമായ ഈ ജ്യാമിതീയ സമാനത ഉപയോഗിച്ച്, സിസിഡി ക്യാമറ പോലെ കണ്ണ് ഒരു ട്രാൻസ്‌ഡ്യൂസറായി പ്രവർത്തിക്കുന്നു.

വിഷ്വൽ സിസ്റ്റത്തിൽ, റെറ്റിനാലിനെ സാങ്കേതികമായി റെറ്റിനീൻ 1 അല്ലെങ്കിൽ "റെറ്റിനാൾഡിഹൈഡ്" എന്ന് വിളിക്കുന്നു, ഇത് റെറ്റിനയുടെ റോഡുകളിലും കോണുകളിലും കാണപ്പെടുന്ന ഒരു പ്രകാശ സംവേദനാത്മക തന്മാത്രയാണ്. വിഷ്വൽ സിഗ്നലുകളിലേക്ക് പ്രകാശം, അതായത് കേന്ദ്ര നാഡീവ്യവസ്ഥയുടെ ഒക്കുലാർ സിസ്റ്റത്തിലെ നാഡി പ്രേരണകൾ കൈമാറ്റം ചെയ്യപ്പെടുന്നതിന്റെ അടിസ്ഥാന ഘടനയാണ് റെറ്റിനൽ. പ്രകാശത്തിന്റെ സാന്നിധ്യത്തിൽ, റെറ്റിനൽ തന്മാത്ര കോൺഫിഗറേഷൻ മാറ്റുകയും അതിന്റെ ഫലമായി ഒരു നാഡി പ്രേരണ സൃഷ്ടിക്കുകയും ചെയ്യുന്നു.

ഒപ്റ്റിക് നാഡി

കണ്ണുകളിൽ നിന്ന് വിവരങ്ങളുടെ ഒഴുക്ക് സൂചിപ്പിക്കുന്ന ആൻഡ്രിയാസ് വെസാലിയസ് ഫാബ്രിക്കയിൽ നിന്നുള്ള ചിത്രം)

കണ്ണ് വഴി ചിത്രത്തെക്കുറിച്ചുള്ള വിവരങ്ങൾ ഒപ്റ്റിക് നാഡിയിലൂടെ തലച്ചോറിലേക്ക് കൈമാറ്റം ചെയ്യപ്പെടുന്നു. റെറ്റിനയിലെ ഗാംഗ്ലിയോൺ സെല്ലുകൾ ഒപ്റ്റിക് നാഡി വഴി തലച്ചോറിലേക്ക് വിവരങ്ങൾ അയയ്ക്കുന്നു. ഒപ്റ്റിക് നാഡിയിലെ 90% ആക്സോണുകളും തലാമസിലെ ലാറ്ററൽ ജെനിക്യുലേറ്റ് ന്യൂക്ലിയസിലേക്ക് പോകുന്നു. റെറ്റിനയിലെ എം, പി, കെ ഗാംഗ്ലിയൻ സെല്ലുകളിൽ നിന്നാണ് ഈ അക്സോണുകൾ ഉത്ഭവിക്കുന്നത്. ദൃശ്യ ലോകം പുനർനിർമ്മിക്കുന്നതിന് ഈ പാരലൽ പ്രോസസ്സിംഗ് പ്രധാനമാണ്. മറ്റൊരു ഭാഗം മിഡ്‌ബ്രെയിനിലെ സുപ്പീരിയർ കോളിക്യുലസിലേക്ക് വിവരങ്ങൾ അയയ്ക്കുന്നു, ഇത് നേത്രചലനങ്ങൾ (സാക്കേഡുകൾ)[29] അതുപോലെ മറ്റ് മോട്ടോർ പ്രതികരണങ്ങൾ നിയന്ത്രിക്കാൻ സഹായിക്കുന്നു.

ഫോട്ടോസെൻസിറ്റിവിറ്റിക്കായി മെലനോപ്സിൻ അടങ്ങിയ ഫോട്ടോസെൻസിറ്റീവ് ഗാംഗ്ലിയൻ സെല്ലുകളുടെ അവസാന ഭാഗം, റെറ്റിനോഹൈപോത്തലാമിക് ട്രാക്റ്റ് (ആർ‌എച്ച്‌ടി) വഴി പ്രിറ്റെക്ടത്തിലേക്ക് (പ്യൂപ്പിലറി റിഫ്ലെക്സ്) വിവരം കൈമാറുന്നു.[30] ഫോട്ടോറെസെപ്റ്റീവ് ഗാംഗ്ലിയൻ സെല്ലുകൾക്ക് അടുത്തിടെ കണ്ടെത്തിയ ഒരു പങ്ക് അവ ബോധപൂർവവും അബോധാവസ്ഥയിലുള്ളതുമായ കാഴ്ചയ്ക്ക് മധ്യസ്ഥത വഹിക്കുന്നു എന്നതാണ്, റോഡുകളും കോണുകളും ഇല്ലാത്ത കണ്ണുകളിൽ അവ അടിസ്ഥാന വിഷ്വൽ ബ്രൈറ്റ്നെസ് ഡിറ്റക്ടറുകളായി പ്രവർത്തിക്കുന്നു.[28]

ഒപ്റ്റിക് കയാസ്മ

രണ്ട് കണ്ണുകളിൽ നിന്നുമുള്ള ഒപ്റ്റിക് ഞരമ്പുകൾ തലച്ചോറിന്റെ ഹൈപ്പോതലാമസിന്റെ അടിഭാഗത്ത് ഒപ്റ്റിക് കയാസ്മയിൽ[31] കൂട്ടി മുട്ടുന്നു. ഈ സമയത്ത് രണ്ട് കണ്ണുകളിൽ നിന്നും വരുന്ന വിവരങ്ങൾ സംയോജിപ്പിക്കുകയും വിഷ്വൽ ഫീൽഡ് അനുസരിച്ച് വിഭജിക്കുകയും ചെയ്യുന്നു. കാഴ്ച മണ്ഡലത്തിന്റെ (വലത്, ഇടത്) അനുബന്ധ ഭാഗങ്ങൾ യഥാക്രമം തലച്ചോറിന്റെ ഇടത്, വലത് ഭാഗങ്ങളിലേക്ക് അയയ്ക്കുന്നു. അതായത്, പ്രാഥമിക വിഷ്വൽ കോർട്ടക്സിന്റെ വലതുഭാഗം രണ്ട് കണ്ണുകളിൽ നിന്നുമുള്ള ദൃശ്യ മണ്ഡലത്തിൻറെ ഇടത് പകുതിയെ കൈകാര്യം ചെയ്യുന്നു അതേപോലെ തിരിച്ചും.[29] കാഴ്ച മണ്ഡലത്തിന്റെ മധ്യഭാഗത്തുള്ള ഒരു ചെറിയ പ്രദേശം തലച്ചോറിന്റെ രണ്ട് ഭാഗങ്ങളും പ്രോസസ്സ് ചെയ്യുന്നു.

ഒപ്റ്റിക് ട്രാക്റ്റ്

വലത് വിഷ്വൽ ഫീൽഡിൽ നിന്നുള്ള വിവരങ്ങൾ (ഇപ്പോൾ തലച്ചോറിന്റെ ഇടതുവശത്ത്) ഇടത് ഒപ്റ്റിക് ട്രാക്റ്റിൽ സഞ്ചരിക്കുന്നു. ഇടത് വിഷ്വൽ ഫീൽഡിൽ നിന്നുള്ള വിവരങ്ങൾ വലത് ഒപ്റ്റിക് ട്രാക്റ്റിലും സഞ്ചരിക്കുന്നു. ഓരോ ഒപ്റ്റിക് ട്തര്ലാക്മറ്സിറ്ലും ലാറ്ററൽ ജെനിക്യുലേറ്റ് ന്യൂക്ലിയസിൽ (എൽജിഎൻ) അവസാനിക്കുന്നു.

എൽ‌ജി‌എനിലെ ആറ് പാളികൾ

ലാറ്ററൽ ജെനിക്യുലേറ്റ് ന്യൂക്ലിയസ്

തലച്ചോറിലെ തലാമസിലെ സെൻസറി റിലേ ന്യൂക്ലിയസാണ് ലാറ്ററൽ ജെനിക്യുലേറ്റ് ന്യൂക്ലിയസ് (എൽജിഎൻ). മനുഷ്യരിലും മറ്റ് പ്രൈമേറ്റുകളിലും (കാറ്റർഹീനിയനിൽ നിന്ന് ആരംഭിക്കുന്നു, അതിൽ സെർകോപിറ്റെസിഡേ, കുരങ്ങുകൾ എന്നിവ ഉൾപ്പെടുന്നു) ആറ് പാളി എൽ‌ജി‌എൻ അടങ്ങിയിരിക്കുന്നു. നാസൽ റെറ്റിനയുടെ (ടെമ്പറൽ വിഷ്വൽ ഫീൽഡ്) ഇപ്സിലാറ്ററൽ (ക്രോസ്ഡ്) നാരുകളിൽ നിന്നുള്ള വിവരങ്ങളുമായി 1, 4, 6 പാളികൾ യോജിക്കുന്നു; 2, 3, 5 പാളികൾ ടെമ്പറൽ റെറ്റിനയുടെ (നാസൽ വിഷ്വൽ ഫീൽഡ്) ഇപ്സിലാറ്ററൽ (ക്രോസ് ചെയ്യാത്ത) നാരുകളിൽ നിന്നുള്ള വിവരങ്ങളുമായി പൊരുത്തപ്പെടുന്നു. ലേയർ വൺ (1) ൽ എതിർ കണ്ണിന്റെ ഒപ്റ്റിക് നാഡിയുടെ എം (മാഗ്നോസെല്ലുലാർ) സെല്ലുകളുമായി പൊരുത്തപ്പെടുന്നതും ആഴം അല്ലെങ്കിൽ ചലനവുമായി ബന്ധപ്പെട്ടതുമായ എം സെല്ലുകൾ അടങ്ങിയിരിക്കുന്നു. എൽ‌ജി‌എന്റെ നാലും ആറും (4, 6) പാളികൾ എതിർ കണ്ണുമായി ബന്ധിപ്പിക്കുന്നു, പക്ഷേ ഒപ്റ്റിക് നാഡിയുടെ പി സെല്ലുകളുമായാണ് (നിറവും അരികുകളും) ബന്ധിച്ചിരിക്കുന്നത്. ഇതിനു വിപരീതമായി, എൽ‌ജി‌എന്റെ രണ്ട്, മൂന്ന്, അഞ്ച് (2, 3, & 5) പാളികൾ തലച്ചോറിന്റെ അതേ വശത്തുള്ള ഒപ്റ്റിക് നാഡിയുടെ എം സെല്ലുകളുമായും പി (പാർവോസെല്ലുലാർ) സെല്ലുകളുമായും ബന്ധിപ്പിക്കുന്നു. എൽജിഎൻ-ൻറെ ആറ് പാളികൾ ഒരു ക്രെഡിറ്റ് കാർഡിന്റെ വിസ്തീർണ്ണവും അതിന്റെ കട്ടിയുടെ മൂന്നിരട്ടി ഉള്ളവയുമാണ്. ആറ് പാളികൾക്കിടയിൽ റെറ്റിനയിലെ കെ സെല്ലുകളിൽ നിന്ന് (നിറം) വിവരങ്ങൾ ലഭിക്കുന്ന ചെറിയ സെല്ലുകളുണ്ട്. എൽ‌ജി‌എൻ‌ ന്യൂറോണുകൾ‌ വിഷ്വൽ‌ ഇമേജിനെ പ്രാഥമിക വിഷ്വൽ‌ കോർ‌ടെക്സിലേക്ക് (വി1) റിലേ ചെയ്യുന്നു, ഇത് തലച്ചോറിന്റെ പിൻ‌ഭാഗത്ത് ഓക്സിപിറ്റൽ ലോബിലെ കാൽ‌ക്കറിൻ സൾ‌ക്കസിനടുത്താണ്. എൽ‌ജി‌എൻ‌ ഒരു ലളിതമായ റിലേ സ്റ്റേഷൻ‌ മാത്രമല്ല, പ്രോസസ്സിംഗിനുള്ള ഒരു കേന്ദ്രം കൂടിയാണ്; ഇതിന് കോർട്ടിക്കൽ, സബ്കോർട്ടിക്കൽ ലെയറുകളിൽ നിന്ന് റസിപ്രോക്കൽ ഇൻപുട്ടും വിഷ്വൽ കോർട്ടെക്സിൽ നിന്ന് റസിപ്രോക്കൽ ഇന്നർവേഷനും ലഭിക്കുന്നു.

ചിത്രം വിഘടിപ്പിക്കുന്ന ഒപ്റ്റിക് ട്രാക്റ്റിൻറെ ചിത്രീകരണം

ഒപ്റ്റിക് റേഡിയേഷൻ

തലച്ചോറിന്റെ ഓരോ വശത്തുമുള്ള ഒപ്റ്റിക് റേഡിയേഷനുകൾ തലാമിക് ലാറ്ററൽ ജെനിക്യുലേറ്റ് ന്യൂക്ലിയസിൽ നിന്ന് വിഷ്വൽ കോർട്ടെക്സിന്റെ നാലാം പാളിയിലേക്ക് വിവരങ്ങൾ എത്തിക്കുന്നു. എൽജിഎൻ പി ലെയർ ന്യൂറോണുകൾ വി1 ലെയർ 4 സി-ബീറ്റ യിലേക്ക് റിലെ ചെയ്യുന്നു. എം ലെയർ ന്യൂറോണുകൾ വി1 ലെയർ 4സി-ആൽഫ യിലേക്ക് റിലേ ചെയ്യുന്നു. എൽ‌ജി‌എൻ‌ റിലേയിലെ കെ ലെയർ ന്യൂറോണുകൾ വി 1 ന്റെ 2, 3 ലെയറുകളിലെ ബ്ലോബുകൾ എന്ന് വിളിക്കുന്ന വലിയ ന്യൂറോണുകളിലേക്ക് റിലേ ചെയ്യുന്നു.

വിഷ്വൽ കോർട്ടെക്സ്

വിഷ്വൽ കോർട്ടെക്സ്

വിഷ്വൽ കോർട്ടെക്സ് മനുഷ്യ മസ്തിഷ്കത്തിലെ ഏറ്റവും വലിയ സിസ്റ്റമാണ്. വിഷ്വൽ ഇമേജ് പ്രോസസ്സ് ചെയ്യുന്നതിനുള്ള ഉത്തരവാദിത്തം കോർടെക്സിനാണ്. ഇത് സെറിബെല്ലത്തിന് മുകളിൽ തലച്ചോറിന്റെ പിൻഭാഗത്താണ് (ചിത്രത്തിൽ ഹൈലൈറ്റ് ചെയ്തിരിക്കുന്നത്). എൽ‌ജി‌എനിൽ നിന്ന് നേരിട്ട് വിവരങ്ങൾ ലഭിക്കുന്ന പ്രദേശത്തെ പ്രാഥമിക വിഷ്വൽ കോർട്ടെക്സ് (വി1 അല്ലെങ്കിൽ സ്ട്രൈറ്റ് കോർട്ടെക്സ്) എന്ന് വിളിക്കുന്നു . ശ്രദ്ധേയമായ വിഷ്വൽ ലൊക്കേഷനുകളിലേക്ക് ശ്രദ്ധയോ കണ്ണ് നോട്ടമോ നയിക്കാൻ ഇത് വിഷ്വൽ ഫീൽഡിന്റെ ഒരു ബോട്ടപ്പ്-അപ് സാലൻസി മാപ്പ് സൃഷ്ടിക്കുന്നു.[32], അതിനാൽ വിഷ്വൽ ഇൻപുട്ട് വിവരങ്ങൾ ശ്രദ്ധാപൂർവ്വം തിരഞ്ഞെടുക്കുന്നത് വിഷ്വൽ പാതയിലെ വി1 ൽ ആരംഭിക്കുന്നു. [33] അവിടുന്ന് വിഷ്വൽ വിവരങ്ങൾ ഒരു കോർട്ടിക്കൽ ശ്രേണിയിലൂടെ ഒഴുകുന്നു. ഈ പ്രദേശങ്ങളിൽ വി2, വി3, വി4, ഏരിയ വി5/എംടി എന്നിവ ഉൾപ്പെടുന്നു (കൃത്യമായ കണക്റ്റിവിറ്റി മൃഗത്തിന്റെ ഇനത്തെ ആശ്രയിച്ചിരിക്കുന്നു). ഈ ദ്വിതീയ വിഷ്വൽ ഏരിയകൾ (എക്‌സ്ട്രാസ്‌ട്രേറ്റ് വിഷ്വൽ കോർട്ടെക്‌സ് എന്ന് വിളിക്കുന്നു) വൈവിധ്യമാർന്ന വിഷ്വൽ പ്രൈമിറ്റീവുകളെ പ്രോസസ്സ് ചെയ്യുന്നു. വി1, വി2 എന്നിവയിലെ ന്യൂറോണുകൾ നിർദ്ദിഷ്ട ഓറിയന്റേഷനുകളുടെ ബാറുകളോ ബാറുകളുടെ സംയോജനമോ തിരഞ്ഞെടുത്ത് പ്രതികരിക്കുന്നു. ഇവ എഡ്ജ്, കോർണർ ഡിറ്റക്ഷൻ എന്നിവയെ പിന്തുണയ്ക്കുമെന്ന് വിശ്വസിക്കപ്പെടുന്നു. അതുപോലെ, നിറത്തെയും ചലനത്തെയും കുറിച്ചുള്ള അടിസ്ഥാന വിവരങ്ങൾ ഇവിടെ പ്രോസസ്സ് ചെയ്യുന്നു. [34]

ഹൈഡറും കൂട്ടാളികളും (2002) വി1, വി2, വി3 എന്നിവ ഉൾപ്പെടുന്ന ന്യൂറോണുകൾക്ക് സ്റ്റീരിയോസ്കോപ്പിക് മായക്കാഴ്ചകൾ കണ്ടെത്താൻ കഴിയുമെന്ന് കണ്ടെത്തി; 8 ഡിഗ്രി വരെ നീളുന്ന സ്റ്റീരിയോസ്കോപ്പിക് ഉത്തേജനങ്ങൾ ഈ ന്യൂറോണുകളെ സജീവമാക്കുമെന്ന് അവർ കണ്ടെത്തി.[35]

റസ്റ്റിങ് സ്റ്റേറ്റ് എഫ്എംആർഐ സമയത്ത് പോലും വിഷ്വൽ കോർട്ടെക്സ് സജീവമാണ്.

വിഷ്വൽ അസോസിയേഷൻ കോർട്ടെക്സ്

വിഷ്വൽ വിവരങ്ങൾ വിഷ്വൽ ശ്രേണിയിലൂടെ മുന്നോട്ട് പോകുമ്പോൾ, ന്യൂറൽ പ്രാതിനിധ്യങ്ങളുടെ സങ്കീർണ്ണത വർദ്ധിക്കുന്നു. ഒരു പ്രത്യേക റെറ്റിനോടോപിക് സ്ഥാനത്ത് ഒരു പ്രത്യേക ഓറിയന്റേഷന്റെ ഒരു വരി വിഭാഗത്തോട് ഒരു വി 1 ന്യൂറോൺ പ്രത്യേകം പ്രതികരിക്കുമെങ്കിൽ, ലാറ്ററൽ ആൻസിപിറ്റൽ കോംപ്ലക്സിലെ ന്യൂറോണുകൾ പൂർണ്ണമായ ഒബ്ജക്റ്റിനോട് (ഉദാ. മനുഷ്യ മുഖങ്ങൾ അല്ലെങ്കിൽ ഒരു പ്രത്യേക വസ്തു) പ്രതികരിക്കും.

ന്യൂറൽ പ്രാതിനിധ്യത്തിന്റെ വർദ്ധിച്ചുവരുന്ന സങ്കീർണ്ണതയ്‌ക്കൊപ്പം ഡോർസൽ സ്ട്രീം വെൻട്രൽ സ്ട്രീം (റ്റു സ്ട്രീംസ് ഹൈപ്പോതിസിസ്,[36] ആദ്യം അങ്കർലൈഡറും മിഷ്കിനും 1982 ൽ നിർദ്ദേശിച്ചത്) എന്നിങ്ങനെ രണ്ട് വ്യത്യസ്ത പാതകളിലേക്ക് പ്രോസസ്സിംഗിന്റെ സ്പെഷ്യലൈസേഷൻ വരാം. ഡോർസൽ സ്ട്രീം, സാധാരണയായി "വെയർ (Where)" സ്ട്രീം എന്ന് വിളിക്കപ്പെടുന്നു, ഇത് സ്പേഷ്യൽ അറ്റെൻഷനിൽ (രഹസ്യമായും പരസ്യമായും) ഉൾപ്പെടുന്നു, കൂടാതെ കണ്ണ് ചലനങ്ങളെയും കൈ ചലനങ്ങളെയും നിയന്ത്രിക്കുന്ന പ്രദേശങ്ങളുമായി ആശയവിനിമയം നടത്തുന്നു. അടുത്തിടെ, സ്പേഷ്യൽ ലൊക്കേഷനുകളിലേക്ക് നയിക്കുന്നതിൽ അതിന്റെ പങ്ക് ഊന്നിപ്പറയുന്നതിന് ഈ പ്രദേശത്തെ "ഹൌ (how)" സ്ട്രീം എന്ന് വിളിക്കുന്നു. വെൻട്രൽ സ്ട്രീം അല്ലെങ്കിൽ "വാട്ട് (what)" സ്ട്രീം എന്ന് പൊതുവായി വിളിക്കപ്പെടുന്ന വിഷ്വൽ സ്ട്രീം, ഉത്തേജനങ്ങളുടെ തിരിച്ചറിയൽ, വർഗ്ഗീകരണം എന്നിവയിൽ പങ്കുചേരുന്നു.

ഇൻട്രാപാരിയറ്റൽ സൾക്കസ് (ചുവപ്പ്)

എന്നിരുന്നാലും, അവ പരസ്പരം ബന്ധപ്പെട്ടിരിക്കുന്നതിനാൽ ഈ രണ്ട് പാതകളിലെ സ്പെഷ്യലൈസേഷന്റെ അളവിനെക്കുറിച്ച് ഇപ്പോഴും വളരെയധികം ചർച്ചകൾ നടക്കുന്നുണ്ട്. [37]

തലച്ചോറിലെ സെൻസറി കോഡിംഗിന്റെ സൈദ്ധാന്തിക മാതൃകയായി ഹോറസ് ബാർലോ 1961 ൽ എഫിഷ്യൻറ് കോഡിംഗ് സിദ്ധാന്തം നിർദ്ദേശിച്ചു.[38] പ്രൈമറി വിഷ്വൽ കോർട്ടെക്സിൽ (വി1) ഈ സിദ്ധാന്തത്തിന്റെ പ്രയോഗക്ഷമതയിലെ പരിമിതികൾ വി1 സാലിയൻസി ഹൈപ്പോതിസിസിന് (വി 1 എസ്എച്ച്) പ്രേരിപ്പിച്ചു, ശ്രദ്ധ ആകർഷിക്കാൻ വഴികാട്ടുന്നതിനായി വി 1 ഒരു ബോട്ടപ്പ്-അപ് സാലിസി മാപ്പ് സൃഷ്ടിക്കുന്നു.[32] ഒരു കേന്ദ്ര ഘട്ടമെന്ന നിലയിൽ, എൻകോഡിംഗ്, തിരഞ്ഞെടുക്കൽ, ഡീകോഡിംഗ് ഘട്ടങ്ങൾ എന്നിവ ഉൾക്കൊള്ളുന്നതാണ് കാഴ്ച.[39]

ഒരു വ്യക്തി ഉണർന്നിരിക്കുമ്പോഴും വിശ്രമത്തിലായിരിക്കുമ്പോഴും സജീവമായിരിക്കുന്ന മസ്തിഷ്ക മേഖലകളുടെ ഒരു ശൃംഖലയാണ് ഡിഫോൾട്ട് മോഡ് നെറ്റ്‌വർക്ക്. റസ്റ്റിങ് സ്റ്റേറ്റ് എഫ്എംആർഐ സമയത്ത് വിഷ്വൽ സിസ്റ്റത്തിന്റെ സ്ഥിരസ്ഥിതി മോഡ് നിരീക്ഷിക്കാൻ കഴിയും: ഫോക്സും കൂട്ടാളികളും (2005) "മനുഷ്യ മസ്തിഷ്കം അന്തർലീനമായി ചലനാത്മകവും ആന്റികോറലേറ്റഡ് ഫംഗ്ഷണൽ നെറ്റ്‌വർക്കുകളായി ക്രമീകരിച്ചിരിക്കുന്നു" എന്ന് കണ്ടെത്തി.[40]

പരിയേറ്റൽ ലോബിൽ, ലാറ്ററൽ, വെൻട്രൽ ഇൻട്രാപാരിയറ്റൽ കോർട്ടെക്സ് വിഷ്വൽ ശ്രദ്ധയിലും സാക്കാഡിക് നേത്ര ചലനങ്ങളിലും ഉൾപ്പെടുന്നു. ഈ പ്രദേശങ്ങൾ ഇൻട്രാപാരിയറ്റൽ സൾക്കസിലാണ് (തൊട്ടടുത്ത ചിത്രത്തിൽ ചുവപ്പിൽ അടയാളപ്പെടുത്തിയിരിക്കുന്നു).

വികസനം

ശൈശവാവസ്ഥ

നവജാത ശിശുക്കൾക്ക് പരിമിതമായ വർണ്ണ ധാരണയാണുള്ളത്.[41] നവജാതശിശുക്കളിൽ 74% പേർക്കും ചുവപ്പ്, 36% പച്ച, 25% മഞ്ഞ, 14% നീല എന്നിവ വേർതിരിച്ചറിയാൻ കഴിയുമെന്ന് ഒരു പഠനം കണ്ടെത്തി. ഒരു മാസത്തിന് ശേഷം ഈ പ്രകടനം "കുറച്ച് കൂടി മെച്ചപ്പെട്ടു." [42] ശിശുവിന്റെ കണ്ണുകൾക്ക് അക്കൊമഡേഷനുള്ള കഴിവില്ല. നവജാതശിശുവിന്റെ വിഷ്വൽ അക്വിറ്റി വിലയിരുത്തുന്നതിനും സമീപദർശനവും ആസ്റ്റിഗ്മാറ്റിസവും കണ്ടെത്തുന്നതിനും, ഐ ടീമിംഗും വിന്യാസവും വിലയിരുത്തുന്നതിനും ശിശുരോഗവിദഗ്ദ്ധർക്ക് വാക്കേതര പരിശോധന നടത്താൻ കഴിയും. വിഷ്വൽ അക്വിറ്റി ജനിക്കുമ്പോൾ ഏകദേശം 20/400ഉള്ളത് 6 മാസം പ്രായമാകുമ്പോൾ ഏകദേശം 20/25 ആയി മെച്ചപ്പെടുന്നു. കാഴ്ചയെ നിയന്ത്രിക്കുന്ന റെറ്റിനയിലെയും തലച്ചോറിലെയും നാഡീകോശങ്ങൾ പൂർണ്ണമായി വികസിക്കാത്തതിനാലാണ് ഇതെല്ലാം സംഭവിക്കുന്നത്.

കുട്ടിക്കാലവും കൌമാരവും

കുട്ടിക്കാലത്തും കൌമാരത്തിലും ആഴത്തിനെകുറിച്ചുള്ള ധാരണ, ഫോക്കസ്, ട്രാക്കിംഗ്, കാഴ്ചയുടെ മറ്റ് വശങ്ങൾ എന്നിവ വികസിച്ചുകൊണ്ടിരിക്കും. അമേരിക്കൻ ഐക്യനാടുകളിലെയും ഓസ്ട്രേലിയയിലെയും സമീപകാല പഠനങ്ങളിൽ, സ്കൂൾ പ്രായമുള്ള കുട്ടികൾ വെളിയിൽ അതായത് പ്രകൃതിദത്ത വെളിച്ചത്തിൽ ചെലവഴിക്കുന്ന സമയത്തിന് അവർക്ക് ഹ്രസ്വദൃഷ്ടി ഉണ്ടാകുന്നതിൽ ചില സ്വാധീനമുണ്ടാക്കാം എന്നതിന് ചില തെളിവുകളുണ്ട്. ഹ്രസ്വദൃഷ്ടിയും (സമീപദർശനം) ആസ്റ്റിഗ്മാറ്റിസവും പാരമ്പര്യമായി ഉണ്ടാകാമെന്നും കണക്കാക്കപ്പെടുന്നു. ഈ അവസ്ഥയിലുള്ള കുട്ടികൾ കാഴ്ച മെച്ചപ്പെടുത്താൻ കണ്ണട ധരിക്കേണ്ടതായി വന്നേക്കാം.

പ്രായപൂർത്തിയായവർ

വാർദ്ധക്യം ബാധിക്കുന്ന ആദ്യത്തെ ഇന്ദ്രിയങ്ങളിൽ ഒന്നാണ് കാഴ്ചശക്തി. കണ്ണിലും കാഴ്ചയ്ക്കും വാർദ്ധക്യത്തിനൊപ്പം നിരവധി മാറ്റങ്ങൾ സംഭവിക്കുന്നു:

  • കാലക്രമേണ ലെൻസ് മഞ്ഞനിറമാവുകയും ക്രമേണ തവിട്ടുനിറമാവുകയും ചെയ്യും, ബ്രൌൺ നീറത്തിൽ ആവുന്നത് ഒരു തരത്തിലെ തിമിരം ആണ്. പല ഘടകങ്ങളും മഞ്ഞനിറത്തിന് കാരണമാകുമെങ്കിലും, അൾട്രാവയലറ്റ് വെളിച്ചത്തോടുള്ള ആജീവനാന്ത എക്സ്പോഷറും വാർദ്ധക്യവും ആണ് രണ്ട് പ്രധാന കാരണങ്ങൾ.
  • പ്രായമാകുന്നതിനനുസരിച്ച് ലെൻസ് കുറവ് വഴക്കമുള്ളതായിത്തീരുന്നു, ഇത് അടുത്ത് കാഴ്ച കുറയ്ക്കുന്നു (വെള്ളെഴുത്ത്).
  • ആരോഗ്യമുള്ള മുതിർന്നയാളിൻറെ പ്യൂപ്പിളിന് സാധാരണയായി 2–8മില്ലിമീറ്റർ വലുപ്പമുണ്ട്, പ്രായത്തിനനുസരിച്ച് ഈ പരിധി ചെറുതായിത്തീരുന്നു.
  • പ്രായത്തിനനുസരിച്ച് ശരാശരി കണ്ണുനീർ ഉത്പാദനം കുറയുന്നു. എന്നിരുന്നാലും, പ്രായവുമായി ബന്ധപ്പെട്ട നിരവധി അവസ്ഥകൾ, അമിതമായി കണ്ണുനീരുണ്ടാകുന്നതിനും കാരണമാകും.

മറ്റ് പ്രവർത്തനങ്ങൾ

ബാലൻസ്

പ്രൊപ്രിയോസെപ്ഷൻ, വെസ്റ്റിബുലാർ ഫംഗ്ഷൻ എന്നിവയ്‌ക്കൊപ്പം, ബാലൻസ് നിയന്ത്രിക്കാനും നേരെയുള്ള നിൽപ്പ് നിലനിർത്താനുമുള്ള ഒരു വ്യക്തിയുടെ കഴിവിൽ വിഷ്വൽ സിസ്റ്റം ഒരു പ്രധാന പങ്ക് വഹിക്കുന്നു. ഈ മൂന്ന് വ്യവസ്ഥകളും വേർതിരിച്ച് പരീക്ഷിക്കുമ്പോൾ, മറ്റ് രണ്ട് ആന്തരിക സംവിധാനങ്ങളേക്കാളും വലിയ പങ്ക് വഹിക്കുന്നത് കാഴ്ചയാണ് കണ്ടെത്തി.[43] ഒരു വ്യക്തിക്ക് അവന്റെ പരിസ്ഥിതി കാണാൻ കഴിയുന്ന വ്യക്തത, ഒപ്പം വിഷ്വൽ ഫീൽഡിന്റെ വലുപ്പം, പ്രകാശത്തിനോടും തിളക്കത്തിനോടും ഉള്ള വ്യക്തിയുടെ സംവേദനക്ഷമത, ഡെപ്ത് പെർസെപ്ഷൻ എന്നിവ ശരീരത്തിന്റെ ചലനത്തെക്കുറിച്ച് തലച്ചോറിന് ഒരു ഫീഡ്‌ബാക്ക് ലൂപ്പ് നൽകുന്നതിൽ പ്രധാന പങ്ക് വഹിക്കുന്നു. പരിസ്ഥിതിയിലൂടെ. ഈ വേരിയബിളുകളിൽ ഏതിനെയെങ്കിലും ബാധിക്കുന്ന എന്തും സന്തുലിതാവസ്ഥയെയും ബാലൻസ് നില നിലനിർത്തുന്നതിനെയും പ്രതികൂലമായി ബാധിക്കും.[44] ചെറുപ്പക്കാരെയും പ്രായമായവരെയും താരതമ്യപ്പെടുത്തിയുള്ള പഠനങ്ങളിൽ ഇത് കണ്ടിട്ടുണ്ട്,[45] അതുപോലെ ഗ്ലോക്കോമ രോഗികളിൽ,[46] തിമിര രോഗികൾക്ക് ശസ്ത്രക്രിയയ്ക്ക് മുമ്പും ശേഷവും,[47] എന്നിങ്ങനെ സുരക്ഷാ കണ്ണടകൾ ധരിക്കുന്നതുപോലുള്ള ലളിതമായ കാര്യങ്ങളിൽ പോലും ഈ ഫലം കണ്ടിട്ടുണ്ട്.[48] മോണോക്യുലർ വിഷൻ (ഒറ്റക്കണ്ണുകൊണ്ടുള്ള കാഴ്ച) ബാലൻസിനെ പ്രതികൂലമായി ബാധിക്കുന്നതായി കാണിച്ചിരിക്കുന്നു, ഇത് മുമ്പ് പരാമർശിച്ച തിമിരം, ഗ്ലോക്കോമ പഠനങ്ങളിലും, അതുപോലെ ആരോഗ്യമുള്ള കുട്ടികളിലും മുതിർന്നവരിലും ഒക്കെ കണ്ടിട്ടുണ്ട്.[49]

ക്ലിനിക്കൽ പ്രാധാന്യം

ചുറ്റുമുള്ള അന്തരീക്ഷം മനസ്സിലാക്കുന്നതിനും പ്രോസസ്സ് ചെയ്യുന്നതിനും മനസ്സിലാക്കുന്നതിനും വിഷ്വൽ സിസ്റ്റത്തിന്റെ ശരിയായ പ്രവർത്തനം ആവശ്യമാണ്. ലൈറ്റ് ഇൻപുട്ട് സെൻസിംഗ്, പ്രോസസ്സിംഗ്, മനസിലാക്കൽ എന്നിവയിലെ ബുദ്ധിമുട്ട് ഒരു വ്യക്തിയുടെ ദൈനംദിന ജോലികളിലും, ആശയവിനിമയം നടത്താനും പഠിക്കാനും ഒക്കെയുള്ള കഴിവിനെ പ്രതികൂലമായി ബാധിക്കുന്നു.

കുട്ടികളിൽ, പ്രധാന സാമൂഹിക, അക്കാദമിക്, സ്പീച്ച് / ഭാഷാ വികസന നാഴികക്കല്ലുകൾ നിറവേറ്റുന്നുവെന്ന് ഉറപ്പുവരുത്തുന്നതിനുള്ള പ്രധാന ഘടകമാണ് വിഷ്വൽ സിസ്റ്റം ഫംഗ്ഷന്റെ ആദ്യകാല രോഗനിർണയവും ചികിത്സയും.

തിമിരം ലെൻസിൻറെ സുതാര്യത നഷ്ടപ്പെടുത്തി കാഴ്ച ശക്തി കുറയ്ക്കുന്ന അസുഖമാണ്. ഇത് സാധാരണയായി വാർദ്ധക്യം, രോഗം അല്ലെങ്കിൽ മരുന്ന് ഉപയോഗം എന്നിവയുടെ ഫലമായി ഉണ്ടാകാം.

പ്രായാധിക്യത്താൽ സമീപ കാഴ്ച കുറഞ്ഞു വരുന്ന ഒരു അസുഖമാണ് വെള്ളെഴുത്ത്.

വിഷ്വൽ ഫീൽഡിന്റെ അറ്റത്ത് നിന്ന് ആരംഭിച്ച് അകത്തേക്ക് പുരോഗമിക്കുന്ന ഒരു തരം അന്ധതയാണ് ഗ്ലോക്കോമ മൂലം ഉണ്ടാകുന്നത്. ഇത് തുരങ്ക ദർശനത്തിന് കാരണമായേക്കാം. ഗ്ലോക്കോമയിൽ കണ്ണിലെ അക്വസ് ദ്രാവകത്തിൻറെ അളവ് കൂടുന്നത് മൂലം കണ്ണിലെ മർദ്ദം വർദ്ദിച്ച് ഒപ്റ്റിക് നാഡിയെ ബാധിക്കുന്നു.[50]

പ്രൈമറി വിഷ്വൽ കോർട്ടക്സിലെ പരിക്ക് മൂലം വിഷ്വൽ ഫീൽഡിൽ സൃഷ്ടിക്കുന്ന ഒരു തരം അന്ധതയാണ് സ്കോട്ടോമ.

പ്രൈമറിവിഷ്വൽ കോർട്ടക്സിലെ പരിക്ക് മൂലം വിഷ്വൽ ഫീൽഡിന്റെ ഒരു പകുതി കാണാൻ കഴിയാത്ത തരം അന്ധതയാണ് ഹോമോണിമസ് ഹെമിയാനോപിയ .

പ്രൈമറി വിഷ്വൽ കോർട്ടക്സിലെ ഭാഗിക പരിക്ക് മൂലം വിഷ്വൽ ഫീൽഡിന്റെ നാലിൽ ഒരു ഭാഗം മാത്രം കാണാൻ കഴിയാത്ത അന്ധതയാണ് ക്വാഡ്രന്റാനോപിയ. ഇത് ഒരു പരിധി വരെ ഹോമോണിമസ് ഹെമിയാനോപിയയുമായി സാമ്യമുള്ളതാണ്.

മുഖങ്ങളെ തിരിച്ചറിയാനുള്ള കഴിവില്ലായ്മ സൃഷ്ടിക്കുന്ന മസ്തിഷ്ക വൈകല്യമാണ് മുഖാന്ധത അഥവാ പ്രോസോപാഗ്നോസിയ. ഫ്യൂസിഫോം ഫെയ്സ് ഏരിയയ്ക്ക് (എഫ്എഫ്എ) കേടുപാടുകൾ സംഭവിച്ചതിന് ശേഷമാണ് പലപ്പോഴും ഈ തകരാറുണ്ടാകുന്നത്.

വിഷ്വൽ അഗ്നോസിയ, അല്ലെങ്കിൽ വിഷ്വൽ-ഫോം അഗ്നോസിയ, മസ്തിഷ്ക വൈകല്യമാണ്, അത് വസ്തുക്കളെ തിരിച്ചറിയാനുള്ള കഴിവില്ലായ്മ ഉണ്ടാക്കുന്നു. വെൻട്രൽ സ്ട്രീമിന് കേടുപാടുകൾ സംഭവിച്ചതിന് ശേഷമാണ് പലപ്പോഴും ഈ തകരാറുണ്ടാകുന്നത്.

മറ്റ് മൃഗങ്ങൾ

വ്യത്യസ്ത ജീവി വർഗ്ഗങ്ങൾക്ക്, ലൈറ്റ് സ്പെക്ട്രത്തിന്റെ വിവിധ ഭാഗങ്ങൾ കാണാൻ കഴിയും; ഉദാഹരണത്തിന്, തേനീച്ചയ്ക്ക് അൾട്രാവയലറ്റ് കാണാൻ കഴിയും,[51] കുഴി മണ്ഡലികൾക്ക് ഇൻഫ്രാറെഡ് വികിരണങ്ങളോട് സംവേദനക്ഷമമായ അവയവങ്ങൾ ഉപയോഗിച്ച് ഇരയെ കൃത്യമായി ലക്ഷ്യമിടാൻ കഴിയും. [52] മാൻറിസ് ചെമ്മീനിൽ ഏതൊരു ജീവിവർഗത്തിലും ഏറ്റവും സങ്കീർണ്ണമായ വിഷ്വൽ സിസ്റ്റം ഉണ്ട്. മാന്റിസ് ചെമ്മീന്റെ കണ്ണിന് 16 കളർ റിസപ്റ്റീവ് കോണുകൾ ഉണ്ട്, അതേസമയം മനുഷ്യർക്ക് മൂന്ന് മാത്രമേയുള്ളൂ. ഇണകളെ തിരഞ്ഞെടുക്കുന്നതിനും വേട്ടക്കാരെ ഒഴിവാക്കുന്നതിനും ഇരയെ കണ്ടെത്തുന്നതിനുമുള്ള ഒരു സംവിധാനമായി വർ‌ണ്ണങ്ങളുടെ വർദ്ധിച്ച ശ്രേണി‌ മനസ്സിലാക്കാൻ‌ കോണുകളുടെ വൈവിധ്യമാർ‌ഗ്ഗം അവരെ പ്രാപ്‌തമാക്കുന്നു.[53] ആകർഷകമായ വിഷ്വൽ സിസ്റ്റം സ്വോർഡ് ഫിഷിനുണ്ട്. 2000 അടി താഴ്ചയിൽ ഇരയെ കണ്ടെത്തുന്നതിന് ഒരു സ്വോഡ് ഫിഷിന്റെ കണ്ണിന് താപം സൃഷ്ടിക്കാൻ കഴിയും.[54] മൾട്ടി-സെല്ലുലാർ കണ്ണിന്റെ ലെൻസിനും റെറ്റിനയ്ക്കും സമാനമായ ഘടനകളുള്ള ചില ഒറ്റ-സൂക്ഷ്മജീവികളായ വാർനോയിഡ് ഡൈനോഫ്ലാഗെലേറ്റുകൾക്ക് കണ്ണ് പോലുള്ള ഓസെല്ലോയിഡുകൾ ഉണ്ട്.[55] തേരട്ടക്കക്ക അകാന്തോപ്ലുറ ഗ്രാനുലറ്റയുടെ കവചിത ഷെൽ, ചിത്രങ്ങൾ സൃഷ്ടിക്കാൻ കഴിയുന്ന ഒസെല്ലി എന്ന് പേരുള്ള നൂറുകണക്കിന് അരഗോണൈറ്റ് ക്രിസ്റ്റലിൻ കണ്ണുകളാൽ മൂടപ്പെട്ടിരിക്കുന്നു.[56]

ഗ്രേറ്റ് ബാരിയർ റീഫിന്റെ കടൽത്തീരത്ത് ട്യൂബുകളിൽ വസിക്കുന്ന അക്രോമെഗലോമ ഇന്ററപ്റ്റം പോലുള്ള നിരവധി ഫാൻ വിരകളുടെ സ്പർശനികളിൽ കോമ്പോണ്ട് കണ്ണുകളുണ്ട്, അവ അതിക്രമിച്ചുകയറുന്ന ചലനം കണ്ടെത്താൻ ഉപയോഗിക്കുന്നു. ചലനം കണ്ടെത്തിയാൽ ഫാൻ വിരകൾ അവയുടെ കൂടാരങ്ങൾ വേഗത്തിൽ പിൻവലിക്കും. ബോക്കും സഹപ്രവർത്തകരും, ഫാൻ വിരയുടെ കണ്ണുകളിൽ ഓപ്‌സിനുകളും ജി പ്രോട്ടീനുകളും കണ്ടെത്തിയിട്ടുണ്ട്, അവ മുമ്പ് ചില അകശേരുക്കളുടെ തലച്ചോറിലെ ലളിതമായ സിലിയറി ഫോട്ടോറിസെപ്റ്ററുകളിൽ മാത്രമേ കണ്ടിട്ടുള്ളൂ.[57]

ഉയർന്ന പ്രൈമേറ്റ് ഓൾഡ് വേൾഡ് (ആഫ്രിക്കൻ) ആൾ കുരങ്ങുകൾക്കും കുരങ്ങുകൾക്കും (മക്കാക്കുകൾ, ആൾകുരങ്ങുകൾ, ഒറംഗുട്ടാനുകൾ) മനുഷ്യർക്കുള്ള പോലെ ഒരേ തരത്തിലുള്ള മൂന്ന്-കോൺ ഫോട്ടോറിസെപ്റ്റർ കളർ വിഷൻ ഉണ്ട്, അതേസമയം താഴ്ന്ന പ്രൈമേറ്റ് ന്യൂ വേൾഡ് (തെക്കേ അമേരിക്കൻ) കുരങ്ങുകൾക്ക് (സ്പൈഡർ മങ്കി, സ്ക്വിറൽ മങ്കി, കപുചിൻ മങ്കി) രണ്ട്-കോൺ ഫോട്ടോറിസെപ്റ്റർ തരത്തിലുള്ള വർണ്ണ ദർശനം ആണ് ഉള്ളത്.[58]

ചരിത്രം

പത്തൊൻപതാം നൂറ്റാണ്ടിന്റെ രണ്ടാം പകുതിയിൽ, ന്യൂറോൺ സിദ്ധാന്തം, മസ്തിഷ്ക പ്രാദേശികവൽക്കരണം എന്നിങ്ങനെ നാഡീവ്യവസ്ഥയുടെ പല രൂപങ്ങളും തിരിച്ചറിഞ്ഞു, ഇത് ന്യൂറോൺ നാഡീവ്യവസ്ഥയുടെ അടിസ്ഥാന യൂണിറ്റും തലച്ചോറിലെ പ്രവർത്തനപരമായ പ്രാദേശികവൽക്കരണവുമാണ്. ഇവ വളർന്നുവരുന്ന ന്യൂറോ സയൻസിന്റെ തത്വങ്ങളായി മാറുകയും വിഷ്വൽ സിസ്റ്റത്തെക്കുറിച്ച് കൂടുതൽ മനസ്സിലാക്കാൻ സഹായിക്കുകയും ചെയ്യും.

സ്പർശനം (സോമാറ്റോസെൻസറി കോർട്ടെക്സ്), ചലനം (മോട്ടോർ കോർട്ടെക്സ്), ദർശനം (വിഷ്വൽ കോർട്ടെക്സ്) തുടങ്ങിയ ശേഷികൾക്ക് അനുസരിച്ച് സെറിബ്രൽ കോർട്ടെക്സിനെ വ്യത്യസ്തമായ കോർട്ടെക്സുകളായി തിരിക്കുന്ന ആശയം 1810 ൽ ഫ്രാൻസ് ജോസഫ് ഗാൽ ആദ്യമായി നിർദ്ദേശിച്ചു.[59] പത്തൊൻപതാം നൂറ്റാണ്ടിലുടനീളം തലച്ചോറിന്റെ (പ്രത്യേകിച്ചും, സെറിബ്രൽ കോർട്ടക്സിന്റെ) വ്യത്യസ്തമായ മേഖലകൾക്കുള്ള തെളിവുകൾ, അതായത് ഭാഷാ കേന്ദ്രം പോൾ ബ്രോക്കയും (1861), മോട്ടോർ കോർട്ടെക്സ് ഗുസ്താവ് ഫ്രിറ്റ്ഷും എഡ്വാർഡ് ഹിറ്റ്സിഗും (1871) കണ്ടെത്തിയിട്ടുണ്ട്.[60] തലച്ചോറിന്റെ ചില ഭാഗങ്ങളിൽ നിന്നുള്ള കേടുപാടുകളുടെ ഫലമായുണ്ടാകുന്ന പ്രശ്നങ്ങൾ അടിസ്ഥാനമാക്കി, ഡേവിഡ് ഫെറിയർ 1876-ൽ വിഷ്വൽ ഫംഗ്ഷൻ നിയന്ത്രിക്കുന്നത് തലച്ചോറിന്റെ പരിയേറ്റൽ ലോബിൽ ആയിരിക്കാമെന്ന് നിർദ്ദേശിച്ചു. 1881-ൽ ഹെർമൻ മങ്ക്, ആൻസിപിറ്റൽ ലോബിൽ കാഴ്ചയുടെ സ്ഥാനം, പ്രൈമറി വിഷ്വൽ കോർട്ടെക്സ് കൂടുതൽ കൃത്യമായി നിർണ്ണയിച്ചു.

2014-ൽ "Understanding vision: theory, models, and data" എന്ന പുസ്തകത്തിൽ[39] ന്യൂറോബയോളജിക്കൽ ഡാറ്റയെയും വിഷ്വൽ ബിഹേവിയറിനെയും സൈക്കോളജിക്കൽ ഡാറ്റയെയും സൈദ്ധാന്തിക തത്വങ്ങളിലൂടെയും കമ്പ്യൂട്ടേഷണൽ മോഡലുകളിലൂടെയും എങ്ങനെ ബന്ധിപ്പിക്കുമെന്ന് വിശദീകരിക്കുന്നു.

പരാമർശങ്ങൾ

കൂടുതൽ വായനയ്ക്ക്

ബാഹ്യ ലിങ്കുകൾ

ഫലകം:Sensory system

"https:https://www.search.com.vn/wiki/index.php?lang=ml&q=വിഷ്വൽ_സിസ്റ്റം&oldid=3780201" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്
🔥 Top keywords: മലയാളംമലയാള മനോരമ ദിനപ്പത്രംപ്രധാന താൾകൊൽക്കത്ത നൈറ്റ് റൈഡേർസ്കേരളത്തിലെ ലോകസഭാമണ്ഡലങ്ങൾറിയൽ മാഡ്രിഡ് സി.എഫ്പ്രത്യേകം:അന്വേഷണംമലയാളം അക്ഷരമാലആടുജീവിതംമാഞ്ചസ്റ്റർ സിറ്റി എഫ്.സി.വിഷുരാമനവമികുമാരനാശാൻമനോജ് കെ. ജയൻ2023-ൽ പുറത്തിറങ്ങിയ മലയാളചലച്ചിത്രങ്ങളുടെ പട്ടികഇന്ത്യയിലെ സംസ്ഥാനങ്ങളും കേന്ദ്രഭരണപ്രദേശങ്ങളുംതൃശൂർ പൂരംആടുജീവിതം (ചലച്ചിത്രം)തുഞ്ചത്തെഴുത്തച്ഛൻപ്രേമലുകാലാവസ്ഥമമിത ബൈജുലോക ബാങ്ക്ന്യൂനമർദ്ദംകേരളംകേരളത്തിലെ തുമ്പികൾവൈക്കം മുഹമ്മദ് ബഷീർലോകാരോഗ്യദിനംസന്ദീപ് വാര്യർപാരീസ് സെന്റ് ജെർമെയ്ൻ എഫ്.സി.നസ്ലെൻ കെ. ഗഫൂർസുൽത്താൻ ബത്തേരിലോക്‌സഭഇന്ത്യയുടെ ഭരണഘടനഇല്യൂമിനേറ്റിലൈംഗികബന്ധംമഴഇന്ത്യൻ തിരഞ്ഞെടുപ്പ് കമ്മീഷൻഎഫ്. സി. ബയേൺ മ്യൂണിക്ക്