Призма (геометрия)

При́зма (-угольная) (лат. prisma от др.-греч. πρίσμα «нечто отпиленное») — многогранник, две грани которого являются конгруэнтными (равными) многоугольниками (-угольниками), лежащими в параллельных плоскостях, а остальные граней — параллелограммы, имеющие общие стороны с этими многоугольниками.

Множество однородных призм
Шестиугольная призма
Шестиугольная призма
ТипОднородный многогранник
Свойствавершинно транзитивный
выпуклый многогранник
Комбинаторика
Элементы
ГраниВсего - 2+n
2{n}
n {4}
Конфигурация вершины4.4.n
Двойственный многогранникБипирамида
Классификация
Символ Шлефли{n}×{} or t{2, n}
Диаграмма Дынкинаnode_12node_1nnode
Группа симметрииDnh[en], [n,2], (*n22), порядок 4n
Логотип Викисклада Медиафайлы на Викискладе

Эти параллелограммы называются боковыми гранями призмы, а оставшиеся два многоугольника называются её основаниями.

Многоугольник, лежащий в основании, определяет название призмы: треугольник — треугольная призма, четырёхугольник — четырёхугольная; пятиугольник — пятиугольная (пентапризма) и т. д.

Призма является частным случаем цилиндра в общем смысле (некругового).

Элементы призмы

НазваниеОпределениеОбозначения на чертежеЧертеж
ОснованияДве грани, являющиеся конгруэнтными многоугольниками, лежащими в параллельных друг другу плоскостях. ,
Призма
Боковые граниВсе грани, кроме оснований. Каждая боковая грань обязательно является параллелограммом. , , , ,
Боковая поверхностьОбъединение боковых граней.
Полная поверхностьОбъединение оснований и боковой поверхности.
Боковые рёбраОбщие стороны боковых граней. , , , ,
ВысотаОтрезок, соединяющий плоскости, в которых лежат основания призмы и перпендикулярный этим плоскостям.
ДиагональОтрезок, соединяющий две вершины призмы, не принадлежащие одной грани.
Диагональная плоскостьПлоскость, проходящая через боковое ребро призмы и диагональ основания.
Диагональное сечениеПересечение призмы и диагональной плоскости. В сечении образуется параллелограмм, в том числе его частные случаи — ромб, прямоугольник, квадрат.
Перпендикулярное (ортогональное) сечениеПересечение призмы и плоскости, перпендикулярной её боковому ребру.

Свойства призмы

  • Основания призмы являются равными многоугольниками.
  • Боковые грани призмы являются параллелограммами.
  • Боковые рёбра призмы параллельны и равны.
  • Объём призмы равен произведению её высоты на площадь основания:
  • Объём призмы с правильным n-угольным основанием равен
(здесь s — длина стороны многоугольника).
  • Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания.
  • Площадь боковой поверхности произвольной призмы , где  — периметр перпендикулярного сечения,  — длина бокового ребра.
  • Площадь боковой поверхности прямой призмы , где  — периметр основания призмы,  — высота призмы.
  • Площадь боковой поверхности прямой призмы с правильным -угольным основанием равна
  • Перпендикулярное сечение перпендикулярно ко всем боковым рёбрам призмы.
  • Углы перпендикулярного сечения — это линейные углы двугранных углов при соответствующих боковых рёбрах.
  • Перпендикулярное сечение перпендикулярно ко всем боковым граням.
  • Двойственным многогранником прямой призмы является бипирамида.

Виды призм

Призма, основанием которой является параллелограмм, называется параллелепипедом.

Прямая призма — это призма, у которой боковые рёбра перпендикулярны плоскости основания, откуда следует, что все боковые грани являются прямоугольниками[1].

Прямая прямоугольная призма называется также прямоугольным параллелепипедом. Символ Шлефли такой призмы — { }×{ }×{ }.

Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники.

Правильная призма, боковые грани которой являются квадратами (высота которой равна стороне основания), является полуправильным многогранником. Символ Шлефли такой призмы — t{2,p}.
Усечённая треугольная призма
Прямые призмы с правильными основаниями и одинаковыми длинами рёбер образуют одну из двух бесконечных последовательностей полуправильных многогранников (другую последовательность образуют антипризмы).

Наклонными называются призмы, рёбра которых не перпендикулярны плоскости основания.

Усечённая призма — многогранник, который отсекается от призмы непараллельной основанию плоскостью[2]. Усечённая призма сама призмой не является.

Диаграммы Шлегеля


Треугольная
призма

4-угольная
призма

5-угольная
призма

6-угольная
призма

7-угольная
призма

8-угольная
призма

Симметрия

Группой симметрии прямой -угольной призмы с правильным основанием является группа Dnh порядка 4n, за исключением куба, который имеет группу симметрии Oh[en] порядка 48, содержащую три версии D4h в качестве подгрупп. Группой вращений[en] является Dn порядка 2n, за исключением случая куба, для которого группой вращений является группа O[en] порядка 24, имеющая три версии D4 в качестве подгрупп.

Группа симметрии Dnh включает центральную симметрию в том и только в том случае, когда n чётно.

Обобщения

Призматические многогранники

Призматический многогранник — это обобщение призмы в пространствах размерности 4 и выше. -мерный призматический многогранник конструируется из двух (n − 1)-мерных многогранников, перенесённых в следующую размерность.

Элементы призматического n-мерного многогранника удваиваются из элементов (n − 1)-мерного многогранника, затем создаются новые элементы следующего уровня.

Возьмём -мерный многогранник с элементами (i-мерная грань, i = 0, …, n). Призматический ( )-мерный многогранник будет иметь элементов размерности i (при , ).

По размерностям:

  • Берём многоугольник с вершинами и сторонами. Получим призму с 2 вершинами, 3 рёбрами и гранями.
  • Берём многогранник с v вершинами, e рёбрами и f гранями. Получаем (4-мерную) призму с 2v вершинами, рёбрами, гранями и ячейками.
  • Берём 4-мерный многогранник с v вершинами, e рёбрами, f гранями и c ячейками. Получаем (5-мерную) призму с 2v вершинами, рёбрами, (2-мерными) гранями, ячейками и гиперячейками.

Однородные призматические многогранники

Правильный -многогранник, представленный символом Шлефли {p, q, ..., t}, может образовать однородный призматический многогранник размерности (n + 1), представленный прямым произведением двух символов Шлефли: {p, q, ..., t}×{}.

По размерностям:

  • Призма из 0-мерного многогранника — это отрезок, представленный пустым символом Шлефли {}.
  • Призма из 1-мерного многогранника — это прямоугольник, полученный из двух отрезков. Эта призма представляется как произведение символов Шлефли {}×{}. Если призма является квадратом, запись можно сократить: {}×{} = {4}.
    • Пример: Квадрат, {}×{}, два параллельных отрезка, соединённые двумя другими отрезками, сторонами.
  • многоугольная призма — это 3-мерная призма, полученная из двух многоугольников (один получен параллельным переносом другого), которые связаны прямоугольниками. Из правильного многоугольника {p} можно получить однородную n-угольную призму, представленную произведением {p}×{}. Если p = 4, призма становится кубом: {4}×{} = {4, 3}.
  • 4-мерная призма, полученная из двух многогранников (один получен параллельным переносом другого), со связывающими 3-мерными призматическими ячейками. Из правильного многогранника {pq} можно получить однородную 4-мерную призму, представленную произведением {pq}×{}. Если многогранник является кубом и стороны призмы тоже кубы, призма превращается в тессеракт: {4, 3}×{} = {4, 3, 3}.
    • Пример: додекаэдральная призма[en], {5, 3}×{}, два параллельных додекаэдра, соединённых 12 пятиугольными призмами (сторонами).

Призматические многогранники более высоких размерностей также существуют как прямые произведения двух любых многогранников. Размерность призматического многогранника равна произведению размерностей элементов произведения. Первый пример такого произведения существует в 4-мерном пространстве и называется дуопризмами, которые получаются произведением двух многоугольников. Правильные дуопризмы представляются символом {p}×{q}.

Семейство правильных призм
Многоугольник
Мозаика
Конфигурация3.4.44.4.45.4.46.4.47.4.48.4.49.4.410.4.411.4.412.4.417.4.4∞.4.4

Скрученная призма и антипризма

Скрученная призма — это невыпуклый призматический многогранник, полученный из однородной q-угольной путём деления боковых граней диагональю и вращения верхнего основания, обычно на угол радиан ( градусов), в направлении, при котором стороны становятся вогнутыми[3][4].

Скрученная призма не может быть разбита на тетраэдры без введения новых вершин. Простейший пример с треугольными основаниями называется многогранником Шёнхардта.

Скрученная призма топологически идентична антипризме, но имеет половину симметрий: Dn, [n,2]+, порядка 2n. Эту призму можно рассматривать как выпуклую антипризму, у которой удалены тетраэдры между парами треугольников.

ТреугольнаяЧетырёхугольные12-угольная

Многогранник Шёнхардта

Скрученная квадратная антипризма

Квадратная антипризма

Скрученная двенадцатиугольная антипризма

Связанные многогранники и мозаики

Семейство правильных призм
Многоугольник
Мозаика
Конфигурация3.4.44.4.45.4.46.4.47.4.48.4.49.4.410.4.411.4.412.4.417.4.4∞.4.4
Семейство выпуклых куполов
n23456
Название{2} || t{2}{3} || t{3}{4} || t{4}{5} || t{5}{6} || t{6}
Купол
Диагональный купол

Трёхскатный купол

Четырёхскатный купол

Пятискатный купол

Шестискатный купол
(плоский)
Связанные
однородные
многогранники
Треугольная призма
Кубооктаэдр
Ромбокубо-
октаэдр

Ромбоикосо-
додекаэдр

Ромботри-
шестиугольная
мозаика
[en]

Симметрии

Призмы топологически являются частью последовательности однородных усечённых многогранников с конфигурациями вершин (3.2n.2n) и [n,3].

Призмы топологически являются частью последовательности скошенных многогранников с вершинными фигурами (3.4.n.4) и мозаик на гиперболической плоскости. Эти вершинно транзитивные фигуры имеют (*n32) зеркальную симметрию[en].

Соединение многогранников

Существует 4 однородных соединения треугольных призм:

Соединение четырёх треугольных призм[en], соединение восьми треугольных призм[en], соединение десяти треугольных призм[en], соединение двенадцати треугольных призм[en].

Соты

Существует 9 однородных сот, включающих ячейки в виде треугольных призм:

Связанные многогранники

Треугольная призма является первым многогранником в ряду полуправильных многогранников[en]. Каждый последующий однородный многогранник содержит в качестве вершинной фигуры предыдущий многогранник. Торольд Госсет[en] идентифицировал эту серию в 1900 как содержащую все фасеты правильных многомерных многогранников, все симплексы и ортоплексы (правильные треугольники и квадраты для случая треугольных призм). В нотации Коксетера треугольная призма задаётся символом −121.

Четырёхмерное пространство

Треугольная призма служит ячейкой во множестве четырёхмерных однородных 4-мерных многогранников[en], включая:

тетраэдральная призма[en]
октаэдральная призма[en]
кубооктаэдральная призма[en]
икосаэдральная призма[en]
икосододекаэдральная призма[en]
усечённая додекаэдральная призма[en]
ромбоикоси-
додекаэдральная призма
[en]
ромбокуб-
октаэдральная призма
[en]
усечённая кубическая призма[en]
плосконосая додекаэдральная призма[en]
n-угольная антипризматическая призма[en]
скошенный 5-ячейник[en]
скошено-усечённый 5-ячейник[en]
обструганный 5-ячейник[en]
струг-усечённый 5-ячейник[en]
скошенный тессеракт[en]
скошено-усечённый тессеракт[en]
обструганный тессеракт[en]
струг-усечённый тессеракт[en]
скошенный 24-ячейник[en]
скошено-усечённый 24-ячейник[en]
обструганный 24-ячейник[en]
струг-усечённый 24-ячейник[en]
скошенный 120-ячейник[en]
скошено-усечённый 120-ячейник[en]
обструганный 120-ячейник[en]
струг-усечённый 120-ячейник[en]

См. также

Примечания

Литература

Ссылки

🔥 Top keywords: Заглавная страницаЯндексДуров, Павел ВалерьевичСлужебная:ПоискYouTubeЛунин, Андрей АлексеевичПодносова, Ирина ЛеонидовнаВКонтактеФоллаут (телесериал)WildberriesTelegramРеал Мадрид (футбольный клуб)Богуславская, Зоя БорисовнаДуров, Валерий СемёновичРоссияXVideosСписок умерших в 2024 годуЧикатило, Андрей РомановичFallout (серия игр)Список игроков НХЛ, забросивших 500 и более шайбПопков, Михаил ВикторовичOzon17 апреляИльин, Иван АлександровичMail.ruСёгун (мини-сериал, 2024)Слово пацана. Кровь на асфальтеПутин, Владимир ВладимировичЛига чемпионов УЕФАГагарина, Елена ЮрьевнаБишимбаев, Куандык ВалихановичЛига чемпионов УЕФА 2023/2024Турнир претендентов по шахматам 2024Манчестер СитиMGM-140 ATACMSРоссийский миротворческий контингент в Нагорном КарабахеЗагоризонтный радиолокаторПинапВодительское удостоверение в Российской Федерации