Flerovium

chemical element with atomic number 114

Flerovium is a synthetic chemical element also known as eka-lead. It has the symbol Fl and has the atomic number 114. It is a radioactive superheavy element.

Flerovium, 00Fl
Flerovium
Pronunciation
Mass number[289] (unconfirmed: 290)
Flerovium in the periodic table
HydrogenHelium
LithiumBerylliumBoronCarbonNitrogenOxygenFluorineNeon
SodiumMagnesiumAluminiumSiliconPhosphorusSulfurChlorineArgon
PotassiumCalciumScandiumTitaniumVanadiumChromiumManganeseIronCobaltNickelCopperZincGalliumGermaniumArsenicSeleniumBromineKrypton
RubidiumStrontiumYttriumZirconiumNiobiumMolybdenumTechnetiumRutheniumRhodiumPalladiumSilverCadmiumIndiumTinAntimonyTelluriumIodineXenon
CaesiumBariumLanthanumCeriumPraseodymiumNeodymiumPromethiumSamariumEuropiumGadoliniumTerbiumDysprosiumHolmiumErbiumThuliumYtterbiumLutetiumHafniumTantalumTungstenRheniumOsmiumIridiumPlatinumGoldMercury (element)ThalliumLeadBismuthPoloniumAstatineRadon
FranciumRadiumActiniumThoriumProtactiniumUraniumNeptuniumPlutoniumAmericiumCuriumBerkeliumCaliforniumEinsteiniumFermiumMendeleviumNobeliumLawrenciumRutherfordiumDubniumSeaborgiumBohriumHassiumMeitneriumDarmstadtiumRoentgeniumCoperniciumNihoniumFleroviumMoscoviumLivermoriumTennessineOganesson
Pb

Fl

(Uho)
nihoniumfleroviummoscovium
Groupgroup 14 (carbon group)
Periodperiod 7
Block  p-block
Electron configuration[Rn] 5f14 6d10 7s2 7p2 (predicted)[3] (predicted)
Electrons per shell2, 8, 18, 32, 32, 18, 4 (predicted)
Physical properties
Phase at STPgas (predicted)[3]
Boiling point~ 210 K ​(~ −60 °C, ​~ −80 °F) [4][5]
Density when liquid (at m.p.)14 g/cm3 (predicted)[6]
Heat of vaporization38 kJ/mol (predicted)[6]
Atomic properties
Oxidation states(0), (+1), (+2), (+4), (+6) (predicted)[3][7][8]
Ionization energies
  • 1st: 832.2 kJ/mol (predicted)[9]
  • 2nd: 1600 kJ/mol (predicted)[6]
  • 3rd: 3370 kJ/mol (predicted)[6]
  • (more)
Atomic radiusempirical: 180 pm (predicted)[3][6]
Covalent radius171–177 pm (extrapolated)[10]
Other properties
Natural occurrencesynthetic
Crystal structureface-centered cubic (fcc)
Face-centred cubic crystal structure for flerovium

(predicted)[11]
CAS Number54085-16-4
History
Namingafter Flerov Laboratory of Nuclear Reactions (itself named after Georgy Flyorov)[12]
DiscoveryJoint Institute for Nuclear Research (JINR) and Lawrence Livermore National Laboratory (LLNL) (1999)
Isotopes of flerovium
Main isotopesDecay
abun­dancehalf-life (t1/2)modepro­duct
284Flsynth2.5 ms[13][14]SF
285Flsynth100 ms[15]α281Cn
286Flsynth105 ms[16]α55%282Cn
SF45%
287Flsynth360 ms[16]α283Cn
ε?[17]287Nh
288Flsynth660 msα284Cn
289Flsynth1.9 sα285Cn
290Flsynth19 s?[18][19]EC290Nh
α286Cn
 Category: Flerovium
| references

Flerovium does not exist in nature. It is made from a nuclear reaction between plutonium and calcium. The reaction that happens is a fusion reaction.

Uses

It currently has no use at the moment as it is being researched right now.

History

The discovery of Flerovium in December 1998 was reported in January 1999 by scientists at the Joint Institute for Nuclear Research in Dubna, Russia.[21] The same team of scientists made another isotope of Fl three months later[22] and made it again in 2004 and 2006.

In 2004 in the Joint Institute for Nuclear Research checked it was made by another method. They found the final products of radioactive decay.

After its discovery, the "new" element was named ununquadium. The named changed on May 30th, 2012 to "flerovium". It was named for the Flerov Laboratory of Nuclear Reactions, which was named for Russian physicist Georgy Flyorov. The International Union of Pure and Applied Chemistry named it so.[23]

Chemical properties

Not enough Flerovium has been made to measure its physical or chemical properties. It is thought that it would be a soft, dense metal that changes colour in air. It may have a low melting point of about 200 °C.

Making it

Flerovium can be made by bombarding a plutonium-244 target with calcium-48 as a beam of ions.

298Fl - An undiscovered neutron-rich nucleus

According to the nuclear shell model, the undiscovered neutron-rich nucleus 298Fl may be a doubly magic nucleus, atop the shell closure at N=184.[24] It is predicted that this atom, amid the closed nuclear shells, expected to have longer half-lives for alpha decay and spontaneous fission. However using the fusion-evaporation method to produce this nuclide is impractical, since more neutron-rich starting materials with low proton numbers are unstable due to beta decay.

Estimates for half-lives for this atom range from a few minutes to several billion years. [source?]

References

Other websites