ภัยพิบัตินิวเคลียร์ฟูกูชิมะแห่งที่หนึ่ง

ภัยพิบัตินิวเคลียร์ในประเทศญี่ปุ่น ค.ศ. 2011

ภัยพิบัตินิวเคลียร์ฟุกุชิมะไดอิจิ (อังกฤษ: Fukushima Daiichi nuclear disaster) เป็นอุบัติเหตุด้านพลังงานที่เกิดขึ้นที่โรงไฟฟ้านิวเคลียร์ฟุกุชิมะไดอิจิ หมายเลข I ที่เป็นผลเบื้องต้นมาจากคลื่นสึนามิจากเหตุการณ์แผ่นดินไหวและคลื่นสึนามิในโทโฮะกุ พ.ศ. 2554 ที่เกิดขึ้นเมื่อวันที่ 11 มีนาคม ค.ศ. 2011[8] คลื่นสึนามิสร้างความเสียหายให้กับอุปกรณ์ และเมื่อปราศจากอุปกรณ์ดังกล่าวทำให้เครื่องปฏิกรณ์ 3 เครื่องในจำนวน 6 เครื่องขาดสารหล่อเย็น ความร้อนที่สูงอย่างยิ่งยวดทำให้เกิดการหลอมละลาย (อังกฤษ: nuclear meltdown) และปลดปล่อยสารกัมมันตรังสีออกมาเริ่มต้นเมื่อวันที่ 12 มีนาคม[9] ภัยพิบัติด้านนิวเคลียร์ครั้งนี้เป็นครั้งที่รุนแรงที่สุดนับตั้งแต่ภัยพิบัติเชอร์โนบิลเมื่อปี 1986 และเป็นอันดับที่สองรองจากเชอร์โนบิลที่ระดับ 7 ตามการจัดอันดับของมาตรวัดเหตุการณ์ทางนิวเคลียร์ระหว่างประเทศ (อังกฤษ: International Nuclear Event Scale) แต่มีความซับซ้อนกว่าเนื่องจากเครื่องปฏิกรณ์ทั้งหมดได้รับผลกระทบ[10] ได้มีการปลดปล่อยกัมมันตรังสี 10 ถึง 30% ของที่เชอร์โนบิล[11]

ภัยพิบัตินิวเคลียร์ฟูกูชิมะแห่งที่หนึ่ง
ภาพถ่ายดาวเทียมของอาคารคลุมเครื่องปฏิกรณ์ที่ได้รับความเสียหายสี่หลัง ถ่ายโดยใช้โดรนเมื่อวันที่ 20 มีนาคม ค.ศ.2011[1]
วันที่11 มีนาคม ค.ศ. 2011 (2011-03-11)
ที่ตั้งโอกูมะ, จังหวัดฟูกูชิมะ, ประเทศญี่ปุ่น
พิกัด37°25′17″N 141°1′57″E / 37.42139°N 141.03250°E / 37.42139; 141.03250
ผลINES ระดับ 7 (อุบัติเหตุรุนแรงที่สุด)[2][3]
เสียชีวิต1 คนเสียชีวิตเพราะมะเร็ง[4][5]
บาดเจ็บไม่ถึงตาย16 คนบาดเจ็บเพราะระเบิดไฮโดรเจน,[6]
คนงาน 2 คนถูกนำไปที่โรงพยาบาลเพราะถูกเผาโดยรังสี[7]

โรงไฟฟ้าประกอบด้วยเครื่องปฏิกรณ์แบบน้ำเดือด (อังกฤษ: boiling water reactor) 6 เครื่องแยกจากกัน ซึ่งแต่เดิมได้รับการออกแบบโดยบริษัท General Electric (GE) และได้รับการบำรุงรักษาโดยบริษัท Tokyo Electric Power Company (TEPCO) ขณะที่เกิดแผ่นดินไหวขึ้นนั้น เครื่องปฏิกรณ์ที่ 4 5 และ 6 ถูกดับเครื่อง (อังกฤษ: shut down) เพื่อเตรียมการเติมเชื้อเพลิง[12] อย่างไรก็ตาม บ่อเชื้อเพลิงใช้แล้ว (อังกฤษ: spent fuel pools) ของเครื่องปฏิกรณ์เหล่านั้นยังต้องการหล่อเย็น[13] ทันทีหลังจากการเกิดแผ่นดินไหว ไฟฟ้าที่ผลิตจากเครื่องปฏิกรณ์ที่ 1, 2 และ 3 เริ่มกระบวนการชัตดาวน์ปฏิกิริยาฟิชชั่นที่ยั่งยืนของพวกมันโดยอัตโนมัติ โดยการเสียบแท่งควบคุม (อังกฤษ: control rods) ตามขั้นตอนที่เรียกว่า SCRAM (Safety Control Rods Activator Mechanism)) ขบวนการนี้เป็น "การปลอดภัยไว้ก่อน" ที่ได้รับฉันทานุมัติตามกฎหมายซึ่งจะหยุด สภาวะการทำงานปกติ ของเครืองปฏิกรณ์ หลังจากนั้น เครื่องปฏิกรณ์จะไม่สามารถผลิตกระแสไฟฟ้าเพื่อขับปั้มสารหล่อเย็นของตัวมันเอง เครื่องกำเนิดไฟฟ้าฉุกเฉินจะเริ่มผลิตพลังงานไฟฟ้าตามที่ออกแบบไว้เพื่อจ่ายให้ระบบควบคุมอิเล็กทรอนิกส์และสารหล่อเย็น ทุกระบบทำงานได้ดีจนกระทั่งคลื่นสึนามิทำลายเครื่องกำเนิดไฟฟ้าสำหรับเครื่องปฏิกรณ์ตัวที่ 1 ถึง 5 เนื่องจากตำแหน่งที่ตั้งของมันอยู่บนพื้นที่ต่ำและไม่ได้ถูกบดจนแข็ง เครื่องกำเนิดไฟฟ้า 2 ตัวที่ระบายความร้อนให้กับเครื่องปฏิกรณ์ตัวที่ 6 ไม่ได้รับความเสียหายและมีความสามารถเพียงพอที่จะได้รับความกดดันให้ทำงานหล่อเย็นเครื่องปฏิกรณ์ตัวที่ 5 ที่อยู่ใกล้เคียงได้อีกด้วย ซึ่งเป็นการหันเหปัญหาความร้อนสูงเกินที่เครื่องปฏิกรณ์ตัวที่ 4 ที่กำลังทนทุกข์ทรมานอยู่[13]

คลื่นสีนามิที่ใหญ่ที่สุดมาถึงราว 50 นาทีหลังจากแผ่นดินไหวครั้งแรก ความสูงขนาด 13 ม. ของมันผ่านกำแพงกันคลื่นที่สูงเพียง 10 ม.เท่านั้น[8] ชั่วขณะที่เข้ากระทบถูกจับภาพไว้ได้ด้วยกล้อง[14] น้ำเข้าท่วมห้องเก็บเครื่องกำเนิดไฟฟ้าฉุกเฉินที่อยู่ต่ำอย่างรวดเร็ว เครื่องกำเนิดไฟฟ้าดีเซลไม่นานก็หยุดทำงาน ตัดพลังงานไฟฟ้าที่จ่ายให้กับปั้มน้ำที่สำคัญที่ใช้หมุนเวียนน้ำหล่อเย็นต่อเนื่องให้กับเครื่องปฏิกรณ์แบบ Generation II เป็นเวลาหลาย ๆ วันเพื่อป้องกันไม่ให้แท่งเชื้อเพลิง (อังกฤษ: fuel rods) หลอมละลายหลังการ SCRAM เนื่องจากแผ่นรองเชื้อเพลิงเซรามิกจะยังคงผลิตความร้อนจากการสลายกัมมันตรังสี (อังกฤษ: decay heat) ต่อไปแม้ว่าหลังจากขบวนการฟิชชั่นได้สิ้นสุดลงแล้ว แท่งเชื้อเพลิงจะร้อนมากพอที่จะหลอมละลายตัวมันเองในระหว่างช่วงเวลาการสลายตัวของเชื้อเพลิงถ้าไม่มี cold sink ที่พอเพียง หลังจากปั้มฉุกเฉินที่สอง (ทำงานโดยไฟฟ้าจากแบตเตอรีแบ็กอัพ) ไฟหมดหนึ่งวันหลังจากคลื่นสึนามิ(12 มีนาคม)[15] ปั้มน้ำทั้งหมดก็หยุดและเครื่องปฏิกรณ์ทั้งหลายเริ่มที่จะโอเวอร์ฮีทเนื่องจาก decay heat ที่ผลิตในช่วงวันแรก ๆ หลังการ SCRAM (ปริมาณที่ลดน้อยลงของ decay heat นี้จะถูกปลดปล่อยออกมาอย่างต่อเนื่องหลายปี แต่มีเวลาไม่มากพอสำหรับการระบายความร้อนด้วยน้ำเพื่อป้องกันไม่ให้แกนเชื้อเพลิงหลอมละลาย)

ในขณะที่คนงานกำลังดิ้นรนเพื่อจ่ายพลังงานให้กับระบบหล่อเย็นของเครื่องปฏิกรณ์และคืนพลังงานไฟฟ้าให้กับห้องควบคุม การระเบิดทางเคมีระหว่างไฮโดรเจนกับอากาศ (อังกฤษ: hydrogen-air chemical explosion) ก็เกิดขึ้นหลายครั้ง ครั้งแรกเกิดในเครื่องปฏิกรณ์หมายเลข 1 ในวันที่ 12 มีนาคม ครั้งสุดท้ายเกิดในเครื่องปฏิกรณ์หมายเลข 4 ในวันที่ 15 มีนาคม[15][16][17] มีการประมาณการว่าปฏิกิริยาของน้ำกับปลอกเชื้อเพลิงเวอร์โคเนียม (อังกฤษ: zirconium fuel cladding-water reaction) ที่ร้อนในเครื่องปฏิกรณ์ 1 ถึง 3 แต่ละตัวได้สร้างแก๊สไฮโดรเจน 800 ถึง 1000 กก.ที่ถูกระบายออกากอ่างความดันของเครื่องปฏิกรณ์ (อังกฤษ: reactor pressure vessel) ผสมเข้ากับบรรยากาศแวดล้อม จนในที่สุดเข้าสู่ขีดจำกัดความเข้มข้นการระเบิด (อังกฤษ: explosive concentration limit) ในหน่วยที่ 1 และหน่วยที่ 3 และเนื่องจากการเชื่อมต่อระหว่างหน่วยที่ 3 และ 4 เป็นแบบท่อ หรืออีกทางหนึ่งคือเกิดจากปฏิกิริยาเดียวกันกับที่เกิดขึ้นในบ่อเชื้อเพลิงใช้แล้วในหน่วยที่ 4 เอง[18] หน่วยที่ 4 ก็เต็มไปด้วยไฮโดรเจนที่มีการระเบิดแบบไฮโดรเจนกับอากาศเกิดขึ้นที่ยอดของแต่ละหน่วยที่อยู่ในชั้นบนของอาคารคลุมเครื่องปฏิกรณ์ (อังกฤษ: containment building)หลังที่สอง[19][20] ยานไร้คนบังคับ (Drone) ที่บินเหนือที่เกิดเหตุในวันที่ 20 มีนาคม ได้จับภาพอย่างชัดเจนของผลกระทบจากการระเบิดแต่ละครั้งที่อยู่นอกโครงสร้าง ในขณะที่ภาพด้านในถูกบดบังด้วยเงาและเศษซาก[1]

ไม่มีรายงานการเสียชีวิตที่เชื่อมโยงกับการสัมผัสกับรังสีในระยะสั้นมากเกินไปเนื่องจากการเกิดอุบัติเหตุที่ฟุกุชิมะ ในขณะที่ประมาณ 18,500 คนเสียชีวิตเนื่องจากการเกิดแผ่นดินไหวและสึนามิ การคำนวณในผู้ป่วยโรคมะเร็งและการเสียชีวิตในอนาคตจากการสัมผัสรังสีที่สะสมในประชากรที่อยู่อาศัยใกล้กับฟุกุชิมะและทั่วโลกในช่วงหลายปีและหลายทศวรรษข้างหน้า ได้ถูกทำโดยอาจารย์มหาวิทยาลัยสแตนฟอร์ดและผู้สนับสนุนการต่อต้านนิวเคลียร์ Mark Z. Jacobson ผู้ที่คาดการณ์ว่าในที่สุดจะมีการเสียชีวิต 130 รายและผู้ป่วยโรคมะเร็งที่เพิ่มขึ้น 180 ราย ที่ส่วนใหญ่ของกรณีเหล่านี้เกิดขึ้นในประชากรในพื้นที่ที่ปนเปื้อนส่วนใหญ่ของฟุกุชิมะ[21][22]

ในปี 2013 องค์การอนามัยโลก (WHO) ระบุว่าผู้อยู่อาศัยในพื้นที่ที่ถูกอพยพออกไปได้สัมผัสกับปริมาณรังสีที่ต่ำและผลกระทบต่อสุขภาพที่เกิดจากรังสีนั้นมีแนวโน้มที่จะต่ำ[23][24] โดยเฉพาะ รายงานขององค์การอนามัยโลกปี 2013 คาดการณ์ว่าสำหรับทารกเพศหญิงที่อพยพ ความเสี่ยงของการพัฒนาไปสู่มะเร็งต่อมไทรอยด์ตลอดช่วงอายุก่อนการเกิดอุบัติเหตุอยู่ที่ 0.75% ความเสี่ยงนี้จะถูกเพิ่มขึ้นเป็น 1.25% เนื่องจากการสัมผัสกับรังสีไอโอดีน โดยที่มีการเพิ่มขึ้นน้อยสำหรับทารกเพศชาย ในขณะที่ความเสี่ยงทั้งหลายจากจำนวนที่เพิ่มขึ้นของโรคมะเร็งที่เกิดจากรังสียังคาดว่าจะได้รับการยกระดับเนื่องจากการสัมผัสที่เกิดจาก'ผลผลิตจากฟิชชั่น (อังกฤษ: Fission product) จุดเดือดต่ำ'อื่น ๆ ที่ถูกปล่อยออกมาเพราะความล้มเหลวด้านความปลอดภัย ที่เพิ่มขึ้นมากที่สุดเพียงตัวเดียวคือมะเร็งต่อมไทรอยด์ แต่เมื่อรวมแล้ว ความเสี่ยงโดยรวมตลอดช่วงอายุในการพัฒนาเป็นโรคมะเร็งทุกชนิดคาดว่าจะสูงขึ้น 1% สำหรับทารกเพศหญิง โดยที่มีความเสี่ยงลดลงเล็กน้อยสำหรับเพศชาย ซึ่งเป็นกลุ่มที่มีความไวต่อรังสีมากที่สุด[24] พร้อมกับเด็กที่อยู่ในครรภ์ซึ่งองค์การอนามัยโลกคาดการณ์ว่าขึ้นอยู่กับเพศของพวกเขาที่จะมีระดับเดียวกันกับความเสี่ยงในกลุ่มทารก[25]

โปรแกรมการตรวจคัดกรองในปีต่อมาคือปี 2012 พบว่ามากกว่าหนึ่งในสาม (36%) ของเด็กในฟุกุชิมะมีการเจริญเติบโตที่ผิดปกติในต่อมธไทรอยด์ของพวกเขา[26][ต้องการอ้างอิง] เมื่อเดือนสิงหาคม 2013 มีเด็กมากกว่า 40 คนถูกวินิจฉัยใหม่ว่าเป็นโรคมะเร็งต่อมไทรอยด์และโรคมะเร็งอื่น ๆ ในจังหวัดฟุกุชิมะโดยรวม อย่างไรก็ตาม ข้อสงสัยที่ว่าอุบัติการณ์เหล่านี้ของโรคมะเร็งจะสูงกว่าอัตราในพื้นที่ที่ไม่ปนเปื้อนและดังนั้นอุบัติการณ์ดังกล่าวจึงเป็นเนื่องมาจากการสัมผัสกับรังสีนิวเคลียร์หรือไม่นั้นไม่เป็นที่รู้จักในขั้นตอนนี้[ต้องการอ้างอิง] ข้อมูลจากอุบัติเหตุเชอร์โนบิลแสดงให้เห็นว่าการเพิ่มขึ้นที่แน่แท้ในอัตราการเกิดมะเร็งต่อมไทรอยด์หลังจากภัยพิบัติในปี 1986 จะเริ่มต้นหลังจากระยะฟักตัวของมะเร็งที่ 3-5 ปีเท่านั้น[27] อย่างไรก็ตามมีข้อสงสัยว่าข้อมูลนี้จะสามารถนำมาเปรียบเทียบโดยตรงกับภัยพิบัตินิวเคลียร์ฟุกุชิมะได้หรือไม่ยังไม่สามารถกำหนดได้[28][ต้องการอ้างอิง]

การสำรวจโดยหนังสือพิมพ์ Mainichi Shimbun ครั้งหนึ่งคำนวณว่าในจำนวนผู้อพยพออกจากพื้นที่ประมาณ 300,000 คน ประมาณ 1,600 คนเสียชีวิตที่เกี่ยวข้องกับสภาพการอพยพ เช่นการที่ต้องอาศัยอยู่ในที่อยู่ชั่วคราวและการปิดของโรงพยาบาลที่เกิดขึ้นเมื่อเดือนสิงหาคม 2013 ตัวเลขนี้มีจำนวนใกล้เคียงกับการเสียชีวิต 1,599 คนที่เสียชีวิตโดยตรงจากแผ่นดินไหวและสึนามิในจังหวัดฟุกุชิมะในปี 2011 ด้วยสาเหตุที่แท้จริงของการเสียชีวิตส่วนใหญ่ที่เกี่ยวข้องกับการอพยพเหล่านี้ไม่ได้ถูกระบุ (ตามข้อมูลของเขตเทศบาล) จึงเป็นอุปสรรคต่อการส่งใบสมัครของญาติของผู้ตายเพื่อขอเงินชดเชยปลอบขวัญ[29][30]

เมื่อวันที่ 5 กรกฎาคม 2012 สภานิติบัญญัติแห่งชาติญี่ปุ่นได้แต่งตั้ง คณะกรรมการอิสระเพื่อการสอบสวนอุบัติเหตุนิวเคลียร์ฟุกุชิมะ (NAIIC) ให้ส่งรายงานการสืบสวนไปยังสภาญี่ปุ่น[31] คณะกรรมการพบว่าภัยพิบัตินิวเคลียร์เป็น "ฝีมือมนุษย์" โดยที่สาเหตุโดยตรงของการเกิดอุบัติเหตุทั้งหมดเป็นสิ่งที่คาดการณ์ก่อนได้ก่อนวันที่ 11 มีนาคม 2011 นอกจากนี้รายงานยังพบว่าโรงไฟฟ้​​านิวเคลียร์ฟุกุชิมะไดอิจิไม่มีความสามารถในการอดทนต่อการเกิดแผ่นดินไหวและสึนามิ TEPCO ซึ่งเป็นหน่วยงานกำกับดูแล (NISA และ NSC) และเป็นหน่วยงานของรัฐบาลที่ส่งเสริมอุตสาหกรรมพลังงานนิวเคลียร์ (METI) ทั้งหมดนี้ล้มเหลวในการในการพัฒนาอย่างถูกต้องถึงระเบียบปฏิบัติด้านความปลอดภัยขั้นพื้นฐานส่วนใหญ่ เช่นการประเมินความน่าจะเป็นของความเสียหาย การเตรียมความพร้อมสำหรับการจำกัดวงความเสียหายหลักประกันจากภัยพิบัติเช่นนั้น และการพัฒนาแผนอพยพสำหรับประชาชนในกรณีของการปลดปล่อยรังสีร้ายแรง ในขณะเดียวกัน รัฐบาลได้แต่งตั้งคณะกรรมการสอบสวนเกี่ยวกับอุบัติเหตุที่โรงไฟฟ้านิวเคลียร์ฟุกุชิมะของบริษัทพลังงานไฟฟ้าโตเกียวให้จัดส่งรายงานขั้นสุดท้ายให้กับรัฐบาลญี่ปุ่นในวันที่ 23 เดือนกรกฎาคม 2012[32] การศึกษาที่แยกต่างหากโดยนักวิจัยสแตนฟอร์ดพบว่าโรงไฟฟ้าญี่ปุ่นที่ดำเนินการโดยบริษัทสาธารณูปโภคที่ใหญ่ที่สุดไม่มีการป้องกันโดยเฉพาะอย่างยิ่งกับสึนามิที่อาจเกิดขึ้น[8]

TEPCO ได้ยอมรับเป็นครั้งแรกเมื่อวันที่ 12 ตุลาคม 2012 ว่าบริษัทล้มเหลวที่จะใช้มาตรการที่แข็งแกร่งเพื่อป้องกันไม่ให้เกิดภัยพิบัติเพราะกลัวว่าจะเป็นการเชื้อเชิญให้มีการดำเนินคดีทางกฎหมายหรือให้มีการประท้วงต่อต้านโรงไฟฟ้​​านิวเคลียร์ของตน[33][34][35][36] ไม่มีแผนการที่ชัดเจนสำหรับการรื้อถอนโรงไฟฟ้า แต่ฝ่ายบริหารโรงไฟฟ้าประมาณการไว้ที่สามสิบหรือสี่สิบปี[37]

ลักษณะทั่วไปของโรงไฟฟ้า

บทความหลัก: โรงไฟฟ้​​านิวเคลียร์ฟุกุชิมะไดอิชจิ

 

โรงไฟฟ้​​านิวเคลียร์ฟุกุชิมะหนึ่ง (Daiichi) ประกอบด้วยเครื่องปฏิกรณ์น้ำเดือด (BWR) แบบน้ำเบาของ GE หกเครื่องที่มีพลังงานรวมอยู่ที่ 4.7 กิกะวัตต์ ทำให้ฟุกุชิมะไดอิจิเป็นหนึ่งใน 25 ของโรงไฟฟ้​​าพลังงานนิวเคลียร์ที่ใหญ่ที่สุดในโลก ฟุกุชิมะไดอิจิโรงไฟฟ้​​านิวเคลียร์ที่ได้รับการออกแบบโดย GE โรงแรกที่จะถูกสร้างและดำเนินงานทั้งหมดโดย บริษัทพลังงานไฟฟ้าโตเกียว (TEPCO)

เครื่องปฏิกรณ์ตัวที่ 1 เป็นเครื่องปฏิกรณ์ชนิด (BWR-3) ขนาด 439 MWe ที่สร้างขึ้นในเดือนกรกฎาคมปี 1967 มันเริ่มดำเนินการเมื่อวันที่ 26 มีนาคม 1971[38] มันถูกออกแบบให้ทนต่อการเกิดแผ่นดินไหวที่มีความเร่งพื้นดินจุดสูงสุด (อังกฤษ: peak ground acceleration) อยู่ที่ 0.18 กรัมแรง (1.74 เมตร/s2) และคลื่นความถี่ตอบสนอง (อังกฤษ: response spectrum) ที่อยู่บนพื้นฐานของการเกิดแผ่นดินไหวที่เคอร์นเคาน์ตี้ปี 1952[39] เครื่องปฏิกรณ์ตัวที่ 2 และตัว 3 ทั้งสองตัวเป็น 784 MWe ประเภท BWR-4 เครื่องปฏิกรณ์ 2 เริ่มปฏิบัติการในเดือนกรกฎาคมปี 1974 และเครื่องปฏิกรณ์ 3 เริ่มในเดือนมีนาคม 1976 พื้นฐานการออกแบบด้านการเกิดแผ่นดินไหวสำหรับทุกหน่วยมีตั้งแต่ 0.42 กรัม (4.12 เมตร/s2) จนถึง 0.46 กรัม (4.52 เมตร/s2)[40][41]

ทุกหน่วยงานได้รับการตรวจสอบหลังจากที่เกิดแผ่นดินไหวที่มิยากิเมื่อปี 1978 เมื่อความเร่งพื้นดินมีค่าถึง 0.125 กรัม (1.22 เมตร/s2) เป็นเวลา 30 วินาที แต่ไม่พบความเสียหายที่เกิดกับส่วนที่สำคัญของเครื่องปฏิกรณ์[39]

หน่วยที่ 1-5 มีโครงสร้างบรรจุประเภทมาร์ค 1 (ห่วงยางหลอดไฟ) หน่วยที่ 6 มีโครงสร้างบรรจุประเภทมาร์ค 2 (บน/ล่าง)[39] ในเดือนกันยายนปี 2010 เครื่องปฏิกรณ์ 3 ถูกเติมเชื้อเพลิงบางส่วนโดยออกไซด์ผสม (Mixed Oxide (MOX))[42]

ในช่วงเวลาที่เกิดอุบัติเหตุ ทุกหน่วยปฏิกรณ์และสถานที่จัดเก็บกลางมีตัวเลขของถังเชื้อเพลิงดังต่อไปนี้[43]:

ตำแหน่งหน่วยที่ 1หน่วยที่ 2หน่วยที่ 3หน่วยที่ 4หน่วยที่ 5หน่วยที่ 6สถานที่จัดเก็บกลาง
ถังเชื้อเพลิงเครื่องปฏิกรณ์40054854805487640
ถังเชื้อเพลิงใช้แล้ว[44]29258751413319468766375[45]
เชื้อเพลิงUO2}}UO2UO2/MOXUO2UO2UO2UO2
ถังเชื้อเพลิงใหม่[46]10028522044864N/A

ไม่มีเชื้อเพลิง MOX ในบ่อให้ความเย็นใด ๆ เชื้อเพลิง MOX จะถูกเติมให้ในเครื่องปฏิกรณ์หน่วยที่ 3 เท่านั้น

ความต้องการการระบายความร้อน

การแสดงด้วยแผนภาพของระบบระบายความร้อนของ BWR

เครื่องปฏิกรณ์เหล่านี้ผลิตกระแสไฟฟ้าโดยใช้ความร้อนจากปฏิกิริยาฟิชชันเพื่อสร้างไอน้ำ เมื่อเครื่องปฏิกรณ์ต้องหยุดการทำงาน การสลายกัมมันตรังสี (อังกฤษ: radioactive decay) ของไอโซโทปที่ไม่เสถียรจะยังคงสร้างความร้อนออกมาอย่างต่อเนื่องอีกสักช่วงเวลาหนึ่ง การสลายตัวและความร้อนจากการสลายตัวนี้ต้องการการระบายความร้อนอย่างต่อเนื่อง[47][48] ในขั้นต้นความร้อนจากการสลายตัวนี้มีจำนวนประมาณ 6% ของจำนวนที่ผลิตโดยปฏิกิริยาฟิชชัน[47] ลดลงตลอดช่วงหลายวันก่อนที่จะถึง ระดับปิดแบบเย็น (อังกฤษ: cold shutdown level)[49]

แท่งเ​​ชื้อเพลิงที่ถูกใช้จนหมดและมีอุณหภูมิถึงจุดปิดเย็นมักจะต้องใช้เวลาหลายปีในบ่อเชื้อเพลิงใช้แล้วก่อนที่พวกมันจะสามารถถ่ายโอนได้อย่างปลอดภัยไปยังถังเก็บแห้ง (อังกฤษ: dry cask storage vessels)[50]

ความร้อนสลายตัวในบ่อเชื้อเพลิงใช้แล้วของหน่วยที่ 4 มีความสามารถในการต้มน้ำประมาณ 70 ตันต่อวัน (12 แกลลอนต่อนาที)[51] เมื่อวันที่ 16 เดือนเมษายน 2011, TEPCO ประกาศว่าระบบระบายความร้อนหน่วยที่ 1-4 มีสภาพเกินกว่าจะซ่อมได้และจะต้องถูกเปลี่ยนใหม่[52]

ระบบระบายความร้อน

ในแกนกลางของเครื่องปฏิกรณ์ การไหลเวียนสามารถทำได้ผ่านทางระบบแรงดันสูงที่หมุนน้ำเป็นวงรอบระหว่างอ่างความดันเครื่องปฏิกรณ์และตัวแลกเปลี่ยนความร้อน จากนั้นระบบเหล่านี้จะถ่ายโอนความร้อนไปยังตัวแลกเปลี่ยนความร้อนที่สองผ่านทาง'ระบบน้ำให้บริการที่สำคัญ' มีการใช้น้ำที่ถูกปั้มออกสู่ทะเลหรือหอหล่อเย็นในสถานที่[53]

เมื่อเครื่องปฏิกรณ์ไม่สามารถผลิตไอน้ำเพื่อสร้างกระแสไฟฟ้า เครื่องสูบน้ำระบายความร้อนสามารถขับเคลื่อนได้ด้วยหน่วยปฏิกรณ์อื่น ๆ หรือจากกริด (ไฟฟ้า)หรือจากเครื่องกำเนิดไฟฟ้าดีเซลหรือแบตเตอรี่[54][55]

ยูนิต 2 และ 3 ได้รับการติดตั้งด้วยระบบระบายความร้อนแกนกลางฉุกเฉินที่ขับเคลื่อนด้วยกังหันไอน้ำที่สามารถดำเนินการได้โดยตรงจากไอน้ำที่ผลิตโดยความร้อนสลายร่างซึ่งสามารถฉีดน้ำตรงเข้าไปในเครื่องปฏิกรณ์[56] พลังงานไฟฟ้าบางส่วนเป็นสิ่งจำเป็นในการเดินระบบวาล์วและระบบการตรวจสอบ

หน่วยที่ 1 ได้รับการติดตั้งระบบระบายความร้อนที่แตกต่างกัน โดยใช้ "ตัวควบแน่นแยกส่วน" (อังกฤษ: isolated condenser) หรือ "ไอซี" ซึ่งเป็นระบบพาสซีฟ(ไม่มีปฏิกิริยาโต้ตอบ)อย่างสิ้นเชิง ระบบนี้ประกอบด้วยชุดของท่อที่วิ่งจากแกนกลางเครื่องปฏิกรณ์ไปยังภายในของถังน้ำขนาดใหญ่ เมื่อเปิดวาล์ว ไอน้ำจะไหลขึ้นไปยังไอซีในที่ซึ่งน้ำเย็นในถังจะควบแน่นไอน้ำให้กลับไปเป็นน้ำ แล้วมันจะไหลตามแรงโน้มถ่วงกลับไปที่แกนกลางเครื่องปฏิกรณ์ สำหรับเหตุผลที่ไม่ชัดเจน, ที่จุดเริ่มต้น, IC ของหน่วยที่ 1 ทำงานเป็นระยะ ๆ ในช่วงฉุกเฉิน อย่างไรก็ตามในช่วงการนำเสนอในวันที่ 25 มีนาคม 2014 ให้กับ TVA ดร. Takeyuki Inagaki อธิบายว่า IC ดำเนินการเป็นระยะ ๆ เพื่อรักษาระดับอุณหภูมิของอ่างปฏิกรณ์และเพื่อป้องกันแกนกลางไม่ให้ระบายความร้อนได้รวดเร็วเกินไปซึ่งจะสามารถเพิ่มพลังงานเครื่องปฏิกรณ์ได้ โชคร้าย เมื่อคลื่นสึนามิท่วมโรงไฟฟ้า วาล์วของ IC ถูกปิดและไม่สามารถเปิดได้โดยอัตโนมัติเนื่องจากไฟฟ้าดับ แต่ก็สามารถเปิดได้ด้วยมือ [57]

เครื่องกำเนิดไฟฟ้าสำรอง

มีเครื่องกำเนิดไฟฟ้าดีเซลฉุกเฉินสองเครื่องสำหรับแต่ละหน่วยที่ 1-5 และสามเครื่องสำหรับหน่วยที่ 6[58]

ในช่วงปลายทศวรรษที่ 1990 มีการติดตั้งเครื่องกำเนิดไฟฟ้าสำรองเพิ่มเติมสำหรับหน่วย 2 และ 4 อีกสามเครื่อง วางไว้ในอาคารใหม่ที่อยู่สูงกว่าบนเนินเขา เพื่อให้สอดคล้องกับข้อบังคับในกฎระเบียบใหม่ เครื่องกำเนิดไฟฟ้าเหล่านี้สามารถเข้าถึงได้จากทั้งหกหน่วยปฏิกรณ์ แต่สถานีสลับสายที่ส่งไฟฟ้​​าจากเครื่องกำเนิดไฟฟ้าสำรองเหล่านี้ไปยังระบบทำความเย็นของเครื่องปฏิกรณ์หน่วยที่ 1 ถึง 5 ยังอยู่ในอาคารกังหันที่มีการป้องกันน้ำท่วมที่ไม่ดี เครื่องกำเนิดไฟฟ้าทั้งสามเครื่องที่เพิ่มขึ้นในช่วงปลายทศวรรษที่ 1990 ยังสามารถทำงานได้หลังจากคลื่นสึนามิ ถ้าสถานีสลับสายมีการย้ายไปอยู่ภายในอาคารเตาปฏิกรณ์หรือไปยังสถานที่อื่น ๆ ที่น้ำไม่ท่วม กระแสไฟฟ้าจากเครื่องกำเนิดไฟฟ้าเหล่านี้ก็จะสามารถจ่ายให้กับระบบระบายความร้อนของเครื่องปฏิกรณ์ เนื่องจากเครื่องกำเนิดไฟฟ้าต้องทำงานเต็มกำลัง ดังนั้นเมื่อคลื่นซัดเข้ามา เพลาข้อเหวี่ยงจึงแตกและระบบพังทลาย เพลาข้อเหวี่ยงที่เปราะเหล่านี้ยังถูกใช้ในเครื่องปฏิกรณ์ของอังกฤษอีกด้วย[59]

เครื่องกำเนิดไฟฟ้าดีเซลฉุกเฉินของเครื่องปฏิกรณ์และแบตเตอรี่กระแสตรงเป็นส่วนประกอบสำคัญในการให้พลังงานกับระบบทำความเย็นหลังจากไฟฟ้าดับ อุปกรณ์เหล่านี้ติดตั้งอยู่ในชั้นใต้ดินของอาคารกังหันเครื่องปฏิกรณ์ตามข้อกำหนดของจีอี วิศวกรระดับกลางแสดงความกังวลว่าลักษณะนี้ปล่อยให้พวกมันเสี่ยงที่จะเกิดน้ำท่วม[60]

ฟุกุชิมะหนึ่งไม่ได้ถูกออกแบบมาสำหรับคลื่นสึนามิขนาดใหญ่เช่นนี้[61][62] หรือมีการปรุงแต่งเครื่องปฏิกรณ์เมื่อมีความกังวลเกิดขึ้นในประเทศญี่ปุ่นและโดยความกังวลจาก IAEA[63]

ฟุกุชิมะที่สองก็ถูกซัดด้วยคลื่นสึนามิเช่นกัน แต่มันมีการเปลี่ยนแปลงการออกแบบที่ผสมผสานที่ดีกว่าที่เพิ่มความต้านทานต่อน้ำท่วมและลดความเสียหายจากน้ำท่วม เครื่องกำเนิดไฟฟ้าและอุปกรณ์กระจายกระแสไฟฟ้าที่เกี่ยวข้องได้ถูกวางให้อยู่ในอาคารคลุมเครื่องปฏิกรณ์กันน้ำรั่ว เพื่อที่ว่าพลังงานจากกริด (ไฟฟ้า)จะถูกใช้ตอนเที่ยงคืน[64] ปั๊มน้ำทะเลสำหรับระบายความร้อนได้รับการปกป้องจากน้ำท่วม และถึงแม้ว่า 3 ใน 4 ต้วจะล้มเหลวในครั้งแรก พวกมันก็ได้รับการฟื้นฟูให้กลับมาทำงานได้[65]

พื้นที่จัดเก็บเชื้อเพลิงกลาง

ถังเชื้อเพลิงใช้แล้วที่นำมาจากเครื่องปฏิกรณ์ในตอนแรกจะถูกเก็บไว้เป็นเวลาอย่างน้อย 18 เดือนในบ่อน้ำที่อยู่ติดกับเครื่องปฏิกรณ์นิวเคลียร์ จากนั้นพวกมันจะถูกย้ายไปที่บ่อเก็บเชื้อเพลิงกลาง[66] พื้นที่จัดเก็บของฟุกุชิมะหนึ่งมีถังเชื้อเพลิง 6375 ถัง หลังจากมีการระบายความร้อนเพิ่มเติม เชื้อเพลิงจะถูกย้ายไปยังถังเก็บแห้งซึ่งไม่ได้แสดงให้เห็นสัญญาณของความผิดปกติ[67]

Zircaloy

ชิ้นส่วนภายในและปลอกหุ้มถังเชื้อเพลิงหลายชิ้นทำจาก zircaloy เพราะมันโปร่งใสต่อนิวตรอน ที่อุณหภูมิปกติของการทำงานประมาณ 300 °C (572 °F) zircaloy จะเฉื่อย แต่ที่สูงกว่า 1,200 องศาเซลเซียส โลหะเซอร์โคเนียมสามารถตอบสนองแบบ exothermic กับน้ำกลายเป็นแก๊สไฮโดรเจนอิสระ[68] ปฏิกิริยาระหว่างเซอร์โคเนียมกับน้ำหล่อเย็นสร้างความร้อนมากขึ้น เป็นการเร่งปฏิกิริยานิวเคลียร์[69]

ความกังวลด้านความปลอดภัย

1967: โครงร่างของระบบระบายความร้อนฉุกเฉิน

ห้องควบคุมเครื่องปฏิกรณ์ฟุกุชิมะ

เมื่อวันที่ 27 กุมภาพันธ์ 2012 สำนักงานตัวแทนความปลอดภัยด้านนิวเคลียร์และอุตสาหกรรม (NISA) มีคำสั่งให้ TEPCO รายงานภายใน 12 มีนาคม 2012 ถึงเหตุผลในการเปลี่ยนโครงร่างของท่อสำหรับระบบระบายความร้อนฉุกเฉิน การเปลี่ยนแปลงเหล่านี้ถูกทำขึ้นหลังจากแผนได้มีการลงทะเบียนไปแล้วในปี 1966 และเมื่อเริ่มการก่อสร้าง

ตามแผนเดิมจะมีการแยกระบบท่อสำหรับเครื่องปฏิกรณ์นิวเคลียร์สองเครื่องให้อยู่ภายในตัวควบแน่นแยกส่วน อย่างไรก็ตามการขอความเห็นชอบของแผนการก่อสร้างแสดงให้เห็นถึงระบบท่อของทั้งสองระบบระบายความร้อนฉุกเฉินมีการเชื่อมต่อกันภายนอกเครื่องปฏิกรณ์ การเปลี่ยนแปลงไม่ได้ถูกสังเกตเห็นว่าเป็นการละเมิดกฎระเบียบ[70]

หลังคลื่นสึนามิ ตัวควบแน่นแยกส่วนควรรับช่วงการทำงานของเครื่องสูบน้ำระบายความร้อน โดยการควบแน่นไอน้ำจากอ่างความดันให้เป็นน้ำเพื่อใช้สำหรับระบายความร้อนเครื่องปฏิกรณ์ แต่ตัวควบแน่นไม่ได้ทำงานอย่างถูกต้องและ TEPCO ไม่สามารถยืนยันว่าวาล์วถูกเปิดหรือไม่

1976: ความเท็จของบันทึกความปลอดภัย

ฟุกุชิมะไดอิจิเป็นศูนย์กลางความอื้อฉาวเรื่องการบันทึกที่เป็นเท็จที่นำไปสู่​​การจากไปของผู้บริหารระดับสูงของ TEPCO นอกจากนี้มันยังนำไปสู่​​การเปิดเผยข้อมูลของปัญหาที่ไม่มีรายงานก่อนหน้านี้ แม้ว่าจะมีพยานหลักฐานโดย Dale Bridenbaugh, หัวหน้าผู้ออกแบบของ GE ที่อ้างว่าจีอีได้รับการเตือนจากข้อบกพร่องการออกแบบที่สำคัญในปี 1976 ส่งผลให้มีการลาออกของนักออกแบบของจีอีหลายคนที่ออกมาประท้วงความเพิกเฉยของจีอี

ในปี 2002 TEPCO ยอมรับว่ามีการทำบันทึกความปลอดภัยที่เป็นเท็จสำหรับหน่วยที่ 1. เรื่องอื้อฉาวและการรั่วไหลของเชื้อเพลิงที่ Fukushima Daini บังคับให้บริษัทต้องปิดเครื่องปฏิกรณ์ลงทั้งหมด 17 ตัว แผงวงจรกระจายกระแสไฟฟ้าให้กับวาล์วควบคุมอุณหภูมิไม่ได้มีการตรวจสอบถึง 11 ปี การตรวจสอบไม่ได้ครอบคลุมถึงอุปกรณ์ระบบทำความเย็นเช่นมอเตอร์ปั๊มน้ำและเครื่องกำเนิดไฟฟ้าดีเซล

1991: เครื่องกำเนิดไฟฟ้าสำรองของเครื่องปฏิกรณ์ที่ 1 ถูกน้ำท่วม

เมื่อวันที่ 30 ตุลาคม 1991 เครื่องกำเนิดไฟฟ้าสำรองหนึ่งในสองของเครื่องปฏิกรณ์ 1 ล้มเหลวหลังน้ำท่วมในห้องใต้ดินของเครื่องปฏิกรณ์ น้ำทะเลที่ใช้สำหรับระบายความร้อนรั่วเข้าไปในอาคารกังหันจากการสึกกร่อนของท่อด้วยอัตรา 20 ลูกบาศก์เมตรต่อชั่วโมงตามรายงานของอดีตพนักงานในเดือนธันวาคม 2011 วิศวกรคนหนี่งอ้างว่าเขาได้แจ้งผู้บังคับบัญชาของเขาถึงความเป็นไปได้ที่ว่าคลื่นสึนามิอาจทำให้เกิดความเสียหายกับเครื่องกำเนิดไฟฟ้า TEPCO ได้ติดตั้งประตูเพื่อป้องกันไม่ให้น้ำรั่วไหลเข้ามาในห้องเครื่องกำเนิดไฟฟ้า

คณะกรรมการความปลอดภัยนิวเคลียร์ของญี่ปุ่นให้ความเห็นว่าตนจะปรับแนวทางความปลอดภัยของตนจะต้องมีการติดตั้งแหล่งพลังงานเพิ่มเติม เมื่อวันที่ 29 เดือนธันวาคม 2011 TEPCO ยอมรับข้อเท็จจริงเหล่านี้ทั้งหมด: รายงานบอกว่าห้องถูกน้ำท่วมผ่านประตูและบางรูสำหรับเคเบิล แต่แหล่งจ่ายไฟไม่ได้ถูกตัดเนื่องจากน้ำท่วมและเครื่องปฏิกรณ์ก็หยุดเพียงหนึ่งวัน หนึ่งในสองแหล่งจ่ายไฟจมอยู่ใต้น้ำอย่างสมบูรณ์ แต่กลไกการขับยังคงไม่ได้รับผลกระทบ[71]

2008: การศึกษาเกี่ยวกับสึนามิถูกเพิกเฉย

ในปี 2007 TEPCO จัดตั้งแผนกหนึ่งเพื่อดูแลสิ่งอำนวยความสะดวกด้านนิวเคลียร์ของตน หัวหน้าฟุกุชิมะไดอิจิ มาซาโอะ โยชิดะ เป็นประธานของแผนกจนถึงมิถุนายน 2011 การศึกษาเป็นการภายในปี 2008 ระบุความจำเป็นเร่งด่วนเพื่อป้องกันสิ่งอำนวยความสะดวกได้ดีกว่าจากน้ำท่วมด้วยน้ำทะเล การศึกษาครั้งนี้กล่าวถึงความเป็นไปได้ของคลื่นสึนามิสูงถึง 10.2 เมตร (33 ฟุต) เจ้าหน้าที่สำนักงานใหญ่ยืนกรานว่าความเสี่ยงดังกล่าวไม่สมจริงและไม่ได้พิจารณาการทำนายอย่างจริงจัง[72][ต้องการตรวจสอบความถูกต้อง]

ศูนย์วิจัยแผ่นดินไหวและรอยเลื่อนที่ยังมีพลังนายโอคามูระได้กระตุ้นให้ TEPCO และ NISA ทำการทบทวนสมมติฐานของพวกเขาเกี่ยวกับความสูงที่เป็นไปได้ของคลื่นสึนามิบนพื้นฐานของการเกิดแผ่นดินไหวในศตวรรษที่สิบ แต่มันก็ไม่ได้พิจารณาอย่างจริงจังในช่วงเวลานั้น[73] คณะกรรมการกำกับกิจการพลังงานของสหรัฐได้เตือนถึงความเสี่ยงของการสูญเสียกระแสไฟฟ้าฉุกเฉินในปี 1991 (NUREG-1150) และ NISA อ้างถึงรายงานในปี 2004 ไม่มีการดำเนินการเพื่อบรรเทาความเสี่ยงนั้น[74]

ตำแหน่งที่ตั้ง

โรงไฟฟ้าตั้งอยู่ในประเทศญี่ปุ่นซึ่งก็เหมือนส่วนที่เหลือของขอบมหาสมุทรแปซิฟิก ที่อยู่ในเขตแผ่นดินไหวที่ยังมีพลัง สำนักงานพลังงานปรมาณูระหว่างประเทศ (IAEA) ได้แสดงความกังวลเกี่ยวกับความสามารถของโรงไฟฟ้​​านิวเคลียร์ของญี่ปุ่นที่จะทนต่อกิจกรรมแผ่นดินไหว ในการประชุมของกลุ่มรักษาความปลอดภัยและความปลอดภัยนิวเคลียร์ของ G8 ในกรุงโตเกียวปี 2008 ผู้เชี่ยวชาญ IAEA ได้เตือนว่าแผ่นดินไหวที่แข็งแกร่งที่มีแมกนิจูดมากกว่า 7.0 อาจก่อให้เกิด "ปัญหาร้ายแรง" สำหรับโรงไฟฟ้​​านิวเคลียร์ของญี่ปุ่น[75] ภูมิภาคประสบกับแผ่นดินไหวที่มีแมกนิจูดมากกว่า 8 ถึงสามครั้ง ได้แก่แผ่นดินไหว Jogan Sanriku 869, แผ่นดินไหวเมจิ Sanriku 1896 และแผ่นดินไหว Sanriku 1933

เหตุการณ์

แผ่นดินไหว

เกิดแผ่นดินไหวโทโฮะกุขนาด 9.0 MWเมื่อเวลา 14:46 น. ของวันที่ศุกร์ 11 มีนาคม 2011 ศูนย์กลางอยู่ใกล้กับเกาะฮอนชู[76] มันทำให้เกิดแรง G พื้นดินสูงสุดที่ 0.56, 0.52, 0.56 (5.50, 5.07 และ 5.48 เมตร/s2) ที่หน่วย 2, 3 และ 5 ตามลำดับ ซึ่งเกินค่าความอดทนที่ออกแบบไว้ของพวกมันที่ 0.45, 0.45 และ 0.46 กรัม (4.38, 4.41 และ 4.5​​2 เมตร/s2) ค่าช็อคอยู่ภายในความอดทนที่ออกแบบไว้สำหรับหน่วยที่ 1, 4 และ 6[41]

เมื่อเกิดแผ่นดินไหว หน่วยที่ 1, 2 และ 3 อยู่ระหว่างการดำเนินงาน แต่หน่วยที่ 4, 5 และ 6 ถูกชัตดาวน์สำหรับการตรวจสอบตามระยะเวลา[40][77] เครื่องปฏิกรณ์ที่ 1, 2 และ 3 ได้เข้าสู่การชัตดาวน์อัตโนมัติโดยทันที (ที่เรียกว่า en:SCRAM)[78]

เมื่อเครื่องปฏิกรณ์ชัตดาว์น โรงไฟฟ้าหยุดการผลิตกระแสไฟฟ้า ไฟฟ้าดับในโรงไฟฟ้า[79] หนึ่งในสองของการเชื่อมต่อกับไฟฟ้าภายนอกสถานที่สำหรับหน่วยที่ 1-3 ก็ล้มเหลวเช่นกัน[79] ดังนั้นเครื่องกำเนิดไฟฟ้าดีเซลฉุกเฉินในสถานที่ 13 เครื่องเริ่มปั่นไฟฟ้า[80]

สึนามิ

ความสูงของคลื่นสึนามิที่ถล่มโรงไฟฟ้าประมาณ 50 นาทีหลังจากแผ่นดินไหว A: อาคารโรงไฟฟ้า B: ความสูงสูงสุดของคลื่นสึนามิ C: ระดับดินของโรงไฟฟ้า D: ระดับน้ำทะเลปานกลาง E: กำแพงป้องกันคลื่น

แผ่นดินไหวผลิตคลื่นสึนามิที่มีความสูงสูงสุดที่ 13 ถึง 15 เมตร (43-49 ฟุต) ที่มาถึงประมาณ 50 นาทีต่อมา คลื่นข้ามกำแพงกั้นคลื่นสูงที่ 5.7 เมตร (19 ฟุต) ของโรงฟฟ้า น้ำได้เข้าท่วมชั้นใต้ดินของอาคารกังหันและปิดการใช้งานเครื่องกำเนิดไฟฟ้าดีเซลฉุกเฉิน[58][81][82] เมื่อเวลาประมาณ 15:41 น.[79][83]

จากนั้น TEPCO แจ้งเจ้าหน้าที่กำกับดูแลว่า "ฉุกเฉินระดับแรก"[78]

สถานีสลับสายกระแสไฟฟ้าที่จ่ายพลังงานจากสามเครื่องกำเนิดไฟฟ้าสำรองที่ติดตั้งอยู่บนที่สูงบนเนินเขาก็ล้มเหลวเมื่ออาคารซึ่งเป็นที่ตั้งของพวกมันถูกน้ำท่วม[59] ไฟฟ้าสำหรับระบบควบคุมได้ถูกสวิตช์ให้ไปใช้แทน ซึ่งแบตเตอรี่นี้ถูกออกแบบมาให้มีอายุการใช้งานประมาณแปดชั่วโมง แบตเตอรี่และเครื่องกำเนิดไฟฟ้าเคลื่อนที่เพิ่มเติมได้ถูกนำส่งไปยังสถานที่ พวกมันพบกับความล่าช้าจากสภาพถนนไม่ดีและเครื่องแรกเท่านั้นที่มาถึงเวลา 21:00 น. ของวันที่ 11 มีนาคม[80][84] เกือบหกชั่วโมงหลังจากเกิดคลื่นสึนามิ

มีความพยายามหลายครั้งเพื่อเชื่อมต่ออุปกรณ์กำเนิดไฟฟ้าแบบเคลื่อนที่เพื่อให่พลังงานไฟฟ้ากับปั๊มน้ำ แต่ล้มเหลว ความล้มเหลวเป็นผลมาจากน้ำที่ท่วมจุดเชื่อมต่อในชั้นใต้ดินของห้องโถงกังหันและการขาดสายเคเบิลที่เหมาะสม[81] TEPCO เปลี่ยนความพยายามโดยทำการติดตั้งสายใหม่จากกริด[85] เครื่องกำเนิดไฟฟ้าหนึ่งเครื่องที่หน่วยที่ 6 กลับมาดำเนินการได้ต่อในวันที่ 17 มีนาคม ในขณะที่ไฟจากแหล่งภายนอกสามารถจ่ายกลับไปยังเฉพาะหน่วยที่ 5 และ 6 ได้ในวันที่ 20 มีนาคม[86]

การอพยพ

ในตอนแรกรัฐบาลได้จัดตั้งกระบวนการอพยพ 4 ขั้นตอน ได้แก่ พื้นที่ต้องห้ามในการเข้าถึงขยายออกไปเป็น 3 กิโลเมตร, พื้นที่ในการแจ้งเตือนอยู่ระหว่าง 3-20 กิโลเมตรและพื้นที่เตรียมการอพยพ 20-30 กม. ในวันแรก เกือบ 134,000 คน[ต้องการอ้างอิง] ได้ถูกอพยพจากพื้นที่ห้ามการเข้าถึงและพื้นที่ในการแจ้งเตือน สี่วันต่อมาเพิ่มอีก 354,000 คนได้ถูกอพยพจากพื้นที่จัดเตรียม[ต้องการอ้างอิง] ต่อมานายกรัฐมนตรี Kan ไดสอนให้ผู้คนในพื้นที่ในการแจ้งเตือนในการอพยพและกระตุ้นให้ผู้ที่อยู่ในพื้นที่จัดเตรียมให้อยู่ในบ้าน[87][88] กลุ่มหลัง ๆ ถูกเร่งเร้าให้อพยพไปในวันที่ 25 มีนาคม[89]

โซนยกเว้น 20 กิโลเมตรได้รับการป้องกันโดยแผงกั้นถนนเพื่อให้แน่ใจว่าจะมีผู้ที่ได้รับผลกระทบจากรังสีน้อยลง[90]

ยูนิต 1, 2 และ 3

ดูเพิ่มเติม: ภัยพิบัตินิวเคลียร์ฟุกุชิมะไดอิจิ (เครื่องปฏิกรณ์หน่วยที่ 1) ภัยพิบัตินิวเคลียร์ฟุกุชิม่าไดอิจิ (เครื่องปฏิกรณ์หน่วยที่ 2) และภัยพิบัตินิวเคลียร์ฟุกุชิมะไดอิจิ (เครื่องปฏิกรณ์หน่วยที่ 3)

ในเครื่องปฏิกรณ์ที่ 1, 2 และ 3 ความร้อนที่สูงเกินทำให้เกิดปฏิกิริยาระหว่างน้ำและ zircaloy สร้างแก๊สไฮโดรเจน[91][92][93]

เมื่อวันที่ 12 มีนาคม มีการระเบิดในหน่วยที่ 1 ที่เกิดจากการจุดประกายของไฮโดรเจน ทำลายส่วนบนของอาคาร

เมื่อวันที่ 14 มีนาคม การระเบิดที่คล้ายกันเกิดขึ้นในอาคารเครื่องปฏิกรณ์ 3 พัดหลังคากระเด็นและบาดเจ็บสิบเอ็ดคน

เมื่อวันที่ 15 มีการระเบิดในอาคารเครื่องปฏิกรณ์ 2 เนื่องจากท่อระบายที่ใช้ร่วมกับเครื่องปฏิกรณ์ 3

แกนกลางหลอมละลาย

มีความไม่แน่นอนอย่างน่สนใจเกี่ยวกับปริมาณของความเสียหายที่แกนเครื่องปฏิกรณ์ต้องประคับประคองในระหว่างที่เกิดอุบัติเหตุ-TEPCO ได้ปรับปรุงหลายครั้งในช่วงหลายปีที่ผ่านมาในการประมาณการเกี่ยวกับขอบเขตของของการหลอมละลายที่แกนกลางสำหรับทั้งสามหน่วยเครื่องปฏิกรณ์ที่ได้รับผลกระทบและตำแหน่งของเชื้อเพลิงนิวเคลียร์ที่ละลายกลายเป็นของเหลว ("Corium") ภายในอาคารคลุมเครื่องปฏิกรณ์[94] ณ ปี 2015 สามารถสันนิษฐานได้ว่าเชื้อเพลิงส่วนใหญ่ได้ละลายผ่านอ่างความดันเครื่องปฏิกรณ์ (RPV เป็นที่รู้จักกันทั่วไปว่าคือ "แกนเครื่องปฏิกรณ์") และถูกวางอยู่บนด้านล่างของอ่างบรรจุแรก (PCV) ยึดไว้ด้วยคอนกรีตของ PCV[95][96][97][98]

เมื่อวันที่ 16 มีนาคม 2011 TEPCO คาดว่า 70% ของเชื้อเพลิงในยูนิตที่ 1 และ 33% ในยูนิตที่ 2 ได้ละลาย มีการคาดการณ์ต่อไปว่าแกนของยูนิตที่ 3 อาจได้รับความเสียหายเช่นกัน[99]

ในรายงานตามโครงการการวิเคราะห์อุบัติเหตุแบบ Modular (MAAP) ของ TEPCO ตั้งแต่เดือนพฤศจิกายนปี 2011 ประมาณการเพิ่มเติมจะทำกับสถานะและตำแหน่งเชื้อเพลิง[100] รายงานสรุปว่า RPV ในยูนิตที่ 1 ได้รับความเสียหายในช่วงที่เกิดภัยพิบัติและว่า "จำนวนมาก" ของเชื้อเพลิงที่หลอมละลาย (Corium) ได้ตกลงเข้าสู่ด้านล่างของ PCV - ทำให้เกิดการสึกกร่อนของคอนกรีตของ PCV หลังจากการล่มสลายของแกนกลางที่คาดว่าจะหยุดที่ความลึกประมาณ 0.7 เมตร (2 ฟุต 4 นิ้ว) ในขณะที่ความหนาของอ่างบรรจุคือ 7.6 เมตร (25 ฟุต) การเก็บตัวอย่างก๊าซที่ทำมาก่อนรายงานนี้ได้ตรวจไม่พบสัญญาณของการเกิดปฏิกิริยาต่อเนื่องของเชื้อเพลิงกับคอนกรีตของ PCV และเชื้อเพลิงทั้งหมดในยูนิตที่ 1 คาดว่าจะ "ระบายความร้อนได้ดี รวมทั้งเชื้อเพลิงที่หยดลงที่ด้านล่างของเครื่องปฏิกรณ์"

ยิ่งกว่านี้ รายงานของ MAAP ในปี 2011 แสดงให้เห็นว่าเชื้อเพลิงยูนิตที่ 2 และที่ 3 มีการละลาย แต่ก็ยังน้อยกว่ายูนิตที่ 1 และสันนิษฐานว่าเชื้อเพลิงยังคงอยู่ใน RPV ที่มีจำนวนไม่มากของเชื้อเพลิงได้ตกลงไปด้านล่างของ PCV รายงานต่อไปแนะนำว่า "มีช่วงของผลลัพธ์ในการประเมินผล" จาก "เชื้อเพลิงทั้งหมดใน RPV (ไม่ได้ตกลงไป PCV เลย)" ในยูนิตที่ 2 และยูนิตที่ 3 ไปจนถึง "เชื้อเพลิงส่วนใหญ่ใน RPV (เชื้อเพลิงบางส่วนใน PCV)" สำหรับยูนิตที่ 2 และยูนิตที่ 3 คาดว่า "เชื้อเพลิงจะเย็นพอ" ความเสียหายในขนาดใหญ่กว่าในยูนิตที่ 1 เมื่อเทียบกับอีกสองยูนิตเป็นไปตามรายงานเนื่องจากไม่มีน้ำหล่อเย็นถูกฉีดเข้าไปในยูนิตที่ 1 เป็นเวลาที่นานกว่า ซึ่งส่งผลให้เกิด decay heat มีการสะสมอย่างมากมาย - ประมาณ 1 วันที่ไม่มีน้ำฉีดสำหรับยูนิตที่ 1 ในขณะที่หน่วยที่ 2 และ 3 หน่วยมีเพียงหนึ่งในสี่ของวันที่ไม่มีการฉีดน้ำ

ในพฤศจิกายน 2013 Mari Yamaguchi รายงานข่าวให้กับสำนักข่าว Associated Press ว่ามีการจำลองด้วยคอมพิวเตอร์ซึ่งชี้ให้เห็นว่า "เชื้อเพลิงที่หลอมละลายในยูนิตที่ 1 ซึ่งเป็นยูนิตที่แกนกลางมีความเสียหายอย่างกว้างขวางมากที่สุดได้ทำลายด้านล่างของอ่างบรรจุหลักและแม้กระทั่งได้กินบางส่วนของรากฐานคอนกรีตเข้าไปประมาณ 30 เซนติเมตร (1 ฟุต) ทำให้เกิดการรั่วไหลลงไปในพื้นดิน"- วิศวกรนิวเคลียร์มหาวิทยาลัยเกียวโตคนหนึ่งกล่าวเกี่ยวข้องกับการประมาณการเหล่านี้ว่า " เราแค่ไม่แน่ใจจนกว่าเราจะได้เห็นของจริงภายในของเครื่องปฏิกรณ์"[94]

ตามรายงานเดือนธันวาคม 2013 ของ TEPCO ประมาณการสำหรับยูนิตที่ 1 ว่า "decay heat จะต้องลดลงพอควร เชื้อเพลิงหลอมละลายอาจจะสันนิษฐานว่าอยู่ใน PCV (Primary container vessel)"[95]

ในเดือนสิงหาคม 2014 TEPCO แจกจ่ายเอกสารการประมาณการที่ปรับปรุงใหม่ที่เครื่องปฏิกรณ์ยูนิตที่ 3 ได้หลอมละลายอย่างสมบูรณ์ผ่านในระยะเริ่มต้นของการเกิดอุบัติเหตุ ตามการประมาณการใหม่นี้ภายในสามวันแรกของการเกิดอุบัติเหตุเนื้อหาของแกนทั้งหมดของเครื่องปฏิกรณ์ 3 ได้ละลายผ่าน RPV และตกลงไปด้านล่างของ PCV[97][98][101] การประมาณการเหล่านี้อยู่บนพื้นฐานของการจำลอง ซึ่งแสดงให้เห็นว่าแกนเครื่องปฏิกรณ์ 3 หลอมละลายทะลุผ่านฐานคอนกรีตของ PCV ที่หนาถึง 1.2 เมตร (3 ฟุต 11 นิ้ว) และเข้ามาใกล้กับผนังเหล็กของ PCV ที่หนา 26-68 เซนติเมตร (10-27 นิ้ว)[96]

ในกุมภาพันธ์ 2015 TEPCO เริ่มต้นกระบวนการ "สแกนแบบ Muon" สำหรับยูนิตที่ 1, 2 และ 3[102][103] ด้วยการตั้งค่าการสแกนแบบนี้มันจะเป็นไปได้ที่จะกำหนดปริมาณและตำแหน่งโดยประมาณของเชื้อเพลิงนิวเคลียร์ที่เหลืออยู่ภายในอ่างความดันเครื่องปฏิกรณ์ (RPV) แต่ไม่ใช่ปริมาณและสถานที่พักของ Corium ใน PCV ในเดือนมีนาคม 2015 TEPCO แจกจ่ายผลของการสแกนแบบ Muon สำหรับยูนิตที่ 1 ซึ่งแสดงให้เห็นว่าไม่มีเชื้อเพลิงที่มองเห็นได้ใน RPV ซึ่งจะแสดงว่าส่วนใหญ่ถ้าไม่ใช่ทั้งหมดของเชื้อเพลิงที่หลอมละลายได้ตกลงสู่ด้านล่างของ PCV - นี้จะเปลี่ยนแผนสำหรับการกำจัดของเชื้อเพลิงจากหน่วยที่ 1[104][105]

ยูนิตที่ 4, 5 และ 6

บทความหลัก: Fukushima Daiichi หน่วยที่ 4, 5 และ 6

มุมมองทางอากาศของโรในงไฟฟ้าปี 1975 แสดงให้เห็นถึงการแยกกันระหว่างหน่วยที่ 5 และ 6 และหน่วยที่ 1-4
·หน่วยที่ 6 ยังไม่แล้วเสร็จจนกว่าจะถึงปี 1979 จะเห็นได้ระหว่างการก่อสร้าง

หน่วยที่ 4

เครื่องปฏิกรณ์หน่วยที่ 4 ไม่ได้ทำงานตอนแผ่นดินไหวเข้ากระแทก ทุกแท่งเ​​ชื้อเพลิงจากหน่วยที่ 4 ได้ถูกถ่ายโอนไปยังบ่อเชื้อเพลิงใช้แล้วที่อยู่ชั้นบนของอาคารคลุมเครื่องปฏิกรณ์ไปก่อนที่จะเกิดสึนามิ เมื่อวันที่ 15 มีนาคมการระเบิดได้ทำความเสียหายกับชั้นสี่พื้นที่บนชั้นดาดฟ้าของหน่วยที่ 4 การสร้างสองหลุมขนาดใหญ่ในผนังของอาคารด้านนอก มีรายงานว่าน้ำในบ่อเชื้อเพลิงใช้แล้วอาจจะกำลังเดือด รังสีภายในห้องควบคุมหน่วยที่ 4 ป้องกันคนงานจากการพักอยู่ที่นั่นเป็นเวลานาน การตรวจสอบด้วยสายตาของบ่อเชื้อเพลิงใช้แล้วในวันที่ 30 เมษายนเปิดเผยว่าไม่มีความเสียหายอย่างมีนัยสำคัญเกิดขึ้นกับแท่งเชื้อเพลิง การตรวจสอบทางรังสีเคมีของน้ำในบ่อได้ยืนยันว่าส่วนเล็กน้อยของเชื้อเพลิงได้รับความเสียหาย[106]

ในเดือนตุลาคม 2012 อดีตเอกอัครราชทูตญี่ปุ่นสำหรับทั้งประเทศสวิตเซอร์แลนด์และเซเนกัล Mitsuhei Murata กล่าวว่าพื้นดินภายใต้ฟูกูชิม่าหน่วยที่ 4 กำลังจะจมลงและโครงสร้างอาจยุบตัว[107][108]

ในเดือนพฤศจิกายนปี 2013 TEPCO เริ่มต้นกระบวนการเคลื่อนย้าย 1533 แท่งเ​​ชื้อเพลิงในบ่อระบายความร้อนหน่วยที่ 4 ไปยังบ่อระบายความร้อนกลาง กระบวนการนี​​้เสร็จสมบูรณ์เมื่อ 22 ธันวาคม 2014[109]

หน่วยที่ 5 และ 6

เครื่องปฏิกรณ์หน่วยที่ 5 และ 6 ก็ไม่ได้ทำงานตอนแผ่นดินไหวเข้ากระแทกเหมือนกัน ซึ่งแตกต่างจากเครื่องปฏิกรณ์ 4 แท่งเ​​ชื้อเพลิงของพวกมันยังคงอยู่ในเครื่องปฏิกรณ์ เครื่องปฏิกรณ์ได้รับการเฝ้าดูอย่างใกล้ชิด เนื่องจากกระบวนการระบายความร้อนไม่ได้ทำงานได้ดี[ต้องการอ้างอิง]

พื้นที่จัดเก็บเชื้อเพลิงกลาง

เมื่อวันที่ 21 มีนาคม อุณหภูมิในบ่อเชื้อเพลิงได้เพิ่มขึ้นเล็กน้อยไปที่ 61 °C และน้ำถูกพ่นอยู่เหนือบ่อ[66] ไฟฟ้าถูกป้อนกลับคินสู่ระบบระบายความร้อนเมื่อวันที่ 24 มีนาคมและเมื่อวันที่ 28 มีนาคมอุณหภูมิมีการรายงานว่าลงถึง 35 องศาเซลเซียส[110]

การปนเปื้อน

บทความหลัก: ผลกระทบด้านรังสีจากภัยพิบัตินิวเคลียร์ฟุกุชิมะไดอิจิ

บทความย่อย: การเปรียบเทียบระหว่างอุบัติเหตุนิวเคลียร์ฟุกุชิมะและเชอร์โนบิลกับตารางรายละเอียดที่อยู่ภายใน

แผนที่ของพื้นที่ปนเปื้อนรอบโรงไฟฟ้า (22 มีนาคม - 3 เมษายน 2011)
อัตราปริมาณรังสีที่ฟุกุชิมะเปรียบเทียบกับเหตุการณ์และมาตรฐานอื่น ๆ กับกราฟของระดับรังสีที่มีการบันทึกไว้เทียบกับเหตุการณ์อุบัติเหตุเฉพาะจาก 11-30 มีนาคม
การตรวจวัดรังสีจากจังหวัดฟุกุชิมะ มีนาคม 2011
น้ำทะเลปนเปื้อนด้วยซีเซียม 137 ตามแนวชายฝั่งตั้งแต่วันที่ 21 มีนาคมถึง 5 พฤษภาคม 2011 (ที่มา: GRS)
ฮอตสปอตของรังสีใน Kashiwa, กุมภาพันธ์ 2012

วัสดุกัมมันตรังสีถูกปล่อยออกจากอ่างบรรจุด้วยเหตุผลหลายประการ ได้แก่ เจตนาที่จะระบายอากาศเพื่อลดความดันของก๊าซ อีกทั้งเจตนาที่จะปล่อยน้ำหล่อเย็นลงไปในทะเล และเหตุการณ์ที่ไม่สามารถควบคุมได้ ความกังวลเกี่ยวกับความเป็นไปได้ของการปลดปล่อยขนาดใหญ่นำไปสู่เขตยกเว้นระยะ 20 กิโลเมตร (12 ไมล์) รอบโรงไฟฟ้​​าและคำแนะนำที่ว่าคนที่อยู่ในพื้นที่โดยรอบ 20-30 กม. ให้อยู่แต่ในบ้าน ต่อมา สหราชอาณาจักร ฝรั่งเศสและบางประเทศอื่น ๆ ได้บอกประชาชนของตนเองให้พิจารณาถึงการออกจากกรุงโตเกียวเพื่อตอบสนองต่อความกลัวของการแพร่กระจายการปนเปื้อน[111] การติดตามปริมาณของกัมมันตภาพรังสีรวมทั้งไอโอดีน 131, ซีเซียม 134 และซีเซียม 137 ได้มีการดำเนินการอย่างแพร่หลาย[112][113][114]

ระหว่างวันที่ 21 เดือนมีนาคมและช่วงกลางเดือนกรกฎาคม ประมาณ 2.7×1016 Bq ของซีเซียม-137 (ประมาณ 8.4 กิโลกรัม) เข้าสู่มหาสมุทร มีประมาณร้อยละ 82 มีการไหลลงไปในทะเลก่อนวันที่ 8 เมษายน การปล่อยกัมมันตภาพรังสีนี้ลงไปในทะเลหมายถึงการปล่อยกัมมันตภาพรังสีเทียมลงไปในทะเลของแต่ละตัวที่สำคัญที่สุดเท่าที่เคยสังเกต อย่างไรก็ตามชายฝั่งฟุกุชิมะมีบางกระแสน้ำที่แข็งแกร่งที่สุดในโลกและกระแสน้ำเหล่านี้ได้นำส่งน้ำที่ปนเปื้อนออกไปไกลในมหาสมุทรแปซิฟิก จึงก่อให้เกิดการกระจายตัวขนาดใหญ่ของธาตุกัมมันตรังสี ผลที่ได้จากการวัดตะกอนทั้งน้ำทะเลและชายฝั่งทะเลนำไปสู่​​การคาดคะเนว่าผลที่ตามมาของการเกิดอุบัติเหตุในแง่ของกัมมันตภาพรังสีจะเล็กน้อยสำหรับชีวิตทางทะเล ณ ฤดูใบไม้ร่วง 2011 (ความเข้มข้นที่อ่อนแอของกัมมันตภาพรังสีในน้ำและการสะสมที่จำกัดของตะกอน) ในทางกลับกันมลพิษอย่างมีนัยสำคัญของน้ำทะเลตามแนวชายฝั่งที่อยู่ใกล้โรงไฟฟ้​​านิวเคลียร์อาจยังคงมีอยู่ เนื่องจากการมาถึงอย่างต่อเนื่องของวัสดุกัมมันตรังสีที่ถูกเคลื่อนย้ายไปสู่ทะเลโดยน้ำผิวดินที่ไหลไปกับดินที่ปนเปื้อน สิ่งมีชีวิตที่กรองน้ำและปลาที่ด้านบนสุดของห่วงโซ่อาหารมีความไวมากที่สุดกับมลพิษซีเซียมไปตามกาลเวลา มันจึงเป็นธรรมในการรักษาระดับการเฝ้าระวังของชีวิตทางทะเลที่มีการตกปลาในน่านน้ำนอกชายฝั่งฟุกุชิมะ แม้จะมีความเข้มข้นของไอโซโทปซีเซียมในน้ำนอกฝั่งญี่ปุ่นเป็น 10-1000 เท่าเหนือความเข้มข้นก่อนการเกิดอุบัติเหตุ ความเสี่ยงของรังสีก็ยังอยู่ด้านล่างปริมาณที่โดยทั่วไปถือว่าเป็นอันตรายต่อสัตว์น้ำและการบริโภคของมนุษย์[115]

ระบบการเฝ้าดูที่ดำเนินการโดยคณะกรรมการเตรียมความพร้อมขององค์การสนธิสัญญาเพื่อการคัดค้านการทดสอบนิวเคลียร์ครอบคลุม (CTBTO) ได้ติดตามการแพร่กระจายของกัมมันตภาพรังสีในระดับโลก ไอโซโทปกัมมันตรังสีถูกวัดได้โดยกว่า 40 สถานีเฝ้าระวัง[116]

ในวันที่ 12 มีนาคม กัมมันตรังสีรุ่นแรกก็มาถึงสถานีเฝ้าระวังของ CTBTO ใน Takasaki ญี่ปุ่นประมาณ 200 กิโลเมตรห่างออกไป ไอโซโทปกัมมันตรังสีปรากฏในภาคตะวันออกของรัสเซียเมื่อวันที่ 14 เดือนมีนาคมและชายฝั่งตะวันตกของสหรัฐอเมริกาในสองวันต่อมา ในวันที่ 15 ร่องรอยของกัมมันตภาพรังสีถูกตรวจพบได้ทั่วซีกโลกเหนือ ภายในหนึ่งเดือนอนุภาคกัมมันตรังสีถูกสังเกตได้โดยสถานี CTBTO ในซีกโลกใต้[117][118]

ประมาณการของกัมมันตภาพรังสีที่ปล่อยออกมาอยู่ในช่วง 10-40%[11][119][120][121] ของที่เชอร์โนบิล พื้นที่ปนเปื้อนอย่างมีนัยสำคัญ 10[11] ถีง 12%[119] ของที่เชอร์โนบิล[11][122][123]

ในเดือนมีนาคมปี 2011 เจ้าหน้าที่ญี่ปุ่นประกาศว่า "สารกัมมันตรังสีไอโอดีน 131 เกินข้อ จำกัดด้านความปลอดภัยสำหรับทารกตรวจพบได้ที่โรงงานน้ำผลิตบริสุทธิ์ 18 แห่งในโตเกียวและห้าจังหวัดอื่น ๆ "[124] เมื่อวันที่ 21 มีนาคม ข้อจำกัดแรกถูกจัดทำขึ้นเกี่ยวกับการจัดจำหน่ายและการบริโภคของรายการที่ปนเปื้อน[125] ณ เดือนกรกฎาคม 2011 รัฐบาลญี่ปุ่นไม่สามารถที่จะควบคุมการแพร่กระจายของสารกัมมันตรังสีที่เข้าไปในแหล่งอาหารของประเทศ สารกัมมันตรังสีถูกตรวจพบในอาหารที่ผลิตในปี 2011 รวมทั้งผักขม, ใบชา, นม, ปลาและเนื้อวัว ไปไกลถึง 320 กิโลเมตรจากโรงงาน พืช 2012 ชนิดไม่ได้แสดงสัญญาณของการปนเปื้อนกัมมันตภาพรังสี กะหล่ำปลี ข้าว[126] และเนื้อวัวแสดงให้เห็นระดับของกัมมันตภาพรังสีที่ไ​​ม่มีนัยสำคัญ ตลาดข้าวในโตเกียวที่ผลิตจากฟุกุชิมะได้รับการยอมรับจากผู้บริโภคเป็นที่ปลอดภัย[126]

วันที่ 24 สิงหาคม 2011 คณะกรรมการความปลอดภัยนิวเคลียร์ (NSC) ของประเทศญี่ปุ่นตีพิมพ์ผลการคำนวณใหม่ของจำนวนวัสดุกัมมันตรังสีทั้งหมดที่ปล่อยออกไปในอากาศในช่วงที่เกิดอุบัติเหตุที่โรงไฟฟ้านิวเคลียร์ฟุกุชิมะไดอิจิ ปริมาณโดยรวมที่ปล่อยออกมาระหว่างวันที่ 11 มีนาคมถึงวันที่ 5 เมษายนถูกปรับปรุงให้ลดลงถึง 130 PBq (petabecquerels), 3.5 megacuries สำหรับไอโอดีน 131 และ 11 PBq สำหรับซีเซียม 137 ซึ่งเป็นประมาณ 11% ของการปล่อยที่เชอร์โนบิล การประมาณก่อนหน้านี้อยู่ที่ 150 PBq และ 12 PBq

ในปี 2011 นักวิทยาศาสตร์ที่ทำงานให้กับสำนักงานพลังงานปรมาณูประเทศญี่ปุ่น, มหาวิทยาลัยเกียวโตและสถาบันอื่น ๆ ได้คำนวณใหม่ในปริมาณของสารกัมมันตรังสีปล่อยออกสู่มหาสมุทร: ระหว่างปลายเดือนมีนาคมถึงเดือนเมษายนพวกเขาก็พบรวมทั้งหมด 15 PBq สำหรับปริมาณโดยรวมของไอโอดีน 131 และซีเซียม -137 มากกว่าสามเท่าที่ประมาณโดย TEPCO ที่ 4.72 PBq บริษัทได้คำนวณเฉพาะการปล่อยโดยตรงลงไปในทะเล การคำนวณใหม่ได้ควบรวมบางส่วนของสารกัมมันตรังสีในอากาศที่เข้ามาในมหาสมุทรเป็นฝน

ในช่วงครึ่งแรกของเดือนกันยายน 2011 TEPCO ประมาณการปล่อยกัมมันตภาพรังสีไว้ที่ 200 MBq (megabecquerels, 5.4 millicuries) ต่อชั่วโมง นี่คือประมาณหนึ่งในสี่ล้านของเดือนมีนาคม[127] ร่องรอยของไอโอดีน 131 ถูกตรวจพบในหลายจังหวัดของญี่ปุ่นในเดือนพฤศจิกายนและเดือนธันวาคม 2011

ตามที่สถาบันภาษาฝรั่งเศสสำหรับการป้องกันรังสีและความปลอดภัยทางนิวเคลียร์ ระหว่างวันที่ 21 มีนาคมและช่วงกลางเดือนกรกฎาคม ประมาณ 27 PBq ของซีเซียม 137 เข้าสู่มหาสมุทร ประมาณร้อยละ 82 ก่อนวันที่ 8 เมษายน การปล่อยรังสีนี้มีตวามหมายถึงการปล่อยลงในมหาสมุทรที่สำคัญที่สุดของกัมมันตภาพรังสีเทียมแต่ละตัวเท่าที่เคยสังเกตมา ชายฝั่งฟุกุชิมะเป็นหนึ่งในกระแสน้ำที่แข็งแกร่งที่สุดในโลก (กระแส Kuroshio) มันขนส่งน้ำที่ปนเปื้อนไปไกลในมหาสมุทรแปซิฟิก กระจายกัมมันตภาพรังสีไปทั่ว ในการวัดช่วงปลายปี 2011 ของทั้งน้ำทะเลและตะกอนชายฝั่งทะเลชี้ให้เห็นว่าผลที่ตามมาสำหรับชีวิตทางทะเลจะมีเพียงเล็กน้อย มลพิษอย่างมีนัยสำคัญตามแนวชายฝั่งที่อยู่ใกล้โรงไฟฟ้าอาจจะยังคงมีอยู่เพราะการมาถึงอย่างต่อเนื่องของวัสดุกัมมันตรังสีที่เคลื่อนย้ายไปยังทะเลโดยน้ำพื้นผิวข้ามดินที่ปนเปื้อน การปรากฏตัวที่เป็นไปได้ของสารกัมมันตรังสีอื่น ๆ เช่นสตรอนเตียม-90 หรือพลูโตเนียม ยังไม่ได้มีการศึกษาอย่างเพียงพอ การวัดล่าสุดแสดงให้เห็นการปนเปื้อนถาวรของสายพันธุ์สัตว์น้ำบางอย่าง (ส่วนใหญ่เป็นปลา) ที่จับได้ตามแนวชายฝั่งฟุกุชิมะ[128] สายพันธุ์ในทะเลที่ชอบเคลื่อนย้ายเป็นตัวขนส่งกัมมันตภาพรังสีที่มีประสิทธิภาพสูงและรวดเร็วทั่วมหาสมุทร ระดับที่สูงของ 134 Cs ที่ปรากฏอยู่ในสายพันธุ์ที่อพยพออกจากชายฝั่งของรัฐแคลิฟอร์เนียไม่เคยพบเห็นมาก่อนอุบัติภัยฟุกุชิมะ[129]

ณ เดือนมีนาคม 2012 ไม่มีรายงานของการเจ็บป่วยที่เกี่ยวข้องกับรังสี ผู้เชี่ยวชาญเตือนว่าข้อมูลไม่เพียงพอที่จะช่วยให้ข้อสรุปเกี่ยวกับผลกระทบต่อสุขภาพ Michiaki Kai ศาสตราจารย์การป้องกันรังสีที่มหาวิทยาลัยโออิตะการพยาบาลและวิทยาศาสตร์สุขภาพ กล่าวว่า "หากการประมาณการของปริมาณรังสีในปัจจุบันถูกต้อง (การเสียชีวิตที่เกี่ยวข้องกับมะเร็ง) มีแนวโน้มที่จะไม่เพิ่มขึ้น"[130]

ในเดือนพฤษภาคม 2012, TEPCO ประกาศการประมาณการของพวกเขาเกี่ยวกับการปล่อยกัมมันตภาพรังสีสะสม ประมาณว่า 538.1 PBq ของไอโอดีน 131, ซีเซียม 134 และซีเซียม 137 ถูกปล่อยออกมา. 520 PBq ถูกปล่อยออกมาสู่ชั้นบรรยากาศระหว่าง 12-31 มีนาคมปี 2011 และ 18.1 PBq ลงไปในทะเลจาก 26 มีนาคมถึง 30 กันยายน 2011 จำนวนรวม 511 PBq ของไอโอดีน -131 ถูกปลดปล่อยทั้งในบรรยากาศและในมหาสมุทร, 13.5 PBq ของซีเซียม -134 และ 13.6 PBq ของซีเซียม -137 TEPCO รายงานว่าอย่างน้อย 900 PBq ถูกปล่อยออกมา "สู่ชั้นบรรยากาศในเดือนมีนาคมของปีที่ผ่านมา [2011] เพียงปีเดียว"

ในปี 2012 นักวิจัยจากสถาบันปัญหาในการพัฒนาความปลอดภัยของพลังงานนิวเคลียร์, สถาบันวิทยาศาสตร์รัสเซีย, และศูนย์ Hydrometeorological ของรัสเซียได้สรุปว่า "ในวันที่ 15 มีนาคมปี 2011 ~400PBq ของไอโอดีน, ~100PBq ของซีเซียม และ ~400PBq ของก๊าซเฉื่อย เข้าสู่บรรยากาศ" ในวันนั้นวันเดียว

ในเดือนสิงหาคม 2012 นักวิจัยพบว่าผู้อยู่อาศัยใกล้เคียง 10,000 คนได้รับการสัมผัสกับน้อยกว่า 1 millisievert ของรังสี น้อยอย่างมีนัยสำคัญกว่าผู้ที่อาศัยอยู่ในเชอร์โนบิล[131]

ณ เดือนตุลาคม 2012 กัมมันตภาพรังสียังคงรั่วไหลลงสู่มหาสมุทร การประมงในน่านน้ำรอบโรงไฟฟ้ายังคงไม่ได้รับอนุญาต และระดับของสารกัมมันตรังสีของ 134Cs และ 137Cs ในปลาที่จับได้ยังไม่ต่ำกว่าที่จับได้ทันทีหลังจากภัยพิบัติ[132]

ในวันที่ 26 ตุลาคม 2012 TEPCO ยอมรับว่าบริษัทไม่สามารถหยุดสาร​​กัมมันตรังสีไม่ให้รั่วไหลเข้าสู่มหาสมุทร แม้ว่าอัตราการปล่อยแก๊สเรือนกระจกมีความเสถียร การรั่วไหลที่ตรวจไม่พบไม่สามารถตัดทิ้ง เพราะส่วนที่เป็นฐานของเครื่องปฏิกรณ์ยังคงถูกน้ำท่วม บริษัทได้กำลังสร้างกำแพงเหล็กและคอนกรีตยาว 2,400 ฟุตระหว่างโรงไฟฟ้าและมหาสมุทร ลึกถึง 100 ฟุตใต้พื้นดิน แต่มันจะไม่แล้วเสร็จก่อนกลางปี​​ 2014 ประมาณเดือนสิงหาคม 2012 ปลา greenling สองตัวถูกจับได้ใกล้ชายฝั่ง พวกมันมีมากกว่า 25,000 becquerels (0.67 millicuries) ของซีเซียม 137 ต่อกิโลกรัม สูงที่สุดนับตั้งแต่เกิดภัยพิบัติและ 250 เท่าของขีดจำกัดด้านความปลอดภัยของรัฐบาล[133][134]

เมื่อวันที่ 22 กรกฎาคม 2013 TEPCO เปิดเผยว่าโรงไฟฟ้ายังคงมีการรั่วไหลของสารกัมมันตรังสีลงสู่น้ำในมหาสมุทรแปซิฟิก เป็นสิ่งที่สงสัยมานานแล้วโดยชาวประมงท้องถิ่นและนักสืบสวนอิสระ[135] TEPCO ได้ปฏิเสธก่อนหน้านี้ว่ามีเรื่องนี้เกิดขึ้น นายกรัฐมนตรีญี่ปุ่น ชินโซ อะเบะ ได้สั่งให้รัฐบาลก้าวเข้ามา[136]

ในวันที่ 20 สิงหาคม ในเหตุการณ์ที่เกิดขึ้นเพิ่มเติม มีการประกาศว่า 300 ตันของน้ำปนเปื้อนอย่างมากได้รั่วไหลออกมาจากถังเก็บ[137] มีปริมาณเท่ากับประมาณ 1/8 ของสระว่ายน้ำโอลิมปิก 300 เมตริกตันของน้ำมีกัมมันตรังสีมากพอที่จะเป็นอันตรายต่อเจ้าหน้าที่บริเวณใกล้เคียงและการรั่วไหลได้รับการประเมินว่ามีขนาดเป็นระดับที่ 3 บนสเกลของเหตุการณ์นิวเคลียร์ระหว่างประเทศ[138]

ในวันที่ 26 สิงหาคม รัฐบาลเข้าควบคุมในมาตรการฉุกเฉินเพื่อป้องกันการรั่วไหลของน้ำกัมมันตรังสีเพิ่มเติม สะท้อนให้เห็นถึงการขาดความเชื่อมั่นใน TEPCO[139]

ณปี 2013 น้ำหล่อเย็นประมาณ 400 ตันต่อวันถูกสูบเข้าไปในเครื่องปฏิกรณ์ น้ำใต้ดินอีก 400 ตันได้ไหลเข้าไปในโครงสร้าง น้ำประมาณ 800 ตันต่อวันจะถูกเคลื่อนย้ายออกไปเพื่อการบำบัด ครึ่งหนึ่งของจำนวนนั้นถูกนำกลับมาใช้สำหรับระบายความร้อนและครึ่งหนึ่งเบี่ยงเบนไปยังถังเก็บ[140] ในที่สุด น้ำที่ปนเปื้อน หลังการบำบัดเพื่อกำจัด​​กัมมันตรังสีอื่น ๆ นอกเหนือจากไตรเตียม อาจจะต้องถูกทิ้งลงไปในมหาสมุทรแปซิฟิก[37] TEPCO ตั้งใจที่จะสร้างกำแพงน้ำแข็งใต้ดินเพื่อลดอัตราน้ำใต้ดินที่ปนเปื้อนที่จะไปถึงทะเล

ในเดือนกุมภาพันธ์ปี 2014 NHK รายงานว่า TEPCO กำลังตรวจสอบข้อมูลกัมมันตภาพรังสีของมันเอง หลังจากพบว่ามีกัมมันตภาพรังสีในระดับที่สูงกว่ารายงานก่อนหน้านี้ TEPCO กล่าวว่าขณะนี้ระดับ 5 ล้าน becquerels (0.12 millicuries) ของสตอนเตียมต่อลิตรถูกตรวจพบในน้ำบาดาลที่เก็บรวบรวมในเดือนกรกฎาคมปี 2013 ไม่ใช่ 900,000 becquerels (0.02 millicuries) ตามที่รายงานครั้งแรก[141][142]

ในวันที่ 10 กันยายน 2015 น้ำท่วมที่ได้รับแรงหนุนจากพายุไต้ฝุ่น Etau ทำให้มีการอพยพคนจำนวนมากในประเทศญี่ปุ่นและปั๊มระบายน้ำที่โรงไฟฟ้านิวเคลียร์ฟุกุชิมะที่ยังป่วยอยู่ก็ทำงานจนล้นมือ โฆษก TEPCO กล่าวว่าเหตุการณ์นี้เป็นผลให้หลายร้อยตันของน้ำกัมมันตรังสีไหลลงมหาสมุทร[143] ถุงพลาสติกที่เต็มไปด้วยดินและหญ้าที่ปนเปื้อนก็ถูกกวาดออกไปโดยน้ำท่วม[144]

การปนเปื้อนในมหาสมุทรแปซิฟิกตะวันออก

ในเดือนมีนาคมปี 2014 แหล่งข่าวจำนวนมาก รวมถึงเอ็นบีซี[145] เริ่มคาดการณ์ว่า plume(hydrodynamics) (สายธารของของเหลวชนิดหนึ่งที่ไหลผ่านไปในของเหลวอีกชนิดหนึ่ง) ใต้น้ำกัมมันตรังสีที่กำลังเดินทางผ่านมหาสมุทรแปซิฟิกจะมาถึงชายฝั่งตะวันตกของทวีปสหรัฐอเมริกา เรื่องที่พบได้บ่อยคือการที่ปริมาณของกัมมันตภาพรังสีจะไม่เป็นอันตรายและเป็นสิ่งชั่วคราวเมื่อมันมาถึง 'การบริหารมหาสมุทรและบรรยากาศแห่งชาติ'ได้ทำการวัดซีเซียม-134 ที่หลายจุดในมหาสมุทรแปซิฟิกและรูปแบบจะถูกใช้อ้างถึงในการคาดการณ์จากหลายหน่วยงานภาครัฐที่จะประกาศว่ารังสีจะไม่เป็นอันตรายต่อสุขภาพสำหรับผู้อยู่อาศัยในทวีปอเมริกาเหนือ กลุ่มทั้งหลาย รวมทั้ง'กลุ่มนอกเหนือจากนิวเคลียร์'และกลุ่ม Tillamook Estuaries Partnership ได้ท้าทายการคาดการณ์เหล่านี้บนพื้นฐานของการปลดปล่อยไอโซโทปอย่างต่อเนื่องหลังจากปี 2011 ที่นำไปสู่​​ความต้องการสำหรับการตรวจวัดที่ล่าสุดและครอบคลุมมากขึ้นเนื่องจากกัมมันตภาพรังสีมุ่งไปทางทิศตะวันออก การวัดเหล่านี้ถูกดำเนินการโดยกลุ่มความร่วมมือของหลายองค์กรภายใต้การแนะนำของนักเคมีทางทะเลกับสถาบันสมุทรศาสตร์ Woods Hole และมีการเปิดเผยว่าระดับรังสีรวม (ซึ่งเป็นเพียงส่วนเล็กน้อยเท่านั้นที่เจาะเป็นลายนิ้วมือข​​องฟุกุชิมะ) มีปริมาณที่ไม่สูงพอที่จะก่อให้เกิดความเสี่ยงใด ๆ โดยตรงในการดำรงชีวิตของมนุษย์และในความเป็นจริงมันมีน้อยกว่าแนวทางที่กำหนดโดย'หน่วยงานคุ้มครองสิ่งแวดล้อม'หรือแหล่งรังสีอื่น ๆ ทั้งหลายที่ถือว่าปลอดภัย[146]

การตอบสนอง

หลายหน่วยงานภาครัฐและ TEPCO ไม่ได้เตรียมตัวสำหรับ "การลดระดับภัยพิบัตินิวเคลียร์" (อังกฤษ: cascading nuclear disaster)[147] สึนามิที่ "เริ่มต้นภัยพิบัตินิวเคลียร์สามารถและควรได้รับการคาดคะเนและความคลุมเครือที่เกี่ยวกับบทบาทของสถ​​าบันภาครัฐและเอกชนในภาวะวิกฤตเช่นนั้นเป็นปัจจัยหนึ่งในการตอบสนองที่ไม่ดีที่ฟุกุชิมะ"[147] ในเดือนมีนาคมปี 2012 นายกรัฐมนตรี โยชิฮิโกะ โนดะ กล่าวว่ารัฐบาลมีส่วนที่จะได้รับโทษสำหรับภัยพิบัติที่ฟุกุชิมะ เขายังกล่าวอีกว่าเจ้าหน้าที่มองไม่เห็นด้วยความเชื่อที่ผิดใน"เทคโนโลยีที่ไม่มีทางล้ม"ของประเทศและยอมรับว่ามันเป็น"ตำนานที่ปลอดภัย" โนดะกล่าวต่อไปว่า "ทุกคนต้องแบ่งปันความเจ็บปวดของความรับผิดชอบ"[148]

ตามที่ Naoto Kan นายกรัฐมนตรีของญี่ปุ่นในช่วงสึนามิ ประเทศไม่ได้เตรียมตัวไว้สำหรับภัยพิบัติ และโรงไฟฟ้​​านิวเคลียร์ไม่ควรมีการก่อสร้างใกล้เคียงกับมหาสมุทรมากขนาดนั้น[149] กานยอมรับข้อบกพร่องในการจัดการกับวิกฤตของเจ้าหน้าที่ รวมทั้งการสื่อสารและการประสานงานที่ไม่ดีระหว่างหน่วยงานกำกับดูแลนิวเคลียร์ เจ้าหน้าที่สาธารณูปโภคและรัฐบาล เขากล่าวว่าภัยพิบัติ "ได้เปิดเผยให้เห็นชัดขึ้นของเจ้าภาพของช่องโหว่ที่ยิ่งใหญ่กว่าที่มนุษย์สร้างขึ้นในอุตสาหกรรมนิวเคลียร์และการควบคุมของญี่ปุ่น นับตั้งแต่แนวทางความปลอดภัยที่ไม่เพียงพอจนถึงการจัดการกับวิกฤต ซึ่งทั้งหมดเหล่านี้เขาบอกว่าจำเป็นจะต้องมีการยกเครื่อง"[149]

นักฟิสิกส์และนักสิ่งแวดล้อม Amory Lovins กล่าวว่า "โครงสร้างของระบบราชการที่ไม่ยืดหยุ่น, การลังเลที่จะส่งข่าวร้ายขึ้นไป, ความจำเป็นที่จะต้องรักษาหน้า, การพัฒนาที่อ่อนแอของนโยบายทางเลือก, ความกระตือรือร้นที่จะรักษาความยอมรับของประชาชนในพลังงานนิวเคลียร์, และรัฐบาลที่เปราะบางทางการเมือง, พร้อมกับวัฒนธรรมการจัดการที่เป็นลำดับชั้นอย่างมากของ TEPCO, เหล่านี้ของญี่ปุ่นมีส่วนสร้างวิถีทางที่จะปิดบังการเกิดอุบัติเหตุอีกด้วย นอกจากนี้ข้อมูลที่คนญี่ปุ่นได้รับเกี่ยวกับพลังงานนิวเคลียร์และทางเลือกของมันได้รับการควบคุมอย่างเข้มงวดโดยทั้ง TEPCO และรัฐบาล"[150]

การสื่อสารที่ไม่ดีและความล่าช้า

รัฐบาลญี่ปุ่นไม่ได้เก็บบันทึกการประชุมที่สำคัญในช่วงวิกฤต[151] ข้อมูลจาก SPEEDI (ระบบสำหรับการทำนายข้อมูลปริมาณรังสีฉุกเฉินต่อสิ่งแวดล้อม) ถูกส่งทางจดหมายอิเล็กทรอนิกส์ไปยังรัฐบาลท้องถิ่นในจังหวัด แต่ไม่ได้แชร์ร่วมกับผู้อื่น อีเมลจาก NISA ไปฟูกูชิม่า ซึ่งครอบคลุมระหว่าง 12 มีนาคมเวลา 23:54 จนถึง 16 มีนาคมเวลา 09:00 และแจ้งข้อมูลที่สำคัญสำหรับการอพยพและคำแนะนำด้านสุขภาพ ไม่ได้ถูกอ่านและถูกลบทิ้งไป ข้อมูลไม่ได้ถูกใช้เพราะสำนักงานตอบโต้ภัยพิบัติได้พิจารณาข้อมูลนั้นว่า "ไร้ประโยชน์เพราะปริมาณที่คาดการณ์ของรังสีที่ปล่อยออกมาไม่สมจริง"[152]

รายงานระหว่างกาลของ'คณะกรรมการสอบสวนเกี่ยวกับอุบัติเหตุที่โรงไฟฟ้านิวเคลียร์ฟุกุชิมะของบริษัทพลังงานไฟฟ้ากรุงโตเกียว' ระบุว่าการตอบสนองของญี่ปุ่นมีข้อบกพร่องจาก "การสื่อสารที่ไม่ดีและความล่าช้าในการเผยแพร่ข้อมูลเกี่ยวกับการรั่วไหลของรังสีที่เป็นอันตรายที่โรงไฟฟ้า" รายงานตำหนิรัฐบาลกลางของประเทศญี่ปุ่นและ TEPCO "แสดงภาพของเจ้าหน้าที่ที่ไร้ความสามารถในการตัดสินใจในการอุดการรั่วไหลของรังสีเมื่อสถานการณ์ที่โรงไฟฟ้าริมชายฝั่งที่แย่ลงมากยิ่งขึ้นในช่วงหลายวันและหลายสัปดาห์หลังจากภัยพิบัติ"[153]​ รายงานกล่าวว่า การวางแผนไม่ดีทำให้การตอบสนองต้อภัยพิบัติแย​​่ลง สังเกตได้ว่าเจ้าหน้าที่ "ประเมินความเสี่ยงเกี่ยวกับสึนามิต่ำไปอย่างมาก" ที่เกิดตามหลังแผ่นดินไหวที่ขนาด 9.0 คลื่นสึนามิสูง 12.1 เมตร (40 ฟุต) ที่โจมตีโรงไฟฟ้ามีความสูงเป็นสองเท่าของคลื่นสูงสุดที่เจ้าหน้าที่คาดการณ์ไว้ สมมติฐานที่ผิดพลาดที่คิดว่าระบบระบายความร้อนของโรงไฟฟ้าจะทำงานหลังจากคลื่นสึนามิทำให้ภัยพิบัติแย่ลง "คนงานโรงไฟฟ้าไม่มีคำแนะนำที่ชัดเจนเกี่ยวกับวิธีการตอบสนองต่อภัยพิบัติดังกล่าว ทำให้การสื่อสารผิดพลาด โดยเฉพาะอย่างยิ่งเมื่อภัยพิบัติทำลายเครื่องกำเนิดไฟฟ้าสำรอง"[153]

ในเดือนกุมภาพันธ์ปี 2012 'มูลนิธิการสร้างใหม่ของความคิดริเริ่มของญี่ปุ่น'อธิบายว่าการตอบสนองของญี่ปุ่นถูกขัดขวางโดยการสูญเสียความไว้วางใจระหว่างตัวแสดงที่สำคัญได้อย่างไร ได้แก่ นายกรัฐมนตรีกาน, สำนักงานใหญ่โตเกียวของ TEPCO และผู้จัดการโรงไฟฟ้า รายงานกล่าวว่าความขัดแย้งเหล่านี้ "ผลิตกระแสที่สับสนของข้อมูลที่ขัดแย้งกันบางครั้ง"[154][155] ตามรายงาน กานได้ถ่วงเวลาการระบายความร้อนของเตาปฏิกรณ์โดยการตั้งคำถามถึงทางเลือกของน้ำทะเลแทนที่จะเป็นน้ำจืด กล่าวหาพวกเขาถึงความพยายามตอบสนองแบบ micromanaging และแต่งตั้งพนักงานตำแหน่งเล็กและผู้ใกล้ชิดในตำแหน่งผู้ตัดสินใจ รายงานระบุว่ารัฐบาลญี่ปุ่นตัดสินใจช้าที่จะยอมรับความช่วยเหลือจากผู้เชี่ยวชาญด้านนิวเคลียร์ของสหรัฐ[156]

รายงานในThe Economist ปี 2012 กล่าวว่า "บริษัทที่ดำเนินงานมีการควบคุมที่ไม่ดีและไม่ทราบว่าเกิดอะไรขึ้นบ้าง ผู้ตวบคุมเครื่องทำงานผิดพลาด ตัวแทนของกองตรวจความปลอดภัยหลบหนี บางส่วนของอุปกรณ์เสียหาย ผู้ประกอบการทำงานไม่เต็มสูบซ้ำ ๆ กับความเสี่ยงและทำการปราบปรามข้อมูลที่เกี่ยวกับการเคลื่อนไหวของ plume ที่มีกัมมันตรังสี ดังนั้นบางคนจึงถูกอพยพออกจากสถานที่ที่ปนเปื้อนที่เบาไปยังสถานที่ที่ปนเปื้อนที่มากขึ้น[157]

จากวันที่ 17 ถึง 19 มีนาคม 2011 เครื่องบินทหารสหรัฐได้วัดรังสีภายในรัศมี 45 กิโลเมตรของโรงไฟฟ้า ข้อมูลบันทึกค่า 125 microsieverts ต่อชั่วโมงของรังสีที่ระยะ 25 กิโลเมตร (15.5 ไมล์) ทางตะวันตกเฉียงเหนือของโรงไฟฟ้า สหรัฐได้ให้แผนที่แสดงรายละเอียดไปที่กระทรวงเศรษฐกิจการค้าและอุตสาหกรรมญี่ปุ่น (METI) เมื่อวันที่ 18 เดือนมีนาคมและไปยังกระทรวงศึกษาธิการวัฒนธรรมกีฬาวิทยาศาสตร์และเทคโนโลยี (MEXT) สองวันต่อมา แต่เจ้าหน้าที่ไม่ได้ดำเนินการอย่างไรกับข้อมูล[158]

ข้อมูลไม่ได้ถูกส่งต่อไปยังสำนักงานของนายกรัฐมนตรีหรือคณะกรรมการความปลอดภัยนิวเคลียร์ (NSC) และไม่ได้ถูกใช้ในการอำนวยการในการอพยพ เนื่องจากส่วนที่สำคัญของสารกัมมันตรังสีตกถึงพื้นดินทางตะวันตกเฉียงเหนือ ผู้อยู่อาศัยที่อพยพในทิศทางนี้จึงต้องสัมผัสกับรังสีโดยไม่จำเป็น ตามที่หัวหน้า NSC เท็ตสึยะ ยามาโมโตะ "มันเป็นเรื่องน่าเศร้าอย่างมากที่เราไม่ได้แชร์และใช้ประโยชน์จากข้อมูล" Itaru วาตานาเบะจากสำนักนโยบายวิทยาศาสตร์และเทคโนโลยีตำหนิสหรัฐว่าไม่เผยแพร่ข้อมูล[159]

หลังจากที่ชาวอเมริกันตีพิมพ์แผนที่ของพวกเขาในวันที่ 23 มีนาคม ญี่ปุ่นก็ตีพิมพ์แผนที่ของ fallout ที่รวบรวมมาจากการวัดภาคพื้นดินและ SPEEDI ในวันเดียวกัน ในวันที่ 19 มิถุนายน 2012, รัฐมนตรีวิทยาศาสตร์ฮิโรฟูมิ ฮิราโนะกล่าวว่า "งานของผมเป็นเพียงการวัดระดับรังสีบนดิน" และว่ารัฐบาลจะศึกษาว่าการเปิดเผยข้อมูลจะสามารถช่วยในความพยายามเพื่อการอพยพหรือไม่[160]

การให้คะแนนเหตุการณ์

บทความหลัก: การให้คะแนนอุบัติเหตุของพิบัตินิวเคลียร์ฟุกุชิมะไดอิจิภัย

การเปรียบเทียบระดับของรังสีนิวเคลียร์สำหรับเหตุการณ์ต่าง ๆ

เหตุการณ์ที่เกิดขึ้นได้รับคะแนนอันดับ 7 บน มาตราระหว่างประเทศว่าด้วยเหตุการณ์ทางนิวเคลียร์ (INES)[161] สเกลนี้จะเริ่มต้นตั้งแต่ 0 ที่แสดงสถานการณ์ที่ผิดปกติแต่ไม่มีผลกระทบด้านความปลอดภัย จนถึง 7 ที่แสดงการเกิดอุบัติเหตุที่ก่อให้เกิดการปนเปื้อนอย่างกว้างขวางกับผลกระทบด้านสุขภาพและสิ่งแวดล้อมที่รุนแรง ก่อนที่จะเกิดที่ฟูกูชิม่า ภัยพิบัติ Chernobyl เป็นเหตุการณ์ระดับ 7 เพียงแห่งเดียวเท่านั้นที่ถูกบันทึกไว้ ในขณะที่อุบัติเหตุที่เกาะทรีไมล์ได้รับการจัดอันดับให้เป็นระดับ 5

การวิเคราะห์ในปี 2012 ของการปล่อยกัมมันตภาพรังสีระยะกลางและระยะยาวพบว่าการปลดปล่อยรังสีของฟุกุชิมะมีประมาณ 10-20% ของที่ปล่อยออกมาจากภัยพิบัติ Chernobyl[162][163] ประมาณ 15 PBq ของซีเซียม-137 ถูกปล่อยออกมา[164] เมื่อเทียบกับประมาณ 85 PBq ซีเซียม-137 ที่เชอร์โนบิล[165] แสดงให้เห็นการปลดปล่อย 24 กิโลกรัม (53 ปอนด์) ของซีเซียม-137

ซึ่งแตกต่างจากเชอร์โนบิล เครื่องปฏิกรณ์นิวเคลียร์ทุกเครื่องของญี่ปุ่นอยู่ในอ่างบรรจุที่เป็นคอนกรีต ซึ่งจำกัดการปลดปล่อยของธาตุ สตรอนเตียม-90, อะเมริเซียม-241 และพลูโตเนียมซึ่งอยู่ในกลุ่มไอโซโทปรังสีที่ปล่อยออกมาโดยเหตุการณ์ก่อนหน้านี้[162][165]

ประมาณ 500 PBq ของไอโอดีน-131 ถูกปล่อยออกมา[164] เมื่อเทียบกับประมาณ 1,760 PBq ที่เชอร์โนบิล[165] ไอโอดีน-131 มีครึ่งชีวิตที่ 8.02 วัน สลายตัวเป็นนิวไคลด์ที่มีเสถียรภาพ หลังจากสิบครึ่งชีวิต (80.2 วัน) 99.9% จะสลายตัวไปซีนอน-131 ซึ่งเป็นไอโซโทปที่เสถียร[166]

หลังเหตุการณ์

บทความหลัก: ผู้ได้รับบาดเจ็บจากภัยพิบัตินิวเคลียร์ฟุกุชิมะไดอิจิ

ไม่มีการเสียชีวิตหลังจากได้รับรังสีในระยะสั้น ในขณะที่มีผู้เสียชีวิต 15,884 คน (ณ วันที่ 10 กุมภาพันธ์ 2014) เนื่องจากการเกิดแผ่นดินไหวและสึนามิ

ความเสี่ยงจากรังสี

การเกิดโรคมะเร็งคาดว่าจะมีน้อยมากอันเป็นผลมาจากการเปิดรับรังสีสะสม[167][168][169] แม้แต่คนในพื้นที่ที่ได้รับผลกระทบที่เลวร้ายที่สุดจากอุบัติเหตุนิวเคลียร์ฟุกุชิมะของญี่ปุ่นก็จะมีความเสี่ยงที่สูงขึ้นเพียงเล็กน้อยในการพัฒนาไปสู่โรคมะเร็งบางชนิดเช่นมะเร็งเม็ดเลือดขาว, โรคมะเร็งที่เป็นของแข็ง, มะเร็งต่อมไทรอยด์และมะเร็งเต้านม[170][171]

ปริมาณที่เป็นผล (อังกฤษ: effective dose) โดยประมาณนอกประเทศญี่ปุ่นถูกพิจารณาว่ามีระดับปริมาณรังสีที่ต่ำกว่า (หรือต่ำกว่ามาก) ของระดับปริมาณรังสีที่ถือว่าเล็กมากโดยชุมชนการป้องกันรังสีระหว่างประเทศ[172]

ในปี 2013 องค์การอนามัยโลกรายงานว่าผู้อาศัยอยู่ในพื้นที่ที่มีการอพยพได้สัมผัสกับรังสีที่มีปริมาณน้อยมากเสียจนกระทั่งรังสีที่มีผลกระทบต่อสุขภาพมีแนวโน้มที่จะต่ำกว่าระดับที่สามารถตรวจพบได้[173][174] ความเสี่ยงต่อสุขภาพมีการคำนวณโดยใช้สมมติฐานอย่างอนุรักษ์ รวมทั้งรูปแบบไม่มีเกณฑ์เชิงเส้นอนุรักษ์ (อังกฤษ: conservative linear no-threshold model) ของการสัมผัสกับรังสี ซึ่งเป็นโมเดลหนึ่งที่ถือว่าแม้แต่จำนวนน้อยที่สุดของการสัมผัสรังสีจะทำให้เกิดผลกระทบด้านลบต่อสุขภาพได้[175][176] รายงานระบุว่าสำหรับทารกเหล่านั้นในพื้นที่ที่ได้รับผลกระทบมากที่สุด ความเสี่ยงจากโรคมะเร็งตลอดช่วงอายุจะเพิ่มขึ้นประมาณ 1% [174][177] รายงานคาดการณ์ว่าประชากรในพื้นที่ปนเปื้อนมากที่สุดต้องเผชิญกับความเสี่ยงที่เกี่ยวกันในการพัฒนาไปสู่มะเร็งต่อมไทรอยด์สูงขึ้น 70% สำหรับสตรีที่สัมผ้สตอนเป็นทารกและความเสี่ยงที่เกี่ยวกันของโรคมะเร็งเม็ดเลือดขาวที่สูงขึ้น 7% ในเพศชายที่สัมผัสตอนเป็นทารก และมีความเสี่ยงที่เกี่ยวกันของมะเร็งเต้านมที่สูงขึ้น 6% ในเพศหญิงที่สัมผ้สตอนเป็นทารก[24] หนึ่งในสามของคนงานฉุกเฉินที่เกี่ยวข้องจะมีความเสี่ยงโรคมะเร็งเพิ่มขึ้น[178] ความเสี่ยงโรคมะเร็งสำหรับทารกในครรภ์มีความคล้ายคลึงกับทารกที่มีอายุ 1 ปี[25] ความเสี่ยงโรคมะเร็งในเด็กและผู้ใหญ่คาดว่าจะต่ำกว่าทารก[179]

ความเสี่ยงที่ระบุไว้มีความสัมพันธ์และไม่สมบูรณ์ ความเสี่ยงพื้นฐานของโรคมะเร็งต่อมไทรอยด์ในเพศหญิงคือ 0.75% คาดว่าจะเพิ่มขึ้นเป็น 1.25% หรือ "ความเสี่ยงสัมพันธ์สูงขึ้น 70%" นี่หมายถึงการเพิ่มขึ้นประมาณ 15 กรณีเท่านั้นในจำนวนของผู้ป่วยโรคมะเร็งต่อมไทรอยด์ในเพศหญิง (และประมาณห้ากรณีในเพศชาย) ในขณะที่อัตราอยู่ไม่รอดในห้าปีสำหรับโรคมะเร็งต่อมไทรอยด์เป็น 4.2% และลดลงอย่างรวดเร็ว (ลดลงครึ่งหนึ่งในแต่ละทศวรรษที่ผ่านมา)[180] มันมีโอกาสมากขึ้นว่าจำนวนผู้เสียชีวิตในที่สุดจะไม่เป็นศูนย์

เปอร์เซ็นต์เหล่านี้แสดงการเพิ่มขึ้นอย่างสัมพันธ์โดยประมาณที่มากกว่าอัตราพื้นฐานและไม่เป็นความเสี่ยงอย่างสมบูรณ์ในการพัฒนาไปสู่โรคมะเร็งดังกล่าว เนื่องจากอัตราพื้นฐานที่ต่ำของมะเร็งต่อมไทรอยด์ แม้แต่การเพิ่มขึ้นอย่างสัมพันธ์ขนาดใหญ่ก็ยังแสดงให้เห็นถึงการเพิ่มขึ้นอย่างสมบูรณ์ในความเสี่ยงที่มีขนาดเล็ก ตัวอย่างเช่นความเสี่ยงพื้นฐานตลอดชีวิตของมะเร็งต่อมไทรอยด์สำหรับสตรีมีเพียงสามในสี่ของหนึ่งเปอร์เซ็นต์ (0.75%) และความเสี่ยงตลอดชีวิตที่เพิ่มขึ้นที่มีการประมาณการในการประเมินนี้สำหรับทารกเพศหญิงที่สัมผัสกับรังสีในบริเวณที่ได้รับผลกระทบมากที่สุดคือครึ่งหนึ่งของหนึ่งเปอร์เซ็นต์ (0.5%)

ตามรูปแบบไม่มีเกณฑ์เชิงเส้น (รูปแบบ LNT) อุบัติเหตุจะสาเหตุส่วนใหญ่ของการเสียชีวิตจากมะเร็ง 130 ราย[21][22] นักระบาดวิทยารังสี Roy Shore โต้การประเมินผลกระทบต่อสุขภาพจากรูปแบบ LNT "ไม่ฉลาดเพราะความไม่แน่นอน"[181]

ในเดิอนเมษายน 2014 หลายการศึกษาได้ยืนยันการปรากฏตัวของปลาทูน่ากัมมันตรังสีนอกชายฝั่งแปซิฟิกของสหรัฐ[182] นักวิจัยดำเนินการทดสอบหลายอย่างกับปลาทูน่า albacore 26 ตัวที่จับได้ก่อนที่จะเกิดภัยพิบัติโรงไฟฟ้​​าปี 2011 และตัวที่จับได้ทีหลัง แม้ว่าระดับรังสีจะมีขนาดเล็ก น้อยกว่าปริมาณของกัมมันตภาพรังสีที่พบตามธรรมชาติในกล้วยผลเดียว หลักฐานก็ยังคงพบอยู่ในปลาจากภัยพิบัตินิวเคลียร์ฟูกูชิม่า[183]

โครงการตรวจคัดกรองต่อมไทรอยด์

องค์การอนามัยโลกระบุว่าโครงการตรวจคัดกรองต่อมไทรอยด์ด้วยอัลตราซาวนด์ครั้งหนึ่งในปี 2013 มีแนวโน้มเนื่องจากผลกระทบของยาคัดกรองที่จะนำไปสู่​​การเพิ่มขึ้นของผู้ป่วยต่อมไทรอยด์ที่บันทึกไว้เนื่องจากการตรวจพบแต่เนิ่น ๆ ของผู้ป่วยที่ไม่แสดงอาการ[184] ส่วนใหญ่ที่ครอบงำทั้งหมดของการเจริญเติบโตของต่อมไทรอยด์เป็นการเจริญเติบโตที่อ่อนโยนที่จะไม่ทำให้เกิดอาการ, การเจ็บป่วยหรือการเสียชีวิต แม้ว่าจะไม่ได้ทำอะไรที่เกี่ยวกับการเจริญเติบโตเลย การศึกษาด้วยการชันสูตรศพชองคนที่เสียชีวิตจากสาเหตุอื่น ๆ แสดงให้เห็นว่ามากกว่าหนึ่งในสามของผู้ใหญ่ในทางเทคนิคมีการเจริญเติบโตของต่อมไทรอยด์/มะเร็ง[185]

ตามรายงานที่สิบของการสำรวจเพื่อการจัดการสุขภาพของจุงหวัดฟุกุชิมะที่เผยแพร่ในเดือนกุมภาพันธ์ปี 2013 มากกว่า 40% ของเด็กที่คัดกรองรอบจังหวัดฟุกุชิมะได้รับการวินิจฉัยพบก้อนไทรอยด์หรือซีสต์ที่สามารถตรวจพบได้ด้วยคลื่นเสียงความถี่สูง การตรวจพบเป็นเรื่องธรรมดามากและสามารถพบได้ที่ความถี่สูงสุดถึง 67% ในการศึกษาหลายครั้ง[186] 186 (0.5%) ของกรณีเหล่านี้มีก้อนขนาดใหญ่กว่า 5.1 มิลลิเมตรและ/หรือซีสต์ขนาดใหญ่กว่า 20.1 มม และต้องได้รับการตรวจสอบต่อไป ในขณะที่ไม่มีใครเป็นมะเร็งต่อมไทรอยด์ รายงานของ Russia Today ในเรื่องนี้สร้างความเข้าใจผิดอย่างมาก มหาวิทยาลัยแพทย์ฟุกุชิมะให้ตัวเลขของเด็กที่ได้รับการวินิจฉัยว่าเป็นมะเร็งต่อมไทรอยด์ ณ เดือนธันวาคม 2013 เป็น 33 และได้สรุปว่า "การเกิดโรคมะเร็งเหล่านี้ไม่น่าเกิดจากการสัมผัสกับ I-131 จากอุบัติเหตุโรงไฟฟ้านิวเคลียร์เมื่อเดือนมีนาคม 2011"[187] มะเร็งต่อมไทรอยด์เป็นหนึ่งโรคมะเร็งที่รอดชีวิตได้มากที่สุด ที่มีอัตราการรอดตายหลังการวินิจฉัยครั้งแรกประมาณ 94% อัตรานี้จะเพิ่มอัตราการรอดตายเป็นเกือบ 100% ถ้าสามารถตรวจจับได้แต่เนิ่น ๆ[188]

การเปรียบเทียบกับเชอร์โนบิล

การเสียชีวิตจากรังสีที่เชอร์โนบิลก็ยังไม่สามารถตรวจพบได้ทางสถิติ เพียง 0.1% เท่านั้นของคนงานทำความสะอาดชาวยูเครน 110,645 คน รวมอยู่ในการศึกษา 20 ปีนอกเหนือจากคนงานทำความสะอาดชาวอดีตสหภาพโซเวียตกว่า 500,000 คนได้พัฒนาเป็นโรคมะเร็งเม็ดเลือดขาว ณ ปี 2012 ถึงแม้ว่าจะไม่ใช่ทุกกรณีเป็นผลมาจากอุบัติเหตุ[189][190]

ข้อมูลจากเชอร์โนบิลแสดงให้เห็นว่ามีการเพิ่มขึ้นอย่างช้า ๆ จากนั้นก็เพิ่มอย่างรวดเร็วในอัตรามะเร็งต่อมไทรอยด์หลังจากภัยพิบัติในปี 1986 แต่ข้อมูลเหล่านี้สามารถนำมาเปรียบเทียบโดยตรงกับฟุกุชิมะได้หรือไม่ก็ยังต้องมีการพิจารณา[27][28]

อัตราอุบัติการณ์ของมะเร็งต่อมไทรอยด์ที่เชอร์โนบิลไม่ได้เริ่มต้นที่จะเพิ่มขึ้นเหนือค่าพื้นฐานที่มีอยู่ก่อนที่ประมาณ 0.7 รายต่อ 100,000 คนต่อปีจนกระทั่งปี 1989-1991 หรือ 3-5 ปีหลังจากเหตุการณ์ที่เกิดขึ้นทั้งในกลุ่มวัยรุ่นและวัยเด็ก[27][28] จากปี 1989 ถึง 2005, เด็กและวัยรุ่นเกินกว่า 4,000 กรณีถูกตั้งข้อสังเกตว่าเป็นมะเร็งต่อมไทรอยด์ เก้ารายเสียชีวิตในปี 2005 หรืออัตราการรอดตายที่ 99%[191]

ผลต่อผู้อพยพ

ในอดีตสหภาพโซเวียต ผู้ป่วยจำนวนมากที่มีการสัมผัสกับกัมมันตรังสีเพียงเล็กน้อยหลังจากภัยพิบัติ Chernobyl ได้แสดงความวิตกกังวลอย่างมากเกี่ยวกับการได้รับรังสี พวกเขาพัฒนาไปสู่ปัญหาด้านจิตใจหลายอย่าง รวมทั้งความกลัวรังสี พร้อมกับการเพิ่มขึ้นของโรคพิษสุราเรื้อรังที่เอาชีวิต อย่างที่ผู้เชี่ยวชาญด้านสุขภาพและรังสีของญี่ปุ่น Shunichi ยามาชิตะตั้งข้อสังเกต[192]

เรารู้จากเชอร์โนบิลว่าผลที่ตามมาทางจิตวิทยานั้นยิ่งใหญ่มาก อายุขัยของผู้อพยพลดลงจาก 65 มาอยู่ที่ 58 ปี - [ส่วนใหญ่] ไม่ได้เป็นเพราะโรคมะเร็ง แต่เป็นเพราะภาวะซึมเศร้า, โรคพิษสุราเรื้อรังและการฆ่าตัวตาย การขนย้ายไม่ใช่เรื่องง่ายความเครียดมีขนาดใหญ่มาก เราจะต้องไม่เพียงแต่ติดตามปัญหาเหล​​่านั้นเท่านั้น แต่ยังต้องรักษาพวกเขาอีกด้วย มิฉะนั้นคนจะรู้สึกว่าพวกเขาเป็นเพียงหนูตะเภาในการวิจัยของเรา[192]

การสำรวจโดยรัฐบาลท้องถิ่นเมือง Iitate ได้รับคำตอบจากผู้อพยพประมาณ 1,743 คนภายในโซนอพยพ ผลการสำรวจแสดงให้เห็นว่าชาวบ้านจำนวนมากกำลังประสบความยุ่งยาก, ความไม่แน่นอนที่เพิ่มขึ้นและความไม่สามารถที่จะกลับไปใช้ชีวิตของพวกเขาก่อนหน้านี้ หกสิบเปอร์เซ็นต์ของผู้ตอบแบบสอบถามระบุว่าสุขภาพของพวกเขาและสุขภาพของครอบครัวของพวกเขาได้ทรุดโทรมหลังจากการอพยพ ในขณะที่ 39.9% รายงานถึงความรู้สึกหงุดหงิดมากขึ้นเมื่อเทียบกับก่อนที่จะเกิดภัยพิบัติ[193]

สรุปคำตอบในทุกคำถามที่เกี่ยวข้องกับสถานะครอบครัวในปัจจุบันของผู้อพยพ หนึ่งในสามของครอบครัวที่ถูกสำรวจทั้งหมดแยกกันอยู่จากเด็กของพวกเขา ในขณะที่ 50.1% อาศัยอยู่ห่างจากสมาชิกของครอบครัวคนอื่น ๆ (รวมถึงพ่อแม่ผู้สูงอายุ) ซึ่งเคยอยู่ด้วยกันก่อนที่จะเกิดภัยพิบัติ การสำรวจยังพบว่า 34.7% ของผู้อพยพได้รับความเดือดร้อนจากการถูกตัดเงินเดือน 50% หรือมากกว่านับตั้งแต่เกิดภัยพิบัตินิวเคลียร์ รวมทั้งหมด 36.8% รายงานถึงการขาดการนอนหลับ ขณะที่ 17.9% รายงานการสูบบุหรี่หรือดื่มมากขึ้นกว่าก่อนที่พวกเขาจะถูกอพยพ[193]

ความเครียดมักจะปรากฏในโรคทางกาย รวมทั้งการเปลี่ยนแปลงพฤติกรรมเช่นการเลือกอาหารที่ไม่มีคุณภาพ ขาดการออกกำลังกายและขาดการนอนหลับ ผู้รอดชีวิต รวมทั้งบางคนที่สูญเสียบ้าน หมู่บ้านและสมาชิกในครอบครัวของเขา ถูกพบว่าแนวโน้มที่จะเผชิญความท้าทายในสุขภาพจิตและความท้าทายทางกายภาพ จำนวนมากของความเครียดมาจากการขาดข้อมูลและจากการย้ายถิ่นฐาน[194]

การสำรวจคำนวณออกมาได้ว่าในจำนวนผู้อพยพประมาณ 300,000 คน ประมาณ 1,600 คนเสียชีวิตเกี่ยวข้องกับสภาพในการอพยพ เช่นการอาศัยอยู่ในที่อยู่ชั่วคราวและการปิดของโรงพยาบาลที่เกิดขึ้นเมื่อเดือนสิงหาคม 2013 จำนวนนี้ใกล้เคียงกับ 1599 รายที่เสียชีวิตโดยตรงจากแผ่นดินไหวและสึนามิในจังหวัด สาเหตุที่แท้จริงของการเสียชีวิตเกี่ยวข้องกับการอพยพเหล่านี้ไม่ได้ถูกระบุไว้ เพราะตามข้อมูลของเทศบาล จะเป็นอุปสรรคต่อญาติที่จะใช้สำหรับการชดเชย[29]

การปลดปล่อยกัมมันตภาพรังสี

ในเดือนมิถุนายน 2011, TEPCO ระบุปริมาณของน้ำที่ปนเปื้อนในกลุ่มอาคารได้เพิ่มขึ้นเนื่องจากปริมาณน้ำฝนเป็นสำคัญ[195] เมื่อวันที่ 13 กุมภาพันธ์ 2014, TEPCO รายงาน 37,000 becquerels (1.0 microcurie) ของซีเซียม-134 และ 93,000 becquerels (2.5 microcuries) ซีเซียม-137 ถูกตรวจพบต่อลิตรของน้ำบาดาลที่เป็นตัวอย่างจากบ่อการตรวจสอบ[196]

ประกันภัย

ตามข้อมูลของบริษัทประกันภัยต่อ Munich Re อุตสาหกรรมประกันภัยเอกชนจะไม่ได้รับผลกระทบอย่างมีนัยสำคัญจากภัยพิบัติ[197] Swiss Re ระบุในทำนองเดียวกันว่า "การครอบคลุมสำหรับโรงงานนิวเคลียร์ในประเทศญี่ปุ่นไม่รวมการช็อคจากแผ่นดินไหว ไฟไหม้หลังแผ่นดินไหวและสึนามิ ทั้งความเสียหายทางกายภาพและความรับผิด Swiss Re ยังเชื่อว่าเหตุการณ์ที่เกิดขึ้นที่โรงไฟฟ้​​านิวเคลียร์ฟุกุชิมะไม่น่าจะส่งผลให้เกิดความสูญเสียโดยตรงที่สำคัญสำหรับอุตสาหกรรมประกันภัยเกี่ยวกับทรัพย์สินและชีวิต"[198] [ไม่อยู่ในแหล่งอ้างอิง]

การเกี่ยงข้องกับนโยบายพลังงาน

จำนวนการก่อสร้างโรงไฟฟ้​​านิวเคลียร์เริ่มต้นในแต่ละปี จากปี 1954 ถึง 2013 หลังจากการเพิ่มขึ้นในการก่อสร้างใหม่จากปี 2007-2010 มีการลดลงหลังจากภัยพิบัตินิวเคลียร์ที่ฟุกุชิมะ
การผลิตไฟฟ้าในประเทศญี่ปุ่นจำแนกตามแหล่งพลังงาน (ข้อมูลรายเดือน) การมีส่วนร่วมของพลังงานนิวเคลียร์ลดลงอย่างต่อเนื่องตลอดทั้งปี 2011 เนื่องจากการปิดทำการและถูกแทนที่ส่วนใหญ่ด้วยแหล่งพลังความร้อนเช่นก๊าซฟอสซิลและถ่านหิน
โรงไฟฟ้​​าพลังงานแสงอาทิตย์ Komekurayama ที่เป็นเจ้าของและดำเนินการโดย TEPCO ใน Kofu, จังหวัดยามานาชิ
ส่วนหนึ่งของฟาร์มลมที่เซโตะฮิลล์ในประเทศญี่ปุ่นซึ่งเป็นหนึ่งในฟาร์มลมหลายแห่งที่ยังคงผลิตกระแสไฟฟ้าโดยไม่หยุดชะงักหลังจากเกิดแผ่นดินไหวและสึนามิและภัยพิบัตินิวเคลียร์ฟุกุชิมะปี 2011
ราคาของแผงเซลล์แสงอาทิตย์ (เยน/Wp) ในประเทศญี่ปุ่น
การชุมนุมเพื่อต่อต้านโรงไฟฟ้านิวเคลียร์เมื่อวันที่ 19 กันยายน 2011 ที่กลุ่มอาคารศาลเจ้าเมจิในโตเกียว

เมื่อเดือนมีนาคมปี 2012 หนึ่งปีหลังจากภัยพิบัติ เครื่องปฏิกรณ์นิวเคลียร์ของญี่ปุ่นทุกเคริ่องยกเว้นสองตัวได้ถูกปิดลง บางเครื่องได้รับความเสียหายจากแผ่นดินไหวและสึนามิ อำนาจหน้าที่ในการสตาร์ตอีกครั้งของเครื่องอื่น ๆ หลังจากการบำรุงรักษาตามกำหนดตลอดทั้งปีถูกส่งให้กับรัฐบาลท้องถิ่น ผู้ซึ่งในทุกกรณีได้ตัดสินใจตรงกันข้าม ตามที่ The Japan Times ภัยพิบัติมีการเปลี่ยนแปลงการอภิปรายระดับชาติด้านนโยบายพลังงานเกือบชั่วข้ามคืน "โดยการทำลายตำนานความปลอดภัยของรัฐบาลในระยะยาวเกี่ยวกับพลังงานนิวเคลียร์ วิกฤติการณ์ได้ยกระดับความตระหนักของประชาชนอย่างมากเกี่ยวกับการใช้พลังงานและจุดประกายให้เกิดความรู้สึกต่อต้านนิวเคลียร์อย่างแข็งแกร่ง" เอกสารสีขาวด้านพลังงานที่ไ​​ด้รับการอนุมัติจากคณะรัฐมนตรีญี่ปุ่นในเดือนตุลาคม 2011 กล่าวว่า "ความเชื่อมั่นของประชาชนในความปลอดภัยของพลังงานนิวเคลียร์ได้รับความเสียหายอย่างมาก" จากภัยพิบัติและเรียกร้องให้ลดการพึ่งพาพลังงานนิวเคลียร์ในประเทศ นอกจากนี้ยังให้ยกเลิกหัวข้อในเอกสารนั้นที่เกี่ยวกับการขยายการใช้งานของพลังงานนิวเคลียร์ที่อยู่ระหว่างการทบทวนนโยบายของปีก่อนหน้านั้น[199]

Michael Banach ตัวแทนวาติกันปัจจุบันประจำ IAEA บอกในที่ประชุมในกรุงเวียนนาในเดือนกันยายน 2011 ว่าภัยพิบัติได้สร้างความกังวลใหม่เกี่ยวกับความปลอดภัยของโรงไฟฟ้​​านิวเคลียร์ทั่วโลก ผู้ช่วยบาทหลวงแห่งโอซาก้า ไมเคิล Goro Matsuura กล่าวว่าเหตุการณ์ที่เกิดขึ้นนี้ควรทำให้ประเทศญี่ปุ่นและประเทศอื่น ๆ ที่จะละทิ้งโครงการนิวเคลียร์ เขาเรียกร้องให้ชุมชนคริสเตียนทั่วโลกให้การสนับสนุนการรณรงค์ต่อต้านนิวเคลียร์นี้ คำกล่าวจากการประชุมบิชอปในเกาหลีและฟิลิปปินส์ได้เรียกร้องให้รัฐบาลของพวกเขาที่จะละทิ้งพลังงานปรมาณู นักเขียนเค็นซะบุโร โอเอะ ผู้ที่ได้รับรางวัลโนเบลสาขาวรรณคดีกระตุ้นประเทศญี่ปุ่นให้ละทิ้งเครื่องปฏิกรณ์ของประเทศ

โรงไฟฟ้านิวเคลียร์ที่ใกล้กับศูนย์กลางของแผ่นดินไหว โรงไฟฟ้านิวเคลียร์ Onagawa, ประสบความสำเร็จในการทนต่อหายนะ ตามการรายงานของรอยเตอร์ โรงงานนี้อาจจะทำหน้าที่เป็น "ไพ่ตาย" สำหรับการล็อบบี้ด้านนิวเคลียร์ ซึ่งให้หลักฐานว่ามันเป็นไปได้สำหรับการออกแบบและดำเนินการสถานนิวเคลียร์อย่างถูกต้องที่จะทนต่อหายนะดังกล่าว[200]

การสูญเสียถึง 30% ของกำลังการผลิตไฟฟ้าของประเทศได้นำไปสู่ความพึ่งพามากขึ้นกับแก๊สธรรมชาติเหลวและถ่านหิน[201] มาตรการอนุรักษ์ที่ผิดปกติอยู่ระหว่างการดำเนินการ ในทันทีหลังจากเหตุการณ์ เก้าจังหวัดที่บริการโดย TEPCO ประสบกับการปันส่วนพลังงาน[202] รัฐบาลได้ขอร้องบริษัทใหญ่ ๆ ที่สำคัญในการช่วยลดการใช้พลังงานลง 15% และบางบริษัทให้เปลี่ยนวันหยุดสุดสัปดาห์ของพวกเขาไปเป็นวันธรรมดาเพื่อให้ความต้องการใช้ไฟฟ้าคงที่[203] การแปลงไปสู่เศรษฐกิจพลังงานที่ใช้ก๊าซและน้ำมันที่ปราศจากนิวเคลียร์จะเสียค่าใช้จ่ายหลายพันล้านดอลลาร์ในค่าธรรมเนียมรายปี ประมาณอย่างหนึ่งคือแม้ว่าจะรวมภัยพิบัติเข้าไปด้วย ชีวิตจะต้องสูญเสียมากขึ้นหากญี่ปุ่นหันไปใช้โรงไฟฟ้าถ่านหินหรือน้ำมันแทนที่จะใช้นิวเคลียร์[21]

นักเคลื่อนไหวทางการเมืองหลายคนได้เริ่มเรียกร้องให้มีการปลดระวางโรงไฟฟ้านิวเคลียร์ในประเทศญี่ปุ่นรวมทั้ง Amory Lovins ผู้ซึ่งอ้างว่า "ญี่ปุ่นยากจนในเรื่องเชื้อเพลิง แต่ร่ำรวยที่สุดในกลุ่มประเทศอุตสาหกรรมที่สำคัญทั้งหมดในด้านพลังงานหมุนเวียนที่สามารถตอบสนองความต้องการพลังงานระยะยาวทั้งหมดของญี่ปุ่นด้วยต้นทุนและความเสี่ยงที่ต่ำกว่าแผนในปัจจุบัน อุตสาหกรรมของญี่ปุ่นสามารถทำได้เร็วกว่าใคร ถ้าผู้กำหนดนโยบายของญี่ปุ่นรับทราบและอนุญาตให้ทำ"[150] เบนจามิน เค Sovacool ยืนยันว่าญี่ปุ่นน่าจะได้ใช้ประโยชน์ในรากฐานพลังงานหมุนเวียนของญี่ปุ่น ญี่ปุ่นมีทั้งหมด "324 GW ของศักยภาพที่สามารถทำได้ในรูปแบบของกังหันลมบนบกและนอกชายฝั่ง (222 GW), โรงไฟฟ้​​าพลังงานความร้อนใต้พิภพ (70 GW), กำลังการผลิตไฟฟ้าพลังน้ำเพิ่มเติม (26.5 GW), พลังงานแสงอาทิตย์ (4.8 GW) และสารตกค้างทางการเกษตร (1.1 GW)"[204] ทัศนคติจะต้องมีที่นี่เช่นกัน เพื่อจัดหาความต้องการพลังงานทั้งหมดของญี่ปุ่นด้วยลมที่ 2.5 W/m2 และปฏิบัติงาน 1/3 ของเวลา มันต้องการ 127.3 ล้าน คูณด้วย 7,847.8 kWh/ปี ซึ่งจะต้องมีฟาร์มลมที่ครอบคลุม 5 หมื่นล้าน/365 m2 หรือประมาณ 140,000 กิโลเมตร2 หรือประมาณ 40% ของพื้นที่ญี่ปุ่นที่ 377,944 km2 สวนพลังงานแสงอาทิตย์ของเยอรมนีในบาวาเรียผลิตประมาณ 5 W/m2 ของพื้นที่ ดังนั้นจึงต้องการพื้นที่ 70,000 กิโลเมตร2[205][206]

ในทางตรงกันข้าม คนอื่น ๆ เคยกล่าวว่า อัตราการตายเป็นศูนย์จากเหตุการณ์ที่เกิดขึ้นใน Fukushima ยืนยันความเห็นของพวกเขาที่ว่านิวเคลียร์เป็นทางเลือกตัวเดียวเท่านั้นที่เป็นไปได้ที่จะเข้าแทนที่เชื้อเพลิงฟอสซิล นักข่าวจอร์จ Monbiot เขียนว่า "เหตุผลที่ฟุกุชิมะทำให้ผมหยุดกังวลและมีความรักในพลังงานนิวเคลียร์" ในนั้นเขากล่าวว่า "เนื่องจากผลของภัยพิบัติที่ฟุกุชิมะ ผมจึงไม่เป็นกลางต่อนิวเคลียร์อีกต่อไป ตอนนี้ผมสนับสนุนเทคโนโลยีนี้"[207][208]

เขายังกล่าวต่อไปว่า "โรงงานเก่าเส็งเคร็งกับคุณลักษณะด้านความปลอดภัยที่ไม่เพียงพอถูกโจมตีด้วยแผ่นดินไหวมรณะและคลื่นสึนามิขนาดใหญ่ การจ่ายพลังงานไฟฟ้าล้มเหลวจนทำลายระบายความร้อน เครื่องปฏิกรณ์เริ่มที่จะระเบิดและหลอมละลาย ภัยพิบัติทำให้เกิดมรดกที่คุ้นเคยของการออกแบบและทางลัดที่น่าสงสาร กระนั้นก็ตาม เท่าที่เรารู้ว่า ไม่มีใครได้รับระดับรังสีจนถึงกับเสียชีวิต"[209][210]

ในเดือนกันยายน 2011, Mycle ชไนเดอร์กล่าวว่าภัยพิบัติสามารถเข้าใจได้ว่าเป็นโอกาสที่เป็นหนึ่งเดียว "ที่จะทำให้มันถูกต้อง" ในนโยบายพลังงาน "เยอรมนี-กับการตัดสินใจที่จะปลดระวางนิวเคลียร์ของตนบนพื้นฐานของโครงการพลังงานหมุนเวียน-และญี่ปุ่น-ที่ต้องทนทุกข์ทรมาณเนื่องจากการช็อคที่เจ็บปวด แต่ก็ยังครอบครองความสามารถทางเทคนิคและมีระเบียบวินัยในสังคมที่ไม่เหมือนใคร - สามารถอยู่ในระดับแนวหน้าของกระบวนทัศน์ที่แท้จริงการเปลี่ยนแปลงไปสู่​​การพัฒนาอย่างยั่งยืนอย่างแท้จริง นั่นคือนโยบายพลังงานคาร์บอนต่ำและปราศจากนิวเคลียร์"[211]

ในทางกลับกัน นักสภาพภูมิอากาศและวิทยาศาสตร์พลังงาน เจมส์ แฮนเซน, เคน Caldeira, เคอร์รี่ เอมานูเอลและทอม Wigley เผยแพร่จดหมายเปิดผนึกที่เรียกร้องให้ผู้นำโลกสนับสนุนการพัฒนาระบบไฟฟ้าพลังงานนิวเคลียร์ที่ปลอดภัยกว่า โดยระบุว่า "ไม่มีเส้นทางที่มีความน่าเชื่อถือไปสู่การรักษาเสถียรภาพของสภาพภูมิอากาศที่ไม่รวมถึงบทบาทที่สำคัญสำหรับพลังงานนิวเคลียร์"[212] ในเดือนธันวาคมปี 2014 จดหมายเปิดผนึกจาก 75 นักวิทยาศาสตร์สภาพภูมิอากาศและพลังงานสรุปว่า "พลังงานนิวเคลียร์มีผลกระทบต่ำสุดต่อสัตว์ป่าและระบบนิเวศ - ซึ่งเป็นสิ่งที่เราต้องการในสภาพที่เลวร้ายของความหลากหลายทางชีวภาพของโลก"[213]

ณ เดือนกันยายน 2011, ญี่ปุ่นวางแผนที่จะสร้างฟาร์มลมลอยนอกชายฝั่งนำร่อง ด้วยกังหันขนาด 2 เมกะวัตต์หกตัวนอกชายฝั่งฟุกุชิมะ[214] ตัวแรกเริ่มดำเนินงานในเดือนพฤศจิกายน 2013[215] หลังจากเสร็จสิ้นขั้นตอนการประเมินในปี 2016, "ญี่ปุ่นมีแผนจะสร้างมากถึง 80 กังหันลมลอยนอกฝั่งฟุกุชิมะภายในปี 2020"[214] ในปี 2012 นายกรัฐมนตรีกานกล่าวว่า ภัยพิบัติทำให้เขามีความชัดเจนว่า "ญี่ปุ่นจำเป็นต้องลดการพึ่งพาพลังงานนิวเคลียร์ ซึ่งจัดส่ง 30% ของการผลิตไฟฟ้าก่อนเกิดวิกฤตเศรษฐกิจ และได้เปลี่ยนเขาให้ศรัทธาต่อพลังงานหมุนเวียน"[ต้องการอ้างอิง] ยอดขายแผงเซลล์แสงอาทิตย์ในประเทศญี่ปุ่นเพิ่มขึ้น 30.7% เป็น 1,296 เมกะวัตต์ในปี 2011 จากความช่วยเหลือของรัฐบาลในโครงการส่งเสริมการใช้พลังงานหมุนเวียน พลังงานแสงอาทิตย์แคนาดาได้รับเงินทุนสำหรับแผนในการสร้างโรงงานในประเทศญี่ปุ่นด้วยความจุ 150 เมกะวัตต์กำหนดจะเริ่มการผลิตในปี 2014[216]

เมื่อเดือนกันยายน 2012, Los Angeles Times รายงานว่า "นายกรัฐมนตรีโยชิฮิโกะ โนดะได้ยอมรับว่าส่วนใหญ่ของชาวญี่ปุ่นสนับสนุนตัวเลือกที่เป็นศูนย์ (อังกฤษ: zero option) สำหรับพลังงานนิวเคลียร์"[217] นายกรัฐมนตรีโนดะและรัฐบาลญี่ปุ่นได้ประกาศแผนการที่จะทำให้ประเทศปลอดพลังงานนิวเคลียร์ภายในปี 2030s พวกเขาประกาศให้ยุติการก่อสร้างโรงไฟฟ้านิวเคลียร์และประกาศให้โรงไฟฟ้านิวเคลียร์ที่มีอยู่จำกัดการทำงานที่ 40 ปี การเปิดดำเนินการเครื่องใหม่ของโรงไฟฟ้​​านิวเคลียร์จะต้องเป็นไปตามมาตรฐานความปลอดภัยของผู้กำกับดูแลอิสระใหม่ แผนนี้ต้องมีการลงทุน $ 500 พันล้านตลอดเวลา 20 ปี

เมื่อวันที่ 16 ธันวาคม 2012, ญี่ปุ่นจัดเลือกตั้งทั่วไป พรรคเสรีประชาธิปไตย (LDP) มีชัยชนะที่ชัดเจน ด้วยชินโซ อะเบะเป็นนายกรัฐมนตรีคนใหม่ อาเบะสนับสนุนพลังงานนิวเคลียร์ บอกว่าการปล่อยให้โรงไฟฟ้าถูกปิดทำให้ประเทศมีค่าใช้จ่ายสูงขึ้น ¥ 4 ล้านล้านต่อปี[218] มีความคิดเห็นจาก Junichiro Koizumi ผู้ที่เลือกอาเบะต่อจากเขาในฐานะนายกรัฐมนตรี ได้ระบุความเห็นเพื่อเรียกร้องให้รัฐบาลมีจุดยืนที่ต่อต้านการใช้พลังงานนิวเคลียร์[219] การสำรวจกับนายกเทศมนตรีท้องถิ่นโดยหนังสือพิมพ์โยมิอุริชิมบุนในเดือนมกราคม 2013 พบว่าส่วนใหญ่ของพวกเขาจากหลายเมืองที่เป็นที่ตั้งของโรงไฟฟ้​​านิวเคลียร์จะเห็นด้วยกับการเดินเครื่องปฏิกรณ์ใหม่ ถ้ารัฐบาลสามารถรับประกันความปลอดภัยให้กับพวกเขา[220] ประชาชนมากกว่า 30,000 คนเดินขบวนเมื่อวันที่ 2 มิถุนายน 2013 ในกรุงโตเกียวคัดค้านการรีสตาร์ตโรงไฟฟ้​​านิวเคลียร์ ผู้เดินขบวนแห่มารวมตัวกันกว่า 8 ล้านคนร้องขอลายเซ็นเพื่อต่อต้านโรงไฟฟ้านิวเคลียร์[221]

ในเดือนตุลาคม 2013 มีรายงานว่า TEPCO และแปดบริษัทพลังงานอื่น ๆ ของญี่ปุ่นได้จ่ายเงินประมาณ ¥ 3.6 ล้านล้าน (37 พันล้านดอลลาร์) ในการที่นำเข้าต้นทุนเชื้อเพลิงฟอสซิลรวมมากขึ้นเมื่อเทียบกับปี 2010 ก่อนที่จะเกิดอุบัติเหตุ เพื่อชดเชยสำหรับพลังงานที่ขาดหายไป. [ 260][222]

การเปลี่ยนแปลงในอุปกรณ์, สิ่งอำนวยความสะดวกและการดำเนินงาน

จำนวนมากของบทเรียนระบบความปลอดภัยปฏิกรณ์นิวเคลียร์เกิดขึ้นจากเหตุการณ์ ที่ชัดเจนที่สุดคือที่ในพื้นที่เกิดสึนามิได้ง่าย กำแพงทะเลของโรงไฟฟ้าจะต้องมีความสูงและแข็งแกร่งอย่างเพียงพอ[8] ที่โรงไฟฟ้​​านิวเคลียร์ Onagawa ที่อยู่ใกล้กับศูนย์กลางของแผ่นดินไหวและคลื่นสึนามิเมื่อวันที่ 11 มีนาคมมากกว่า[223] กำแพงทะเลสูง 14 เมตรและประสบความสำเร็จในการทนต่อเหตุการณ์สึนามิ สามารถป้องกันไม่ให้เกิดความเสียหายร้ายแรงและการปลดปล่อยกัมมันตภาพรังสี[224][225]

ผู้ประกอบการโรงไฟฟ้านิวเคลียร์ทั่วโลกเริ่มที่จะติดตั้งตัวผสมไฮโดรเจนที่เป็นตัวเร่งปฏิกิริยาอัตโนมัติแบบไม่ตอบโต้ (อังกฤษ: Passive Auto-catalytic hydrogen Recombiners ("PARs")) ซึ่งไม่ต้องใช้ไฟฟ้าในการทำงาน[226][227][228] PARs ทำงานเหมือนมากกับเครื่องฟอกไอเสีย (อังกฤษ: catalytic converter) กับไอเสียของรถยนต์ โดยมันจะเปลี่ยนก๊าซที่อาจทำให้เกิดการระเบิดเช่นไฮโดรเจนให้เป็นน้ำ ถ้าอุปกรณ์ดังกล่าวได้รับการติดตั้งที่ด้านบนของอาคารคลุมเครื่องปฏิกรณ์นิวเคลียร์ฟุกุชิมะหนึ่ง ในที่ซึ่งแก๊สไฮโดรเจนถูกเก็บเอาไว้ การระเบิดก็จะไม่เกิดขึ้นและการปลดปล่อยไอโซโทปกัมมันตรังสีก็จะมีน้อยมากน้อย[229]

ระบบการกรองแบบไม่ใช้ไฟฟ้าในเส้นทางการระบายอากาศของอาคารคลุมเครื่องปฏิกรณ์ หรือที่เรียกว่าระบบระบายอากาศอาคารคลุมเครื่องปฏิกรณ์แบบกรอง (อังกฤษ: Filtered Containment Venting Systems (FCVS)) สามารถจับสารกัมมันตรังสีได้อย่างปลอดภัย มันจึงช่วยให้ลดแรงดันของแกนเครื่องปฏิกรณ์ ด้วยไอน้ำและไฮโดรเจนถูกระบายออกไปโดยมีการปล่อยกัมมันตภาพรังสีน้อยที่สุด[229][230] การกรองโดยใช้ระบบถังน้ำจากภายนอกเป็นระบบที่มีการจัดทำมากที่สุดในประเทศยุโรป ที่มีถังเก็บน้ำติดตั้งในตำแหน่งด้านนอกอาคารคลุมเครื่องปฏิกรณ์[231] ในเดือนตุลาคมปี 2013 เจ้าของโรงไฟฟ้าพลังงานนิวเคลียร์ Kashiwazaki-Kariwa เริ่มการติดตั้งตัวกรองเปียกและระบบความปลอดภัยอื่น ๆ คาดว่าจะเสร็จสมบูรณ์ในปี 2014[232][233]

สำหรับเครื่องปฏิกรณ์นิวเคลียร์รุ่น 2G ที่ตั้งอยู่ในพื้นที่เสี่ยงภัยน้ำท่วมหรือสึนามิ ไฟฟ้าจากแบตเตอรี่สำรอง 3 วัน + ได้กลายเป็นมาตรฐานอุตสาหกรรมอย่างเป็นทางการ[234][235] การเปลี่ยนแปลงอีกอย่างก็คือการทำให้แข็งแรงขึ้นของสถานที่ห้องพักเครื่องกำเนิดไฟฟ้าดีเซลสำรองด้วยประตูและ heat sinks ที่กันน้ำแน่นหนาและทนต่อแรงระเบิด คล้ายกับที่ใช้ในเรือดำน้ำนิวเคลียร์[229] โรงไฟฟ้านิวเคลียร์ที่ดำเนินงานมาเก่าแก่ที่สุดในโลกชื่อ Beznau ซึ่งมีการดำเนินงานมาตั้งแต่ปี 1969 มีอาคารแข็งแรงแบบ 'Notstand' ที่ ออกแบบมาเพื่อสนับสนุนทั้งหมดของระบบอย่างเป็นอิสระเป็นเวลา 72 ชั่วโมงในกรณีที่เกิดแผ่นดินไหวหรือน้ำท่วมรุนแรง ระบบนี้ถูกสร้างขึ้นก่อนฟุกุชิมะไดอิจิ[236][237]

เมื่อเกิดไฟฟ้าดับคล้ายกับที่เกิดขึ้นหลังจากที่ฟุกุชิมะ ไฟฟ้าจากแบตเตอรี่สำรองได้หมดลง[238] หลายคนที่ได้สร้างเครื่องปฏิกรณ์นิวเคลียร์รุ่นที่สาม ได้พัฒนาหลักการของความปลอดภัยนิวเคลียร์แบบไม่โต้ตอบ (อังกฤษ: passive nuclear safety) พวกเขาใช้ประโยชน์จากการพาความร้อน(หรือความเย็น) (อังกฤษ: convection) (น้ำร้อนมีแนวโน้มที่จะพุ่งขึ้น) และแรงโน้มถ่วง (น้ำเย็นมีแนวโน้มที่จะไหลลง) เพื่อให้แน่ใจว่าการแจกจ่ายน้ำหล่อเย็นเป็นไปอย่างพอเพียงและไม่จำเป็นต้องใช้ปั๊มเพื่อจัดการกับ decay heat[239][240]

ปฏิกิริยา

ญี่ปุ่น

เมืองเล็ก หมู่บ้านและเมืองใหญ่ ๆ ของญี่ปุ่นภายในและรอบ ๆ เขตยกเว้นของโรงไฟฟ้​​านิวเคลียร์ไดอิจิ พื้นที่ในรัศมี 20 กม. และ 30 กม. มีคำสั่งให้มีการอพยพและสร้างที่พักพิง รวมทั้งเขตการปกครองเพิ่มเติมที่มีคำสั่งให้มีการอพยพถูกแสดงให้เห็นเป็นไฮไลต์ อย่างไรก็ตามความถูกต้องตามความเป็นจริงของแผนที่ดังกล่าวข้างต้นยังเป็นคำถามเพราะมีเพียงส่วนทางใต้ของอำเภอ Kawamata เท่านั้นที่มีคำสั่งให้อพยพ แผนที่ที่ถูกต้องมากกว่าก็มี[241][242]

ทางการญี่ปุ่นภายหลังก็ยอมรับว่าขาดมาตรฐานที่เข้มงวดและมีการกำกับดูแลที่ไม่ดี[243] พวกเขาเอาไฟเข้ารับมือกับกรณีฉุกเฉินและมีส่วนร่วมในการแก้ปัญหาในรูปแบบของการปิดบังและการปฏิเสธข้อมูลของความเสียหาย[243][244][245][246] เจ้าหน้าที่ถูกกล่าวหาว่า[ไม่แน่ใจ ] ต้องการจะ "จำกัดขนาดของการอพยพที่แพงและยุ่งเหยิงแผ่นดินที่หายากของญี่ปุ่นและเพื่อหลีกเลี่ยงการตั้งคำถามของสาธารณชนเกี่ยวกับอุตสาหกรรมนิวเคลียร์ที่มีอิทธิพลทางการเมือง" ความโกรธของประชาชนโผล่ออกมาผ่าน "การรณรงค์อย่างเป็นทางการ[ต้องการอ้างอิง][ไม่อยู่ในแหล่งอ้างอิง] ครั้งหนึ่งที่ทำงานไม่เต็มสูบกับขอบเขตของการเกิดอุบัติเหตุและความเสี่ยงต่อสุขภาพที่อาจเกิดขึ้น"[245][246][247]

ในหลายกรณี ประชาชนจำนวนมากในประเทศญี่ปุ่นตัดสินปฏิกิริยาของรัฐบาลญี่ปุ่นว่าน้อยกว่าเพียงพอ โดยเฉพาะผู้ที่อาศัยอยู่ในภูมิภาค การชำระล้างการปนเปื้อนของอุปกรณ์เป็นไปอย่างล่าช้า ทำให้การนำไปใช้ประโยชน์ช้าไปด้วย จนถึงปลายเดือนมิถุนายน 2011 แม้แต่น้ำฝนยังทำให้เกิดความกลัวและความไม่แน่นอนในภาคตะวันออกของประเทศญี่ปุ่นเนื่องจากความเป็นไปได้ของการชะล้างกัมมันตภาพรังสีจากฟากฟ้ากลับไปยังพื้นดิน[ต้องการอ้างอิง]

เพื่อระงับความกลัว รัฐบาลได้ประกาศใช้คำสั่งเพื่อชำระการปนเปื้อนในพื้นที่เป็นร้อย ๆ แห่งที่มีการปนเปื้อนในระดับของรังสีที่มากกว่าหรือเทียบเท่ากับหนึ่ง millisievert [ชี้แจงจำเป็น ว่าหนึ่งมิลลิซิลเวิตต่ออะไร] นี้เป็นเกณฑ์ที่ต่ำกว่าระดับที่จำเป็นสำหรับการปกป้องสุขภาพ รัฐบาลยังได้พยายามที่จะพูดถึงการขาดการศึกษาเกี่ยวกับผลกระทบของรังสีและขอบเขตของมันที่คนทั่วไปได้มีการสัมผัส[248]

ฝ่ายที่สนับสนุนการสร้างเครื่องปฏิกรณ์นิวเคลียร์ให้มากขึ้นก่อนหน้านี้ นายกาน ได้เพิ่มจุดยืนในการต่อต้านนิวเคลียร์มากขึ้นหลังจากภัยพิบัติ ในเดือนพฤษภาคมปี 2011 เขาได้สั่งให้โรงไฟฟ้​​านิวเคลียร์ Hamaoka ที่ใช้งานมานาน ปิดดำเนินการเนื่องจากความกังวลในแผ่นดินไหวและสึนามิ และกล่าวว่าเขาจะแช่แข็งแผนการก่อสร้าง ในเดือนกรกฎาคม 2011 นายกานกล่าวว่า "ญี่ปุ่นควรลดและกำจัดการพึ่งพาพลังงานนิวเคลียร์ในที่สุด"[249] ในเดือนตุลาคมปี 2013 เขากล่าวว่าหากตระหนักถึงสถานการณ์ที่เลวร้ายที่สุด ประชาชน 50 ล้านคนภายในรัศมี 250 กิโลเมตรควรจะต้องมีการอพยพ[250]

เมื่อวันที่ 22 เดือนสิงหาคม 2011 โฆษกรัฐบาลกล่าวถึงความเป็นไปได้ที่บางพื้นที่รอบโรงงาน "สามารถคงสภาพเป็นเขตต้องห้ามนานหลายทศวรรษ" ตามที่โยมิอุริชิมบุน รัฐบาลญี่ปุ่นได้กำลังวางแผนที่จะซื้อทรัพย์สินบางส่วนจากการพลเรือนเพื่อการจัดเก็บขยะและวัสดุที่ได้กลายเป็นสารกัมมันตรังสีหลังจากที่เกิดอุบัติเหตุ[251][252] นายจิอากิ ทากาฮาชิ รัฐมนตรีว่าการกระทรวงต่างประเทศของญี่ปุ่นได้วิพากษ์วิจารณ์รายงานของสื่อต่างประเทศว่ามากเกินไป เขาเสริมว่าเขาสามารถ "เข้าใจความกังวลของต่างประเทศเกี่ยวกับการพัฒนาที่โรงงานนิวเคลียร์ในช่วงที่ผ่านมา รวมทั้งการปนเปื้อนกัมมันตภาพรังสีของน้ำทะเล"[253]

เนื่องจากความไม่พอใจกับ TEPCO และรัฐบาลญี่ปุ่น "ที่ให้ข้อมูลเกี่ยวกับปัญหาสุขภาพที่วิกฤตที่แตกต่างกัน มีความสับสน และในบางครั้งก็ขัดแย้งกัน"[254] กลุ่มของประชาชนที่เรียกว่า "Safecast" ได้บันทึกข้อมูลรายละเอียดของระดับรังสีในญี่ปุ่น[255][256] รัฐบาลญี่ปุ่น "ไม่ได้พิจารณาว่าการอ่านของหน่วยงานที่ไม่ใช่รัฐบาลจะเป็นจริง" กลุ่มนี้ใช้อุปกรณ์ไกเกอร์เคาน์เตอร์ (Geiger counter) ที่เป็นมาตรฐาน เครื่องไกเกอร์เคาน์เตอร์ธรมดาเป็นเครื่องวัดการปนเปื้อนของรังสีแต่ไม่ได้เป็นเครื่องวัดปริมาณรังสี การตอบสนองจะแตกต่างกันมากระหว่างไอโซโทปรังสีที่แตกต่างกันเกินกว่าที่จะยอมให้หลอดเครื่องจีเอ็มธรรมดาเพียงหนึ่งหลอดสามารถใช้ได้ในการตรวจวัดปริมาณรังสีเมื่อมีไอโซโทปรังสีมากกว่าหนึ่งอย่าง โล่โลหะบางหนึ่งชิ้นจะถูกใช้พันรอบหลอดจีเอ็มเพื่อชดเชยพลังงานเพื่อให้มันสามารถนำไปใช้สำหรับการตรวจวัดปริมาณรังสี หลอดจีเอ็มเป็นสิ่งจำเป็นสำหรับตัวปล่อยรังสีแกมมาที่เป็นห้องไอออไนซ์หรือแกมมาสเปกโตรมิเตอร์หรือตัวชดเชยพลังงาน สมาชิกของสถานีตรวจสอบอากาศที่ภาควิชาวิศวกรรมนิวเคลียร์ที่มหาวิทยาลัยเบิร์กเลย์แคลิฟอร์เนียได้ทำการทดสอบตัวอย่างด้านสิ่งแวดล้อมหลายตัวอย่างในภาคเหนือของรัฐแคลิฟอร์เนีย

นานาชาติ

บทความหลัก: ปฏิกิริยาของนานาชาติที่มีต่อภัยพิบัตินิวเคลียร์ฟูกูชิม่าไดอิจิ

เที่ยวบินอพยพกำลังออกจากเมืองมิซาวะ
เที่ยวบินมนุษยธรรมของกองทัพเรือสหรัฐกำลังได้รับการลบล้างการปนเปื้อนสารกัมมันตรังสี

ปฏิกิริยาระหว่างประเทศที่มีต่อภัยพิบัติมีความหลากหลายและแพร่หลาย หลายหน่วยงานระหว่างประเทศได้เสนอความช่วยเหลือทันที มักจะอยู่บนพื้นฐานที่เป็นแบบเฉพาะกิจ ผู้เสนอความช่วยเหลือรวม IAEA, องค์การอุตุนิยมวิทยาโลกและคณะกรรมาธิการเตรียมการสำหรับองค์การสนธิสัญญาการห้ามทดลองนิวเคลียร์แบบครอบคลุม[257]

ในเดือนพฤษภาคมปี 2011 หัวหน้าผู้ตรวจการในการติดตั้งนิวเคลียร์ชาวสหราชอาณาจักรไมค์ Weightman ได้เดินทางไปยังประเทศญี่ปุ่นในฐานะผู้นำในภารกิจของผู้เชี่ยวชาญของสำนักงานพลังงานปรมาณูระหว่างประเทศ (IAEA) การค้นพบที่สำคัญของภารกิจนี้ ตามรายงานในการประชุมรัฐมนตรีของ IAEA เดือนนั้น คือความเสี่ยงที่เกี่ยวข้องกับคลื่นสึนามิในหลายพื้นที่ในญี่ปุ่นได้รับการประเมินต่ำเกินไป[258]

ในเดือนกันยายน 2011, ผู้อำนวยการทั่วไปของ IAEA นาย Yukiya Amano กล่าวว่าภัยพิบัตินิวเคลียร์ญี่ปุ่น "สร้างความวิตกกังวลของประชาชนที่ลึกทั่วโลกและทำลายความเชื่อมั่นในพลังงานนิวเคลียร์"[259][260] หลังจากเกิดภัยพิบัติ มีรายงานใน The Economist ว่า ทบวงการพลังงานปรมาณูได้ลดการประมาณการกำลังการผลิตไฟฟ้านิวเคลียร์เพิ่มเติมที่จะสร้างขึ้นภายในปี 2035 ลงครึ่งหนึ่ง[261]

ในควันหลง เยอรมนีได้เร่งแผนการที่จะปิดเครื่องปฏิกรณ์นิวเคลียร์ของประเทศและตัดสินใจที่จะเลิกส่วนที่เหลือภายในปี 2022[262] อิตาลีได้จัดทำประชามติระดับชาติ ซึ่งร้อยละ 94 โหวตค้านกับแผนของรัฐบาลที่จะสร้างโรงไฟฟ้​​านิวเคลียร์แห่งใหม่[263] ในฝรั่งเศส ประธานาธิบดี Hollande ได้ประกาศความตั้งใจของรัฐบาลที่จะลดการใช้พลังงานนิวเคลียร์ลงหนึ่งในสาม อย่างไรก็ตาม จนถึงขณะนี้รัฐบาลได้จัดสรรโรงไฟฟ้าเพียงหนึ่งโรงเท่านั้นให้มีการปิด - โรงไฟฟ้าชายแดนเยอรมันที่ Fessenheim ซึ่งใช้งานมานาน - ซึ่งทำให้บางคนตั้งคำถามถึงความมุ่งมั่นของรัฐบาลที่มีต่อสัญญาของประธานาธิบดี Hollande รัฐมนตรีว่าการกระทรวงอุตสาหกรรม Arnaud Montebourg มีบันทึกว่าได้พูดว่า Fessenheim จะเป็นโรงไฟฟ้าพลังงานนิวเคลียร์เพียงแห่งเดียวที่จะถูกปิด

ในการไปเยือนประเทศจีนในเดือนธันวาคม เขาให้ความมั่นใจอีกครั้งกับผู้ฟังของเขาว่าพลังงานนิวเคลียร์เป็น "ภาคของอนาคต" และจะยังคงมีส่วนร่วมต่อไป "อย่างน้อย 50%" ของการผลิตพลังงานไฟฟ้าของฝรั่งเศส[264]

สมาชิกอีกคนหนึ่งของพรรคสังคมนิยมของ Hollande - สส. คริสเตียน Bataille กล่าวว่าแผนการที่จะลดนิวเคลียร์ถูกฟูมฟักให้เป็นวิธีการเพื่อความมั่นคงในการรับความสนับสนุนจากกลุ่มพันธมิตรสีเขียวของเขาในรัฐสภา[265]

แผนการใช้พลังงานนิวเคลียร์ไม่ได้ถูกทอดทิ้งในประเทศมาเลเซีย, ฟิลิปปินส์, คูเวตและบาห์เรน หรือมีการเปลี่ยนแปลงอย่างรุนแรงเช่นในไต้หวัน จีนได้ระงับโครงการพัฒนานิวเคลียร์ในเวลาสั้น ๆ แต่มีการเริ่มต้นใหม่หลังจากนั้นไม่นาน การจัดทำแผนเบื้องต้นก็เพื่อการเพิ่มการมีส่วนร่วมในนิวเคลียร์จาก 2 ไปเป็น 4 เปอร์เซนต์ของการผลิตไฟฟ้าในปี 2020 กับโปรแกรมที่เพิ่มขึ้นหลังจากนั้น พลังงานหมุนเวียนจะจ่ายร้อยละ 17 ของการผลิตไฟฟ้าของจีน, 16% ในนั้นเป็นไฟฟ้าพลังน้ำ จีนวางแผนที่จะเพิ่มการผลิตพลังงานนิวเคลียร์เป็นสามเท่าจนถึงปี 2020 และเพิ่มอีกสามเท่าระหว่างปี 2020 และปี 2030[266]

โครงการนิวเคลียร์ใหม่กำลังดำเนินการในบางประเทศ บริษัท KPMG รายงานว่ามี 653 โรงงานนิวเคลียร์ใหม่มีการวางแผนหรือนำเสนอว่าจะแล้วเสร็จในปี 2030[267] ภายในปี 2050 ประเทศจีนหวังที่จะมี 400-500 กิกะวัตต์ของกำลังการผลิตนิวเคลียร์ - 100 เท่ามากขึ้นกว่าที่มีในขณะนี้[268] รัฐบาลอนุรักษ์นิยมของสหราชอาณาจักร มีการวางแผนการขยายตัวของนิวเคลียร์ที่สำคัญแม้จะมีการคัดค้านของประชาชนอย่างกว้างขวาง[ต้องการอ้างอิง] รัสเซียก็เช่นกัน[ต้องการอ้างอิง] อินเดียก็มีการกดดันไปข้างหน้าด้วยโครงการนิวเคลียร์ที่มีขนาดใหญ่เช่นกัน เกาหลีใต้ก็ด้วย[269] รองประธานาธิบดีอินเดีย นาย M ฮามิด อันซารีกล่าวเร็ว ๆ นี้[270][271]

การสืบสวน

NAIIC

บทความหลัก: คณะกรรมการสอบสวนอิสระเพื่ออุบัติเหตุนิวเคลียร์ฟุกุชิมะของรัฐสภาแห่งชาติญี่ปุ่น

คณะกรรมการสอบสวนอิสระเพื่ออุบัติเหตุนิวเคลียร์ฟุกุชิมะ (NAIIC) เป็นคณะกรรมการสอบสวนที่เป็นอิสระชุดแรกโดยสภานิติบัญญัติแห่งชาติในประวัติศาสตร์ 66 ปีของรัฐบาลตามรัฐธรรมนูญของประเทศญี่ปุ่น

ฟุกุชิมะ "ไม่สามารถถือได้ว่าเป็นภัยพิบัติทางธรรมชาติ" ประธานคณะลูกขุนของ NAIIC ศาสตราจารย์กิตติคุณของมหาวิทยาลัยโตเกียว นายคิโยชิ Kurokawa เขียนไว้ในรายงานการสอบสวน "มันเป็นภัยพิบัติที่มนุษย์สร้างขึ้นอย่างสุด ๆ -.. ที่สามารถและน่าจะมีการคาดการณ์และป้องกันได้ และผลกระทบของมันน่าจะได้รับการบรรเทาโดยการตอบสนองของมนุษย์อย่างมีประสิทธิภาพมากขึ้น"[272] "รัฐบาลหน่วยงานกำกับดูแลและบริษัทไฟฟ้าโตเกียว [TEPCO] ขาดความรับผิดชอบในการปกป้องชีวิตและสังคมของผู้คน" คณะกรรมการกล่าว "พวกเขาได้ทรยศอย่างมีประสิทธิภาพต่อสิทธิของประเทศที่จะปลอดภัยจากการเกิดอุบัติเหตุนิวเคลียร์"[273]

คณะกรรมการได้ยอมรับว่าผู้อยู่อาศัยที่ได้รับผลกระทบยังคงดิ้นรนและต้องเผชิญกับความกังวลแทบตาย รวมทั้ง "ผลกระทบต่อสุขภาพจากการสัมผัสรังสี การย้ายถิ่นฐาน การสลายตัวของครอบครัว การหยุดชะงักของชีวิตและไลฟ์สไตล์ของพวกเขาและการปนเปื้อนในพื้นที่กว้างใหญ่ไพศาลของสิ่งแวดล้อม"

คณะกรรมการสอบสวน

บทความหลัก: คณะกรรมการสอบสวนเกี่ยวกับอุบัติเหตุที่โรงไฟฟ้านิวเคลียร์ฟุกุชิมะของ บริษัทไฟฟ้าโตเกียว

วัตถุประสงค์ของ'คณะกรรมการสอบสวนเกี่ยวกับอุบัติเหตุที่โรงไฟฟ้​​าฟุกุชิมะนิวเคลียร์' (ICANPS) คือการระบุสาเหตุการเกิดภัยพิบัติและนำเสนอนโยบายที่ออกแบบมาเพื่อลดความเสียหายและป้องกันการเกิดซ้ำของเหตุการณ์ที่คล้ายกัน[274] คณะลูกขุน 10 คนที่ได้รับการแต่งตั้งจากรัฐบาล รวมถึงนักวิชาการ นักข่าว นักกฎหมายและวิศวกร[275][276] ซึ่งได้รับการสนับสนุนโดยอัยการสาธารณะและผู้เชี่ยวชาญของรัฐบาล[277] และเผยแพร่รายงานการสอบสวนสุดท้ายยาว 448 หน้า[278]เมื่อวันที่ 23 กรกฎาคม 2012[32][279]

รายงานของคณะลูกขุนตำหนิระบบทางกฎหมายที่ไม่เพียงพอสำหรับการจัดการวิกฤตนิวเคลียร์ ระส่ำระสายจากวิกฤตการณ์ของคำสั่งที่เกิดจากรัฐบาลและ TEPCO และแทรกแซงส่วนเกินที่เป็นไปได้ในส่วนของสำนักงานปลัดสำนักนายกรัฐมนตรีในช่วงเริ่มต้นของภาวะวิกฤต"[280] คณะลูกขุนสรุปว่าวัฒนธรรมของความพึงพอใจในความปลอดภัยนิวเคลียร์และการจัดการวิกฤตที่ไม่ดีได้นำไปสู่​​การเกิดภัยพิบัตินิวเคลียร์[275]

อ้างอิง

หมายเหตุ

Notes

แหล่งที่มา

ไซต์

อื่น ๆ

  • Caldicott, Helen [ed.]: Crisis Without End: The Medical and Ecological Consequences of the Fukushima Nuclear Catastrophe. [From the "Symposium at the New York Academy of Medicine, March 11–12, 2013"]. The New Press, 2014. ISBN 978-1-59558-970-5 (eBook)
  • Nadesan, Majia (2013). Fukushima and the Privatization of Risk. London, Palgrave. ISBN 978-1-13734311-6
  • Cleveland, Kyle; Knowles, Scott Gabriel; Shineha, Ryuma, บ.ก. (2021). Legacies of Fukushima. University of Pennsylvania Press. ISBN 978-0-8122-9800-0.

แหล่งข้อมูลอื่น

🔥 Top keywords: วชิรวิชญ์ ไพศาลกุลวงศ์หน้าหลักองค์การกระจายเสียงและแพร่ภาพสาธารณะแห่งประเทศไทยยูฟ่าแชมเปียนส์ลีกชนกันต์ อาพรสุทธินันธ์สโมสรฟุตบอลแมนเชสเตอร์ซิตีพิเศษ:ค้นหาดวงใจเทวพรหม (ละครโทรทัศน์)กรงกรรมอสมทลิซ่า (แร็ปเปอร์)จีรนันท์ มะโนแจ่มสโมสรฟุตบอลอาร์เซนอลสโมสรฟุตบอลเรอัลมาดริดธี่หยดฟุตซอลชิงแชมป์เอเชีย 2024เฟซบุ๊กสโมสรฟุตบอลบาร์เซโลนาประเทศไทยเอเชียนคัพ รุ่นอายุไม่เกิน 23 ปี 2024วิทยุเสียงอเมริกาสโมสรฟุตบอลลิเวอร์พูลพระราชวัชรธรรมโสภณ (ศิลา สิริจนฺโท)พระบาทสมเด็จพระวชิรเกล้าเจ้าอยู่หัวรักวุ่น วัยรุ่นแสบวันไหลนริลญา กุลมงคลเพชรสโมสรฟุตบอลเชลซีสมเด็จพระกนิษฐาธิราชเจ้า กรมสมเด็จพระเทพรัตนราชสุดาฯ สยามบรมราชกุมารีหลานม่าสุภาพบุรุษจุฑาเทพ (ละครโทรทัศน์)สโมสรฟุตบอลไบเอิร์นมิวนิกกรุงเทพมหานครสโมสรฟุตบอลแมนเชสเตอร์ยูไนเต็ดคิม ซู-ฮย็อนภาวะโลกร้อนสาธุ (ละครโทรทัศน์)รายชื่ออักษรย่อของจังหวัดในประเทศไทยสโมสรฟุตบอลปารีแซ็ง-แฌร์แม็ง