Аста́т (химический символ — At, от лат. Astatium) — радиоактивный химический элемент 17-й группы (по устаревшей классификации — главной подгруппы седьмой группы, VIIA) шестого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 85.

Астат
← Полоний | Радон →
85 I

At

Ts
Периодическая система элементовВодородГелийЛитийБериллийБорУглеродАзотКислородФторНеонНатрийМагнийАлюминийКремнийФосфорСераХлорАргонКалийКальцийСкандийТитанВанадийХромМарганецЖелезоКобальтНикельМедьЦинкГаллийГерманийМышьякСеленБромКриптонРубидийСтронцийИттрийЦирконийНиобийМолибденТехнецийРутенийРодийПалладийСереброКадмийИндийОловоСурьмаТеллурИодКсенонЦезийБарийЛантанЦерийПразеодимНеодимПрометийСамарийЕвропийГадолинийТербийДиспрозийГольмийЭрбийТулийИттербийЛютецийГафнийТанталВольфрамРенийОсмийИридийПлатинаЗолотоРтутьТаллийСвинецВисмутПолонийАстатРадонФранцийРадийАктинийТорийПротактинийУранНептунийПлутонийАмерицийКюрийБерклийКалифорнийЭйнштейнийФермийМенделевийНобелийЛоуренсийРезерфордийДубнийСиборгийБорийХассийМейтнерийДармштадтийРентгенийКоперницийНихонийФлеровийМосковийЛиверморийТеннессинОганесон
Периодическая система элементов
85At
Внешний вид простого вещества
Чёрно-синие кристаллы
Свойства атома
Название, символ, номерАста́т / Astatium (At), 85
Атомная масса
(молярная масса)
[210] (массовое число наиболее устойчивого изотопа)[1]
Электронная конфигурация[Xe] 4f14 5d10 6s2 6p5
Радиус атома145 пм
Химические свойства
Ковалентный радиус(145) пм
Радиус иона(+7e) 62 пм
Электроотрицательность2,2 (шкала Полинга)
Электродный потенциалAt2→2At 0,2 В
Степени окисления7, 5, 3, 1, −1
Энергия ионизации
(первый электрон)
916,3 (9,50) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.)предположительно 6,4[2] г/см³
Температура плавления503 K (230 °C, 446 °F)[2]
Температура кипения575 K (302 °C, 576 °F)[2]
Кристаллическая решётка простого вещества
Структура решёткигранецентрированная кубическая атомная[3]
Температура Дебая195 (расчётная)[3] K
Прочие характеристики
Номер CAS7440-68-8
85
Астат
(210)
4f145d106s26p5

Молекула астата, по всей видимости, двухатомна (формула At2)[4]. Квантовомеханические расчёты из первых принципов предсказывают, что в конденсированном состоянии астат состоит не из молекул диастата, а образует металлический кристалл[3][5], в отличие от всех более лёгких галогенов, образующих при нормальном давлении[6] молекулярные кристаллы из молекул димеров Hal2.

Астат — самый редкий природный элемент периодической системы, поэтому он был синтезирован искусственно до того, как обнаружен в природе. Во всей земной коре его насчитывается не более 1 грамма. Из-за сильной радиоактивности его не удаётся получить в макроскопических количествах, достаточных для глубокого изучения его свойств.

История

Предсказан (как «эка-иод») Дмитрием Менделеевым в 1898 году. «Можно, например, сказать, что при открытии галоида Х с атомным весом, большим, чем йод, он все же будет образовывать КХ, КХО3 и т. п., что его водородное соединение НХ будет газообразным, очень непрочной кислотой, что атомный вес будет …215»[7].

В 1931—1943 годах были сделаны многочисленные попытки обнаружить элемент № 85 в природе. Он мог быть спутником иода, продуктом α-распада франция или β-распада полония, поэтому его пытались найти в иоде, морской воде, продуктах распада изотопов радия и радона, монаците, урановой смоляной руде, минералах железа и платины. В 1931 году Ф. Аллисон с сотрудниками (Алабамский политехнический институт) сообщили об открытии этого элемента в монацитовом песке и предложили для него название «алабамий» (Ab)[8][9], однако этот результат не подтвердился. Вплоть до 1943 года появлялись публикации об обнаружении элемента в природе, и он последовательно получал названия дор, декин, гельвеций (в честь Гельвеции — древнего названия Швейцарии), англогельвеций, лептин (от греч. «слабый, шаткий»). Все эти открытия также оказались ошибочными.

Впервые астат был получен искусственно в 1940 году Д. Корсоном, К. Р. Маккензи и Э. Сегре (Калифорнийский университет в Беркли). Для синтеза изотопа 211At они облучали висмут альфа-частицами. В 19431946 годах изотопы астата были обнаружены в составе природных радиоактивных рядов (см. ниже). Название элемента произошло от др.-греч. ἄστατος — «неустойчивый». В русской терминологии элемент до 1962 года назывался «астатин»[10].

Нахождение в природе

Астат является наиболее редким элементом среди всех, встречающихся в земной природе. Его суммарное содержание в земной коре в равновесии с материнскими радионуклидами не превышает одного грамма[11]. В поверхностном слое земной коры толщиной 1,6 км содержится всего 70 мг астата. Постоянное присутствие астата в природе связано с тем, что его короткоживущие радионуклиды (215At, 218At и 219At) входят в состав радиоактивных рядов 235U и 238U. Скорость их образования постоянна и равна скорости их радиоактивного распада, поэтому в земной коре содержится практически постоянное равновесное количество изотопов астата.

Получение

Астат получают только искусственно. В основном изотопы астата получают облучением металлических висмута или тория α-частицами высокой энергии с последующим отделением астата соосаждением, экстракцией, хроматографией или дистилляцией.

На современных ускорителях можно было бы получить («наработать») несколько десятков нанограмм элемента, однако с такими образцами невозможно было бы работать ввиду огромной его радиоактивности — 2000 Ки/мг, и при молярных концентрациях элемента происходило бы вскипание исследуемых растворов и интенсивный радиолиз воды[12].

Физические свойства

Ввиду малого количества доступного для изучения вещества физические свойства этого элемента плохо изучены и, как правило, построены на аналогиях с более доступными элементами.

Астат — твёрдое вещество сине-чёрного цвета, по внешнему виду похожее на иод[13]. Для него характерно сочетание свойств неметаллов (галогенов) и металлов (полоний, свинец и другие). Как и иод, астат хорошо растворяется в органических растворителях и легко ими экстрагируется. По летучести немного уступает иоду, но также может легко возгоняться[13].

Температура плавления — 503 K (230 °C), кипения (возгонки) 575 K (302 °C)[2] (По другим источникам 244 °С, 309 °С соответственно[4]).

Химические свойства

По химическим свойствам астат близок как к иоду (проявляет свойства галогенов), так и к полонию (свойства металла)[14].

Астат в водном растворе восстанавливается диоксидом серы SO2; как и металлы, он осаждается даже из сильнокислых растворов сероводородом (H2S)[14]. Вытесняется из сернокислых растворов цинком (свойства металла)[14].

Как и все галогены (кроме фтора), астат образует нерастворимую соль AgAt (астатид серебра)[14]. Он способен окисляться до состояния At(V), как и иод (например, соль AgAtO3 идентична по свойствам AgIO3)[14].

Астат реагирует с бромом и иодом, при этом образуются межгалогенные соединения — иодид астата AtI и бромид астата AtBr.

Оба эти соединения растворяются в тетрахлорметане СCl4[15].

Астат растворяется в разбавленной соляной и азотной кислотах[15].

При действии на водный раствор астата водородом в момент реакции образуется газообразный астатоводород HAt. Однако ввиду одинаковой электроотрицательности водорода и астата астатоводород крайне неустойчив, а в водных растворах существуют не только протоны, но и ионы At+, чего нет у всех других галогеноводородных кислот[16].

С металлами астат образует соединения, в которых проявляет степень окисления −1, как и все остальные галогены (NaAt — астатид натрия). Подобно другим галогенам, астат может замещать водород в молекуле метана до получения астатметана CH3At.

В растворах сильных кислот (1—6М) в присутствии бихромат-иона (1—5мМ) астат находится в виде однозарядного катиона, что доказано движением его к катоду при электромиграции, его поведением на монофункциональных сульфокатионитах[17], а также полным соосаждением с труднорастворимыми солями одновалентных катионов фосфорновольфраматами, бихроматами, йодатами)[18]. По ряду химических свойств астат подобен тяжёлым одновалентным катионам, например, таллию и цезию[19]. Однозарядный катион астата представляет собой аквакомплекс одновалентного астата или протонированную астатноватистую кислоту — [At(H2O)]+[20]. Рассчитанная по экспериментальным данным константа депротонирования (Кdp): [ Аt(ОН2)]+ ↔АtОН + Н+, равна (7,6±3)·10−5 [21].

Путём окисления астата дифторидом ксенона в щелочном растворе было получено соединение семивалентного астата — перастатат-ион, который изоморфно сокристаллизуется с солями перйодата калия и цезия[22]. Синтезированы элементоорганические соединения астата, типа RAtCl и RAtO (где R — фенильный или паратолильный радикал), в которых он существует в валентных состояниях +3 и +5[23]. Синтезированы астатид алкилы нормального и разветвленного строения с числом атомов углерода до 5[24][25]. Получены астатиды циклических углеводородов[26], астатбензол[27], астаттолуол[28], орто-, мета- и параизомеры фтор- и хлорастатбензолов[29]; изомеры астатнитробензола[30], и астатанилина[28], астаттирозин[31], этиленастатгидрин[32], астаталлил[33], изомеры астатбензойной кислоты[34] и изомеры астаттрифторметилбензола[35], астатуксусная кислота[36].

Для органических производных астата определение физико-химических свойств классическими методами неприемлемо ввиду его предельно низкой концентрации. Для этих целей с успехом была использована газожидкостная хроматография с привлечением метода сравнительных расчетов. Физико-химические характеристики органических соединений астата определяют по зависимости свойств аналогичных галогенпроизводных от их величины газохроматографического удерживания (индекса удерживания) с последующей экстраполяцией этого параметра на физико-химические свойства астаторганического соединения[37].

Определены температуры кипения алифатических соединений астата[38][39][40]. Для ароматических соединений астата найдены теплоты испарения[37][41], температуры кипения[37][42], рефракции связи углерод-астати дипольный момент[37][43]. Проведена экстраполяционная оценка геометрических параметров астата[37][44]: ковалентный радиус — 1,52 Å, ван-дер-ваальсовый радиус — 2,39 Å, атомный радиус — 1,48 Å, ионный радиус Аt — 2,39 Å, атомный объём — 27,72 м3/моль и межатомное расстояние С—Аt в астатароматике — 2,24 Å[37].

С помощью метода пиролиза, основанного на непосредственном изучении процесса термического разложения, экспериментально определены величины энергии разрыва химической связи углерод-астат (DC — At, ккал/моль) в ароматических производных астата[37][45]: C6H5At = 44,9±5,1; в среднем для таких изомеров как AtC6H4CH3 =43,3±2,1, AtC6H4CF3 =42,3±2,1, AtC6H4F =43,0±2,2, AtC6H4Cl =41,9±2,1, AtC6H4Br =42,3±2,1. В н-пропиластатиде равна 38,6±2,5 ккал/моль, а в изо-пропиластатиде 36,3±2,3 ккал/моль[37].

При возгонке астата с серебряной фольги в плазму ионного источника масс-сепаратора на коллекторе была обнаружена ионизованная молекула астата — Аt2+[46]. По экстраполяционным оценкам энергия диссоциации этой молекулы равна 55,4 ккал/моль, и она более устойчива, чем неионизованная. Существование молекулы астата — At2 при комнатной температуре маловероятно, так как её энергия диссоциации равна 27 ккал/моль[47]. При введении галогенов в ионный источник масс-сепаратора на коллекторе были зафиксированы массы, соответствующие соединениям астата AtCl+, AtBr+ и AtI+[46].

Присутствие астата определяется по характерному альфа-излучению[14].

Биологическая роль

Будучи схожим по химическим свойствам с иодом, астат крайне радиотоксичен.

Изотоп астат-211 — перспективный нуклид для создания радиофармацевтических препаратов (РФП). Это чистый альфа-излучатель с периодом полураспада 7,2 часа. Каждый акт распада изотопа астата-211 сопровождается испусканием альфа-частиц со средней энергией 6,8 МэВ. Длина их пробега в биологических тканях составляет всего 60 мкм (ЛПЭ — 70—160 кэВ/мкм), следовательно, ионизация происходит в малом объёме. При локализации астата в опухоли окружающие ткани не будут страдать от его радиоизлучения. Альфа-частицы астата-211 поражают примерно 3 клетки. Мощность дозы облучения в 1 грамме биологической ткани от источника астата-211 активностью 37 КБк при его равномерном распределении составляет около 4 миллирад/сек[48]. Поглощённая доза в ткани после полного распада 37 КБк астата-211 — около 150 рад[49].

Астат, введённый в виде раствора астатида, подобно иоду, накапливается в щитовидной железе (что может быть использовано для лечения связанных с данным органом заболеваний)[50], а введённый в виде радиоколлоида в основном концентрируется в печени[51]. Уже первые исследования, проведённые сразу же после открытия астата-211, показали, что этот изотоп может быть использован в радиотерапии[50][52][53][54]. Были получены астатированные протеины[55][56], лимфоциты[57] и сложные биомолекулы[58][59][60].

Установлена высокая терапевтическая эффективность коллоида 211Аt-теллур in vivo при воздействии на клетки асцитного рака Эрлиха[61]. Моноклональные антитела к различным видам опухолей, меченные астатом-211, целенаправленно доставляют радионуклид к органу, поражённому раковым образованием[62][63][64]. Эффективным транспортным средством для целенаправленной радиотерапии меланомы (одного из наиболее злокачественных новообразований) является такое соединение, относящееся к фентиазиновым красителям, как метиленовый синий (МС) (тетраметилентионин), меченный астатом-211[65][66][67][68].

Присутствие астата определяется по характерному альфа-излучению, а также по гамма-излучению и излучению конверсионных электронов. В гамма-спектре препарата 211At пик 686 кэВ соответствует самому астату-211, а пики 569, 896 кэВ — дочернему 211Po[69].

Изотопы

На 2023 год известны 39 изотопов астата с массовыми числами от 191 до 229, а также 24 метастабильных возбуждённых состояния ядер астата. Все они радиоактивны. Самые устойчивые из них (от 207At до 211At) имеют период полураспада больше часа (наиболее стабильны 210At, T1/2 = 8,1(4) часа, и 211At, T1/2 = 7,214(7) часа); однако в природных радиоактивных рядах они отсутствуют, а у трёх природных изотопов период полураспада не превышает минуты: 215At (0,10(2) мс, ряд урана-235), 218At (1,5(3) с, ряд урана-238) и 219At (56(3) с, ряд урана-235)[10][70][71][72].

Примечания

Литература

  • Лаврухина А. К., Поздняков А. А. Аналитическая химия технеция, прометия, астатина и франция. — М.: Наука, 1966. — С. 228—259. — 308 с. — 3200 экз.
  • Chalkin W. A., Herrmann E. Isotopcnpraxis. 1975, Bd 11, H. 10, S. 333-40;
  • Downs A., Adams C. G. The chemistry of chlorine, bromine, iodine and astatine. Oxf. — [a.o.].
  • Astatine. — Gmelin Handbook of Inorganic Chemistry, 8-th Edition, (Eds. H.K.Kugler and C.Keller), Springer, Berlin, 1985.
  • Норсеев Ю. В. Изучение химии астата в Объединённом институте ядерных исследований (Дубна). Открытие и исследование свойств новых неорганических и органических соединений астата, синтез терапевтических радиофармпрепаратов. Дубна, 2013, 65 с. ОИЯИ, Р12-2013-32.
  • Zalutsky M. R., Pruszynski M. Astatine-211: production and availability. Review. Curr Radiopharm. 2011 Jul;4(3): 177—185.
🔥 Top keywords: Заглавная страницаЯндексДуров, Павел ВалерьевичСлужебная:ПоискYouTubeЛунин, Андрей АлексеевичПодносова, Ирина ЛеонидовнаВКонтактеФоллаут (телесериал)WildberriesTelegramРеал Мадрид (футбольный клуб)Богуславская, Зоя БорисовнаДуров, Валерий СемёновичРоссияXVideosСписок умерших в 2024 годуЧикатило, Андрей РомановичFallout (серия игр)Список игроков НХЛ, забросивших 500 и более шайбПопков, Михаил ВикторовичOzon17 апреляИльин, Иван АлександровичMail.ruСёгун (мини-сериал, 2024)Слово пацана. Кровь на асфальтеПутин, Владимир ВладимировичЛига чемпионов УЕФАГагарина, Елена ЮрьевнаБишимбаев, Куандык ВалихановичЛига чемпионов УЕФА 2023/2024Турнир претендентов по шахматам 2024Манчестер СитиMGM-140 ATACMSРоссийский миротворческий контингент в Нагорном КарабахеЗагоризонтный радиолокаторПинапВодительское удостоверение в Российской Федерации