Метаболоміка

Метаболоміканаукова дисципліна, яка зосереджена на комплексному аналізі та кількісному визначенні масиву різноманітних малих молекул (метаболітів) у біологічній системі, який в сукупності називають метаболом. Метаболоміка охоплює систематичне вивчення цих метаболітів, які є ключовими індикаторами клітинних процесів і фізіологічного стану.

Схематичний опис робочого процесу метаболомічного аналізу.[1]

Метаболоміка використовує передові аналітичні технології, такі як мас-спектрометрія, РХ-МС, ЯМР-спектроскопія та спектрометрія рухливості іонів[en], щоб ідентифікувати, виміряти та охарактеризувати повний набір метаболітів, присутніх у клітинах, тканинах, біорідинах або організмах. Цей цілісний підхід забезпечує миттєвий знімок динамічного метаболічного профілю під впливом генетичних, екологічних і фізіологічних факторів.

Вловлюючи складну взаємодію між генами, білками та стимулами навколишнього середовища, метаболоміка пропонує глибоке розуміння метаболічних шляхів[en], допомагаючи в розумінні механізмів захворювання, реакції на ліки та відкриття біомаркерів[en]. Застосування метаболоміки охоплює різні сфери, включаючи медицину й біомедицину, біотехнологію, ботаніку й рослинництво, агрономію й сільське господарство, нутриціологію, екологію, науку про навколишнє середовище, а також стимулювання інновацій у персоналізованій медицині, точному землеробстві та дослідження біохімічних процесів у різноманітних екосистемах.

Міждисциплінарний характер метаболоміки об’єднує біохімію й аналітичну хімію, біологію, біомедицину, біоінформатику та обчислювальне моделювання, статистику та системну біологію, полегшуючи інтерпретацію та інтеграцію величезних наборів даних для розкриття складних біологічних явищ.

Походження слова

Основні історичні віхи й відкриття в метаболоміці та інших оміксних технологіях.[2]

Термін метаболоміка був утворений шляхом додавання суфіксу -omik за аналогією з іншими оміксними технологіями, такими як геноміка, епігеноміка, протеоміка, метагеноміка та ін. Слово походить від метаболізму (= обмін речовин).

Іноді використовується позначення метабоном (через н), особливо в контексті оцінки токсичності активних речовин. У фахових колах активно дискутують щодо точних відмінностей між метаболомом і метабономом.[джерело?]

Методи і показники

Схема робочого процесу в метаболомічному аналізі.[3]

Методи метаболоміки можна розділити на методи розділення, методи іонізації та методи виявлення. Оскільки метаболіти можуть сильно відрізнятися за хімічним складом і структурою, часто недостатньо використовувати лише один метод аналізу, щоб повністю розібрати метаболом окремого організму. Крім того, ще й досі невідомо, скільки всього продуктів метаболізму існує. Найпоширенішими типами таких продуктів є біологічні рідини організму, такі як плазма або сироватка крові, а також сеча, спинномозкова рідина, синовіальна рідина, мокротиння або лаваж. Поряд із попередніми розглядаються також гомогенати тканин або клітини або супернатанти клітинних культур.

До показників в метаболоміці належать:

  • показники швидкості потоку (= швидкості обертання), рівні метаболітів і активність ферментів­ окремих метаболічних шляхів;
  • взаємодії між різними метаболічними шляхами;
  • компартменталізація різних метаболічних шляхів у клітинах.

Іншими аспектами метаболоміки є вплив від надходження поживних речовин, вплив активних речовин на метаболізм і різні функції клітин, як-от проліферація, диференціювання та апоптоз.

Метаболом

Метаболом являє собою повний набір малих молекул, відомих як метаболіти, у біологічній системі, будь то клітина, тканина, орган чи організм. Ці метаболіти є кінцевими продуктами клітинних процесів і відіграють вирішальну роль у біохімічних реакціях і сигнальних шляхах, які підтримують життя.

Метаболом містить різноманітний набір сполук, включаючи амінокислоти, ліпіди (див. також Ліпідоміка[en]), вуглеводи (див. також Глікоміка[en]), гормони та органічні кислоти, що дає динамічний знімок метаболічного статусу біологічної системи в певний момент. Цей складний і постійно мінливий молекулярний ландшафт відображає взаємодію між генами організму, його середовищем і різними внутрішніми фізіологічними факторами. Дослідження метаболома дозволяють ідентифікувати, кількісно визначити та профілювати тисячі метаболітів, присутніх у біологічних зразках.

Розуміння метаболома має важливе значення для розшифровки функціональних характеристик біологічних систем, оскільки воно дає уявлення про метаболічні шляхи, клітинні реакції на подразники та механізми, що лежать в основі взаємодії здоров’я, хвороб і навколишнього середовища. Шляхом картографування та інтерпретації метаболома дослідники можуть виявити біомаркери, що вказують на хвороби, передбачити реакцію на ліки, виявити метаболічні порушення та дослідити заплутану мережу біохімічних реакцій, що відбуваються в живих організмах. Метаболом, як комплексне відображення біохімічних процесів у живих системах, продовжує залишатися центром наукових досліджень, надаючи величезні надії на вдосконалення нашого розуміння біології, здоров’я та навколишнього середовища. Його постійне вивчення та з’ясування значною мірою сприяють розвитку інноваційних підходів у різних дисциплінах, сприяючи прогресу в напрямку покращення здоров’я людини та стійких екосистем.

Перспективні технології

Метаболоміка, галузь наук про життя, що активно розвивається, спирається на передові технології, щоб розкрити складний ландшафт метаболітів у біологічних системах. Удосконалення аналітичних методологій зробили революцію у вивченні метаболоміки, запропонувавши безпрецедентне розуміння клітинних процесів, механізмів захворювання та взаємодії навколишнього середовища.[4]

Досягнення мас-спектрометрії

Мас-спектрометрія (МС) є наріжним каменем метаболоміки, постійно розвиваючись, щоб підвищити чутливість, роздільну здатність і охоплення виявлення метаболітів. Останні досягнення в технологіях МС, включаючи мас-аналізатори високої роздільної здатності (HRMS)[5][6], нові методи іонізації[7][8][9] та стратегії збору даних[10][11][12][13], розширили можливості метаболоміки.

Такі методи, як візуалізація мас-спектрометрії[en], дозволяють просторово відображати метаболіти в тканинах, відкриваючи просторово розділені метаболічні сигнатури, важливі для розуміння локалізованої метаболічної активності.[14][15][16][17]

Інновації в спектроскопії ядерного магнітного резонансу

ЯМР-спектроскопія, яку шанують за її неруйнівну природу та кількісні можливості, зазнала трансформаційного розвитку.[18][19][20][21] Прилади ЯМР із надсильним полем (Ultra-high field NMR)[22] у поєднанні з передовими імпульсними послідовностями[23] та методами ізотопного маркування[en][24] дозволяють ідентифікувати та кількісно визначити метаболіти з неперевершеною точністю.[25] Інновації в методах динамічної ядерної поляризації[en] (DNP) пропонують підвищену чутливість, розкриваючи потенціал для вивчення низьких метаболітів у складних біологічних матрицях.[26][27][28]

Техніки з дефісом і багатовимірний аналіз

Інтеграція хроматографії з мас-спектрометрією або ЯМР-спектроскопією в "дефісних" методах[29] дозволяє покращити розділення та характеристику метаболітів. Платформи рідинної хроматографії-мас-спектрометрії (РХ-МС) і газової хроматографія-мас-спектрометрії[en] (ГХ-МС) у поєднанні з вдосконаленими методами розділення[30] та багатовимірним аналізом дають можливість комплексного профілювання метаболітів.[31][32][33] Ці багатовимірні підходи покращують охоплення метаболітів і допомагають у ідентифікації невловимих або лабільних метаболітів.

БІоінформатика та обчислювальні інструменти

Потік метаболомічних даних вимагає складних обчислювальних інструментів і підходів біоінформатики для обробки, аналізу та інтерпретації даних. Алгоритми машинного навчання[34][35][36][37], мережеве моделювання[38][39][40] та аналіз метаболічних шляхів[en][41][42] дозволяють отримувати значущу інформацію зі складних наборів даних.

Мультиоміка

Мультиоміка забезпечує інтеграцію різноманітних даних оміксних технологій — таких як геноміка (геном), епігеноміка (епігеном), протеоміка (протеом), транскриптоміка (транскриптом), метаболоміка (метаболом) та ін. — що ще більше покращує наше розуміння складних зв’язків між молекулярними компонентами в біологічних системах.[43][44]

Нові технології та майбутні напрямки

Крім усталених методологій, новітні технології, такі як одноклітинна[en] метаболоміка[45][46][47][48], аналіз на основі мікрофлюїдики[en][49] та нові біосенсори[50][51][52][53], є перспективними для дослідження клітинної гетерогенності та метаболічної динаміки в реальному часі. Крім того, досягнення в ідентифікації метаболітів за допомогою спектральних бібліотек[54], стандартизації та процедур контролю якості спрямовані на підвищення відтворюваності та надійності даних, сприяючи співпраці та обміну даними між дослідниками.

Див. також

Додаткова література

Книги

Журнали

Статті

Зовнішні посилання

Примітки