Anxiotensina

hormona que causa vasoconstrición
(Redirección desde «Anxiotensina I»)

A anxiotensina é unha hormona peptídica que causa vasoconstrición e un incremento da presión arterial. Forma parte do sistema renina-anxiotensina, que regula a presión sanguínea. A anxiotensina tamén estimula a liberación de aldosterona no córtex adrenal para promover a retención de sodio nos riles.

AGT
Estruturas dispoñibles
PDBBuscar ortólogos: PDBe, RCSB
Identificadores
SímbolosAGT (HGNC: 333) ANHU, SERPINA8, anxiotensinóxeno, hFLT1
Identificadores
externos
LocusCr. 1 q42.2
Padrón de expresión de ARNm
Máis información
Ortólogos
Especies
Humano Rato
Entrez
183 11606
Ensembl
Véxase HS Véxase MM
UniProt
P01019 P11859
RefSeq
(ARNm)
NM_000029 NM_007428
RefSeq
(proteína) NCBI
NP_000020 NP_031454
Localización (UCSC)
Cr. 1:
230.7 – 230.71 Mb
Cr. 8:
124.56 – 124.57 Mb
PubMed (Busca)
183


11606

O oligopéptido, anxiotensina é unha hormona e un dipsóxeno (dá sede). Deriva da molécula precursora anxiotensinóxeno, unha globulina do soro sanguíneo producida no fígado. A anxiotensina foi illada a finais da década de 1930 (denominouse primeiramente 'anxiotonina' ou 'hipertensina') e despois foi caracterizada e sintetizada por grupos da Clinica de Cleveland e os laboratorios Ciba.[1]

Precursor e tipos

Anxiotensinóxeno

O anxiotensinóxeno é unha α-2-globulina producida constitutivamente e liberada na circulación principalmente polo fígado. É membro da familia de proteínas da serpina, aínda que non se sabe que inhiba outros encimas, a diferenza da maioría das serpinas. Os niveis de anxiotensinóxeno do plasma increméntanse polos niveis plasmáticos de corticosteroides, estróxenos, e hormonas tiroides, e de anxiotensina II.[2]

O anxiotensinóxeno é tamén un substrato da renina. O anxiotensinóxeno humano está formado por 452 aminoácidos e mais outros 33 aminoácidos do péptido sinal, pero os doutras especies teñen diversos tamaños. Os primeiros 12 aminoácidos son os máis importantes para a actividade, e son[2]

Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Val-Ile-...

Anxiotensina I

Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu | Val-Ile-...
Sistema renina-anxiotensina-aldosterona

A anxiotensina I (CAS# 11128-99-7) fórmase pola acción da renina sobre a anxiotensinóxeno. A renina cliva o enlace peptídico entre residuos de leucina (Leu) e valina (Val) do anxiotensinóxeno, creando o decapéptido (des-Asp) anxiotensina I. A renina prodúcese nos riles en resposta á actividade simpática renal, diminución da presión arterial intrarrenal (presión arterial sistólica <90mmHg[3] ) nas células xustaglomerulares, ou diminución da chegada de Na+ e Cl- á mácula densa.[4]

A anxiotensina I parece non ter ningunha actividade biolóxica directa e existe só como precursor da anxiotensina II.

Anxiotensina II

Asp-Arg-Val-Tyr-Ile-His-Pro-Phe

A anxiotensina I é convertida en anxiotensina II (AII) pola separación de dous residuos de aminoácidos C-terminais polo encima ACE, principalmente polo ACE dos plmóns (pero este encima tamén está presente en células endoteliais, células epiteliais renais e no cerebro). A anxiotensina II actúa sobre o sistema nervioso central para incrementar a produción da vasopresina, e tamén actúa sobre o músculo liso arterial e venoso causando vasoconstrición. A anxiotensina II tamén incrementa a secreción de aldosterona, actuando así como hormona endócrina, autócrina/parácrina e intrácrina.

O ACE é unha diana dos fármacos inhibidores do ACE, que fan diminuír a taxa de produción de anxiotensina II. A anxiotensina II incrementa a presión arterial ao estimular a proteína Gq en células do músculo liso vascular (que á súa vez activa un mecanismo dependente de IP3 que conduce a un incremento dos niveis de calcio e finalmente causan a contracción). Ademais, a anxiotensina II actúa no intercambiador de Na+/H+ no túbulo proximal dos riles ao estimular a reabsorción de Na+ e a excreción de H+, que está acoplada coa reabsorción de bicarbonato. Isto finalmente ten como resultado un incremento do volume sanguíneo, a presión e o pH.[5] Por tanto, os inhibidores do ACE son importantes fármacos antihipertensivos.

Coñécense outros produtos de clivaxe do ACE, de sete a nove aminoácidos de longo; teñen unha afinidade diferencial polos receptores da anxiotensina, aínda que o seu papel exacto aínda non está claro. A acción da propia AII é a diana dos antagonistas do receptor de anxiotensina II, que bloquean directamente os receptores AT1 de anxiotensina II.

A anxiotensina II é degradada a anxotensina III polas anxiotensinases localizadas nos glóbulos vermellos do sangue e a vasculatura da maioría dos tecidos. Ten unha vida media na circulación de menos de 1 minuto.[6]

A anxiotensina II causa un incremento na inotropía, cronotropía, liberación de catecolaminas (norepinefrina), sensibilidade ás catecolaminas, niveis de aldosterona, niveis de vasopresina e remodelación cardíaca e vasoconstrición por medio de receptores AT1 nos vasos periféricos (inversamente, os receptores AT2 tenden a impedir a remodelación cardíaca). Por isto os inhibidores do ACE e os antagonistas do receptor de anxiotensina II (ARB) axudan a impedir a remodelación que ocorre secundariamente á anxiotensina II e son beneficiosas na insuficiencia cardíaca.[7]

Anxiotensina III

Asp | Arg-Val-Tyr-Ile-His-Pro-Phe

A anxiotensina III ten un 40% da actividade vasoconstritora da anxiotensina II, pero un 100% da actividade produtora de aldosterona.[8]Incrementa a presión arterial media.[9][10]

Anxiotensina IV

Arg | Val-Tyr-Ile-His-Pro-Phe

A anxiotensina IV é un hexapéptido que, como a anxiotensina III, ten unha actividade algo menor que a da anxiotensina II. A anxiotensina IV ten unha ampla variedade de actividades no sistema nervioso central.[11][12]

A identidade exacta dos receptores AT4 non foi aínda establecida. Hai probas de que o receptor AT4 é unha aminopeptidase regulada pola insulina (IRAP).[13] Hai probas de que a anxiotensina IV interacciona co sistema do factor de crecemento de hepatocitos (HGF) a través do receptor c-Met.[14][15]

Desenvolvéronse pequenas moléculas sintéticas análogas de anxiotensina IV cunha capacidade de penetrar a través da barreira hematoencefálica.[15]

Efectos

As anxiotensinas II, III e IV teñen diversos efectos no corpo:

Adiposos

As anxiotensinas "modulan a expansión da masa adiposa por medio da regulación á alza da lipoxénese no tecido adiposo ... e a regulación á baixa da lipólise." [16]

Cardiovasculares

Son potentes vasoconstritores directos de arterias e veas e incrementan a presión sanguínea. Este efecto conséguese por medio da activación do receptor GPCR AT1, que sinaliza a través da proteína Gq para activar a fosfolipase C e aumentar o calcio intracelular.[17]

A anxiotensina II ten un potencial protrombótico por medio da adhesión e agregación das plaquetas e a estimulación do PAI-1 e PAI-2.[18][19]

Cando se estimula o crecemento cardíaco, actívase un sistema renina–anxiotensina local (autócrino-parácrino) no cardiomiocito, que estimula o crecemento da célula cardíaca por medio da proteína quinase C. O mesmo sistema pode ser activado nas células do músculo liso en condicións de hipertensión, aterosclerose ou dano endotelial. A anxiotensina II é un impotante estimulador de Gq no corazón durante a hipertrofia.[20]

Neurais

A anxiotensina II incrementa a sensación de sede (dipsóxeno) a través da área postrema e o órgano subfornical do cerebro,[21][22][23] diminúe a resposta do reflexo barorreceptor, incrementa o desexo de sal, incrementa a secreción de ADH da pituitaria posterior e incrementa a secreción de ACTH na pituitaria anterior.[21] Tamén potencia a liberación de noradrenalina por acción directa sobre as fibras posganglionares simpáticas.[24][25]

Adrenais

A anxiotensina II actúa sobre o córtex adrenal, causando a liberación de aldosterona, unha hormona que causa que os riles reteñan sodio e perdan potasio.[26] Os niveis plasmáticos elevados de anxiotensina II van acompañados da elevación dos niveis de aldosterona durante a fase lútea do ciclo menstrual.[27]

Renais

A anxiotensina II ten un efecto directo sobre os túbulos proximais renais incrementando a reabsorción de Na+. Ten un efecto complexo e variable sobre a filtración glomerular e o fluxo sanguíneo renal dependendo das condicións. Os incrementos na presión sanguínea sistémica manteñen a presión da perfusión renal; porén, a constrición das ateriolas glomerulares aferentes e eferentes tende a restrinxir o fluxo sanguíneo renal. O efecto sobre a resistencia arteriolar eferente é, non obstante, marcadamente maior, en parte debido ao seu menor diámetro basal; isto tende a incrementar a presión hidrostática capilar glomerular e a manter a taxa de filtración glomerular. Outros mecanismos poden afectar tamén o fluxo sangúineo e a taxa de filtración glomerular. Altas concentracións de anxiotensina II poden constrinxir o mesanxio glomerular, reducindo a área para a filtración glomerular. A anxiotensina II é un sensibilizador da retroalimentación tubuloglomerular, impedindo un excesivo aumento da taxa de filtración glomerular. A anxiotensina II causa a liberación local de prostaglandinas, as cales, á súa vez, antagonizan a vasoconstrición renal. O efecto neto deste mecanismo competidor sobre a filtración glomerular varía co ambiente fisiolóxico e farmacolóxico.[28][29]

Efectos renais directos da anxiotensina II (sen incluír a liberación de aldosterona)
DianaAcciónMecanismo[30]
arteria renal &
arteriolas aferentes
vasoconstrición (máis débil)VDCC → influxo de Ca2+
arteriola eferentevasoconstrición (máis forte)(probablemente) activa o receptor de anxiotensina 1 → Activación da Gq → ↑ actividade da PLC → ↑IP3 e DAG → activación do receptor de IP3 no retículo sarcoplásmico → ↑ Ca2+ intracelular
células mesanxiaiscontracción → ↓área de filtración
  • activación da Gq → ↑ actividade de PLC → ↑IP3 e DAG → activación de receptor de IP3 no retículo sarcoplásmico → ↑ Ca2+ intracelular
  • VDCCs → influxo de Ca2+
túbulo proximalincremento da reabsorción do Na+
  • axuste das forzas de Starling en capilares peritubulares para favorecer o incremento da reabsorción
    • contracción da arteriola eferente e aferente → diminución da presión hidrostática en capilares peritubulares
    • contracción da arteriola eferente → incremento da fracción de filtración → incremento da presión osmótica coloidal en capilares peritubulares
  • incremento da actividade do antiportador de sodio–hidróxeno
retroalimentación tubuloglomerularincremento da sensibilidadeincremento na resposta da arteriola aferente a sinais da mácula densa
fluxo sanguíneo medularredución

Notas

Véxase tamén

Bibliografía

  • de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (setembro de 2000). "International union of pharmacology. XXIII. The angiotensin II receptors". Pharmacological Reviews 52 (3): 415–72. PMID 10977869. 
  • Brenner & Rector's The Kidney, 7th ed., Saunders, 2004.
  • Mosby's Medical Dictionary, 3rd Ed., CV Mosby Company, 1990.
  • Review of Medical Physiology, 20th Ed., William F. Ganong, McGraw-Hill, 2001.
  • Clinical Physiology of Acid-Base and Electrolyte Disorders, 5th ed., Burton David Rose & Theodore W. Post McGraw-Hill, 2001
  • Lees KR, MacFadyen RJ, Doig JK, Reid JL (agosto de 1993). "Role of angiotensin in the extravascular system". Journal of Human Hypertension. 7 Suppl 2: S7–12. PMID 8230088. 
  • Weir MR, Dzau VJ (decembro de 1999). "The renin-angiotensin-aldosterone system: a specific target for hypertension management". American Journal of Hypertension 12 (12 Pt 3): 205S–213S. PMID 10619573. doi:10.1016/S0895-7061(99)00103-X. 
  • Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG (decembro de 2001). "Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide". American Journal of Physiology. Heart and Circulatory Physiology 281 (6): H2337–65. PMID 11709400. doi:10.1152/ajpheart.2001.281.6.H2337. 
  • Sernia C (xaneiro de 2001). "A critical appraisal of the intrinsic pancreatic angiotensin-generating system". Journal of the Pancreas 2 (1): 50–5. PMID 11862023. 
  • Varagic J, Frohlich ED (novembro de 2002). "Local cardiac renin-angiotensin system: hypertension and cardiac failure". Journal of Molecular and Cellular Cardiology 34 (11): 1435–42. PMID 12431442. doi:10.1006/jmcc.2002.2075. 
  • Wolf G (2006). "Role of reactive oxygen species in angiotensin II-mediated renal growth, differentiation, and apoptosis". Antioxidants & Redox Signaling 7 (9–10): 1337–45. PMID 16115039. doi:10.1089/ars.2005.7.1337. 
  • Cazaubon S, Deshayes F, Couraud PO, Nahmias C (abril de 2006). "[Endothelin-1, angiotensin II and cancer]". Medecine Sciences 22 (4): 416–22. PMID 16597412. doi:10.1051/medsci/2006224416. 
  • Ariza AC, Bobadilla NA, Halhali A (2007). "[Endothelin 1 and angiotensin II in preeeclampsia]". Revista De Investigacion Clinica; Organo Del Hospital De Enfermedades De La Nutricion 59 (1): 48–56. PMID 17569300. 

Outros artigos

Ligazóns externas

🔥 Top keywords: