ವಂಶವಾಹಿ

ವಂಶವಾಹಿ (ಜೀನ್ - gene) ಡಿಎನ್ಎಯ ಕಾರ್ಯನಿರ್ವಹಣೆಯನ್ನು ಸಂಕೇತಿಸಿದ ಒಂದು ಪ್ರದೇಶ. ಒಂದು ವರ್ಣತಂತು ಅನೇಕ ವಂಶವಾಹಿಗಳಿರುವ ಉದ್ದನೆಯ ಡಿಎನ್ಎ ತಂತು. ಮಾನವ ವರ್ಣತಂತು ೫೦ ಕೋಟಿಗಳ ವರೆಗೆ ಡಿಎನ್ಎ ಪ್ರತ್ಯಾಮ್ಲ ಜೋಡಿಗಳನ್ನು ಮತ್ತು ಸಾವಿರಾರು ವಂಶವಾಹಿಗಳನ್ನು ಹೊಂದಿರುತ್ತದೆ.

ಡಿ.ಎನ್.ಎ ಎಂಬ ವಂಶವಾಹಿ

ಡಿ.ಎನ್.ಎ (ಡೀಆಕ್ಸಿರೈಬೊ ನ್ಯೂಕ್ಲೀಯಿಕ್ ಆಮ್ಲ) ಎಲ್ಲಾ ಜೀವಿಗಳಲ್ಲೂ ಹಾಗೂ ಹಲವಾರು ವೈರಾಣುಗಳಲ್ಲಿ ಇರುವ ಪ್ರಧಾನ ಅನುವಂಶಿಕ ಜೈವಿಕ ಅಣುವಾಗಿದೆ.

ಡಿ.ಎನ್.ಎ ಆಕಾರ
ಕ್ರೋಮೋಸೋಮ್ಸ್


ವಂಶವಾಹಿಯು (ಜೀನ್)[ಟಿಪ್ಪಣಿ ೧] ನ್ಯೂಕ್ಲಿಯೊಟೈಡ್‌ಗಳಿಂದ ಆದ ಡಿಎನ್ಎಯ ಒಂದು ನೆಲೆ (ಅಥವಾ ಪ್ರದೇಶ) ಮತ್ತು ಅನುವಂಶಿಕತೆಯ ಅಣ್ವಿಕ ಘಟಕ.[೧][೨] :ಶಬ್ದಾರ್ಥಗಳು ಜೀವಿಯೊಂದು ತನ್ನ ಸಂತಾನಕ್ಕೆ ವಂಶವಾಹಿಗಳನ್ನು ಕೊಡುವುದು ಜೀವಿಯ ಅವಲೋಕಿಸಬಹುದಾದ ಗುಣಗಳನ್ನು ಅನುವಂಶಿಕವಾಗಿ ಕೊಡುವುದಕ್ಕೆ ಆಧಾರ. ಜೀವಿಯ ಬಹಳಷ್ಟು ಗುಣಗಳು ಹಲವು ವಂಶವಾಹಿಗಳು ಮತ್ತು ವಂಶವಾಹಿ-ಪರಿಸರದ ಅಂತರಕ್ರಿಯೆಯಿಂದ ಪ್ರಭಾವಿತವಾಗಿವೆ. ಕಣ್ಣಿನ ಬಣ್ಣ ಅಥವಾ ಅಂಗಾಗಳ ಸಂಖ್ಯೆಯಂತಹ ಕೆಲವೊಂದು ಅನುವಂಶಿಕ ಗುಣಗಳು ತಕ್ಷಣ ಕಾಣುತ್ತವೆ ಮತ್ತು ರಕ್ತದ ನಮೂನೆ, ನಿರ್ದಿಷ್ಟ ರೋಗದ ಅಪಾಯ ಅಥವಾ ಜೀವದ ಭಾಗವಾದ ಹಲವು ಸಾವಿರ ಮೂಲಭೂತ ಜೀವರಸಾಯನಿಕ ಪ್ರಕ್ರಿಯೆಗಳು ತಕ್ಷಣ ಕಾಣುವುದಿಲ್ಲ.
ವಂಶವಾಹಿಗಳ ಸರಣಿಯಲ್ಲಿ ಬದಲಾವಣೆ ಅಥವಾ ವ್ಯತ್ಯಯಗಳು ಉಂಟಾಗಬಹುದು. ಇದು ಭಿನ್ನವಾಗಿರುವ ಹಲವು ಅಲೆಲ್‌ಗಳಿಗೆ [ಟಿಪ್ಪಣಿ ೨] ಕಾರಣವಾಗುತ್ತದೆ. ಈ ಅಲೆಲ್‌ಗಳು ತುಸು ಭಿನ್ನವಾದ ಪ್ರೋಟೀನ್‌ನ ಆವೃತ್ತಿಯನ್ನು ಸಂಕೇತಿಸುವ ಮೂಲಕ ಜೀವಿಯಲ್ಲಿ ಬೇರೆ ಬೇರೆ ಗುಣಗಳಿಗೆ ಕಾರಣವಾಗುತ್ತವೆ. ಅಲೆಲ್‌ಗಳು ನೈಸರ್ಗಿಕ ಆಯ್ಕೆಯ ಮೂಲಕ ಅಥವಾ ಯೋಗ್ಯವಾದ ಅಲೆಲ್‌ಗಳಷ್ಟೇ ಉಳಿದುಕೊಳ್ಳುವ ಮೂಲಕ ವಿಕಾಸವಾಗುತ್ತವೆ.
ಹೊಸ ವಿದ್ಯಮಾನಗಳನ್ನು ಕಂಡುಹಿಡಿದಂತೆ ವಂಶವಾಹಿಯ ವ್ಯಾಖ್ಯಾನವು ಹೆಚ್ಚು ಸುಧಾರಿಸುತ್ತಿದೆ.[೩] ಉದಾಹರಣೆಗೆ ವಂಶವಾಹಿಯನ್ನು ಸಂಕೇತಿಸುವ ಪ್ರದೇಶವು ಅದನ್ನು ನಿಯಂತ್ರಿಸುವ ಪ್ರದೇಶದಿಂದ ಬಹಳ ದೂರದಲ್ಲಿ ಇರಬಹುದು, ಮತ್ತು ಸಂಕೇತಿಸುವ ಪ್ರದೇಶವು ಹಲವು ಎಕ್ಸೋನ್‌ಗಳಾಗಿ[ಟಿಪ್ಪಣಿ ೩] ವಿಭಜಿತವಾಗಿರಬಹುದು. ಕೆಲವೊಂದು ವೈರಾಣುಗಳಲ್ಲಿ ಅನುವಂಶಿಕತೆಯ ಪದಾರ್ಥವಾಗಿ ಡಿಎನ್ಎ ಬದಲು ಆರ್‌ಎನ್ಎ ಇರುತ್ತದೆ. ಇನ್ನೂ ಕೆಲವು ವಂಶವಾಹಿ ಉತ್ಪಾದನೆಗಳು ಕಾರ್ಯನಿರ್ವಹಿಸುವ ಸಂಕೇತಗಳಲ್ಲದ ಆರ್‌ಎನ್ಎಗಳು[ಟಿಪ್ಪಣಿ ೪] ಆದ್ದರಿಂದ, ವಂಶವಾಹಿಯ ಆಧುನಿಕ ಕಾರ್ಯಾನುಕೂಲ ವ್ಯಾಖ್ಯಾನದ ಪ್ರಕಾರ ಅದೊಂದು ಪ್ರತ್ಯೇಕ, ಮುಂದಿನ ಪೀಳಿಗೆಗೆ ಕೊಡಬಹುದಾದ ಅನುವಂಶಿಕ ನೆಲೆ ಅಥವಾ ಜಿನೋಮ್ ಸರಣಿ ಮತ್ತು ಅದು ಕಾರ್ಯನಿರ್ವಹಿಸುವ ಉತ್ಪಾದನೆಯಾಗಿ ಪ್ರಕಟವಾಗುವ ಮೂಲಕವಾಗಲಿ ಅಥವಾ ವಂಶವಾಹಿ ಪ್ರಕಟವಾಗುವುದನ್ನು ನಿಯಂತ್ರಿಸುವ ಮೂಲಕವಾಗಲಿ ಜೀವಿಯ ಗುಣದ ಮೇಲೆ ಪರಿಣಾಮ ಬೀರುತ್ತದೆ.[೪][೫]

ಇತಿಹಾಸ

ಗ್ರೆಗರ್ ಮೆಂಡಲ್

ಪ್ರತ್ಯೇಕ ಅನುವಂಶಿಕ ಘಟಕಗಳ ಕಂಡುಹಿಡಿಯುವಿಕೆ


ಪ್ರತ್ಯೇಕ ಅನುವಂಶಿಕ ಘಟಕಗಳ ಇರುವಿಕೆಯನ್ನು ಮೊದಲು ಗ್ರೆಗರ್ ಮೆಂಡಲ್ (೧೮೨೨-೧೮೮೪) ಸೂಚಿಸಿದ.[೬] ೧೮೫೭ರಿಂದ ೧೮೬೪ರ ನಡುವೆ ಅವನು ೮೦೦೦ ಸಾಮಾನ್ಯ ಬಣಾಣಿ ಸಸ್ಯಗಳು ವಿಭಿನ್ನ ಗುಣಗಳ ಅನುವಂಶಿಕ ಮಾದರಿಗಳನ್ನು ಅಧ್ಯಯನ ಮಾಡಿದ. ಅವನ ಅಧ್ಯಯನದ ಗುರಿಯು ಪೂರ್ವಿಕರು ವಿಭಿನ್ನ ಗುಣಗಳನ್ನು ಸಂತತಿಗೆ ನೀಡುವ ರೀತಿಯನ್ನು ಅರಿಯುವುದಾಗಿತ್ತು. ಅವನು ಇದನ್ನು ೨n ಸಂಯೋಜನಗಳೆಂದು ಗಣಿತೀಯವಾಗಿ ವಿವರಿಸಿದ. ಇಲ್ಲಿ n ಮೂಲ ಬಟಾಣಿ ಸಸ್ಯದಲ್ಲಿನ ಪ್ರತ್ಯೇಕ ಗುಣಗಳ ಸಂಖೆಯನ್ನು ಸೂಚಿಸುತ್ತದೆ. ಅವನು ವಂಶವಾಹಿ ಅಥವಾ ‘ಜೀನ್’ಪದವನ್ನು ಬಳಸದಿದ್ದಾಗ್ಯೂ ತಾನು ಪಡೆದ ಫಲಿತಾಂಶಗಳನ್ನು ಪ್ರತ್ಯೇಕ ಅನುವಂಶಿಕ ಘಟಕಗಳು ಅವಲೋಕಿಸ ಬಹುದಾದ ದೈಹಿಕ ಗುಣಗಳನ್ನು ಕೊಡುತ್ತವೆ ಎಂದು ವಿವರಿಸಿದ. ಅವನ ವಿವರಣೆಯು ಜೀನ್‌ನಮೂನೆ (ಜೀವಿಯ ಅನುವಂಶಿಕತೆಯ ಪದಾರ್ಥ) ಮತ್ತು ವ್ಯಕ್ತನಮೂನೆಗಳ[ಟಿಪ್ಪಣಿ ೫] ನಡುವಿನ ವ್ಯತ್ಯಾಸವನ್ನು ಮುಂಚೆಯೇ ಊಹಿಸಿತ್ತು. ಸ್ವತಂತ್ರ ಬೇರ್ಪಡುವಿಕೆ, ಪ್ರಭಾವಿ ಮತ್ತು ಅಪ್ರಭಾವಿ ಗುಣಗಳ ನಡುವೆ ವ್ಯತ್ಯಾಸ, ಭಿನ್ನಯುಗ್ಮಜ[ಟಿಪ್ಪಣಿ ೬] ಮತ್ತು ಸಮಯುಗ್ಮಜಗಳ ನಡುವೆ ವ್ಯತ್ಯಾಸ ಮತ್ತು ನಿರಂತರವಲ್ಲದ ಅನುವಂಶಿಕತೆಗಳನ್ನು ತೋರಿಸಿಕೊಡುವುದರಲ್ಲಿ ಮೆಂಡಲ್ ಮೊದಲಿಗ.
ಮೆಂಡಲ್‌ನ ಕೆಲಸಗಳಿಗೂ ಮುಂಚೆ ಅನುವಂಶಿಕತೆಯ ಮಿಶ್ರಣವು ಪ್ರಭಾವಿ ಅನುವಂಶಿಕ ಸಿದ್ಧಾಂತವಾಗಿತ್ತು. ಇದು ಪ್ರತಿ ತಂದೆ ಯಾ ತಾಯಿ ಫಲವತ್ತಾಗುಸುವಿಕೆ ಪ್ರಕ್ರಿಯೆಗೆ ದ್ರವವನ್ನುಕೊಡುತ್ತವೆಂತಲೂ ಮತ್ತು ತಂದೆತಾಯಿಗಳ ಗುಣಗಳು ಬೆರೆಯುವ ಮೂಲಕ ಮಿಶ್ರಣಗೊಂಡ ಸಂತತಿ ಉತ್ಪತ್ತಿಯಾಗುತ್ತದೆಂತಲೂ ಸೂಚಿಸುತ್ತಿತ್ತು. ಚಾರ್ಲ್ಸ್ ಡಾರ್ವಿನ್ ಪ್ಯಾನ್‌ಜೆನೆಸಿಸ್ ಎನ್ನುವ ಅನುವಂಶಿಕ ಸಿದ್ಧಾಂತನ್ನು ಅಭಿವೃದ್ಧಿ ಪಡಿಸಿದ.[೭][೮] ಡಾರ್ವಿನ್ ಸಂತೋನತ್ಪತ್ತಿಯ ಸಮಯದಲ್ಲಿ ಬೆರೆಯುತ್ತವೆ ಎಂದು ಹೇಳಲಾದ ಊಹೆಯ ಕಣಗಳನ್ನು ವಿವರಿಸಲು ಗೆಮ್ಯೂಲ್ ಪದ ಬಳಸಿದ.
ಮೆಂಡಲ್‌ನ ಕೆಲಸಗಳು ೧೮೬೬ರಲ್ಲಿ ಮೊದಲು ಪ್ರಕಟವಾದಾಗ ಹೆಚ್ಚಿನವರ ಗಮನ ಸೆಳೆಯಲಿಲ್ಲ. ಆದರೆ ೧೯ನೆಯ ಶತಮಾನದ ಮೂರನೆಯ ಪಾದದಲ್ಲಿ ಹುಗೊ ಡೆ ವ್ರಿಸ್, ಕಾರ್ಲ್ ಕೊರ್ರೆನ್ಸ್ ಮತ್ತು ಎರಿಚ್ ವೊನ್ ಸ್ಕೆರ್ಮಕ್ ತಮ್ಮ ಸಂಶೋಧನೆಗಳ ಮೂಲಕ ಇಂತಹುದೇ ನಿರ್ಣಯಗಳಿಗೆ ಬಂದಿರುವುದಾಗಿ ಹೇಳಿದರು.[೯] ವಿಶೇಷವಾಗಿ ಹುಗೊ ಡಿ ವ್ರಿಸ್ ೧೮೮೯ರಲ್ಲಿ ಇಂಟರ್‌ಸೆಲ್ಯುಲಾರ್ ಪ್ಯಾನ್‌ಜೆನೆಸಿಸ್ ಎಂಬ ತನ್ನ ಪುಸ್ತಕವನ್ನು ಪ್ರಕಟಿಸಿದ.[೧೦] ಅದರಲ್ಲಿ ವಿಭಿನ್ನ ಗುಣಗಳು ಪ್ರತ್ಯೇಕ ವಾಹಕಗಳನ್ನು ಹೊಂದಿರುತ್ತವೆಂತಲೂ ಮತ್ತು ಜೀವಿಗಳಲ್ಲಿನ ನಿರ್ದಿಷ್ಟ ಗುಣಗಳು ಅನುವಂಶಿಕವಾಗಿ ಕಣಗಳಲ್ಲಿ ಬರುತ್ತವೆ ಎಂತಲೂ ಹೇಳಿದ. ಈ ಘಟಕಗಳಿಗೆ ಡಾರ್ವಿನ್‌ನ ಪ್ಯಾನ್‌ಜೆನೆಸಿಸ್ ಸಿದ್ಧಾಂತ ಅನುಸರಿಸಿ “ಪ್ಯಾನ್‌ಜೀನ್”ಗಳು ಎಂದು ಕರೆದ.
ಹದಿನಾರು ವರುಶಗಳ ನಂತರ, ೧೯೦೫ರಲ್ಲಿ ವಿಲಿಯಂ ಬೇಟ್‌ಸನ್ ಜೆನೆಟಿಕ್ಸ್ ಪದವನ್ನು ಬಳಸಿದ[೧೧] ಆದರೆ ಎಡ್ರುಡ್ ಸ್ಟ್ರಾಸ್‌ಬರ್ಗರ್ (ಮತ್ತು ಇತರರು) ಅನುವಂಶಿಕತೆಯ ಮೂಲಭೂತ ಭೌತಿಕ ಮತ್ತು ಕಾರ್ಯಾನಿರ್ವಹಿಸುವ ಘಟಕಕ್ಕೆ ಇನ್ನೂ ಪ್ಯಾನ್‌ಜೀನ್ ಪದವನ್ನೇ ಬಳಸುತ್ತಿದ್ದ.[೧೨] ಡೆನ್ಮಾರ್ಕಿನ ಸಸ್ಯಶಾಸ್ತ್ರಜ್ಞ ವಿಲ್‌ಹೆಲ್ಮ್ ಜೊಹಾನ್ಸನ್ ಇದನ್ನು ಜೀನ್ ಎಂದು ಸಣ್ಣದು ಮಾಡಿದ.[೧೩] ಇಂಗ್ಲೀಶ್‌ನ ಜೀನ್‌ಗೆ ಕನ್ನಡ ಸಂವಾದಿ ಪದ ವಂಶವಾಹಿ.

ಡಿಎನ್ಎ ಕಂಡುಹಿಡಿಯುವಿಕೆ


ವಂಶವಾಹಿ ಮತ್ತು ಅನುವಂಶಿಕತೆಯ ಅರ್ಥೈಸುವಿಕೆ ಇಪ್ಪನೆಯ ಶತಮಾನದಾದ್ಯಂತ ಪ್ರಗತಿ ಕಂಡಿತು. ೧೯೪೦ರದಶಕ ದಿಂದ ೧೯೫೦ರ ದಶಕದ ಪ್ರಯೋಗಗಳು ಡಿಆಕ್ಸಿರೈಬೊನ್ಯೂಕ್ಲಿಯಿಕ್ ಆಮ್ಲ ಅನುವಂಶಿಕತೆ ಮಾಹಿತಿಯನ್ನು ಅಣು ರೂಪದಲ್ಲಿ ಹಿಡಿದಿಟ್ಟಿದೆ ಎಂದು ತೋರಿಸಿಕೊಟ್ಟವು.[೧೪][೧೫] ರೋಸಾಲಿಂಡ್ ಫ್ರಾಂಕ್‌ಲಿನ್ ಎಕ್ಸ್‌ರೇ ಕ್ರಿಸ್ಟಲೊಗ್ರಾಫಿ ಬಳಸಿ ಡಿಎನ್ಎ ರಚನೆ ಅಧ್ಯನ ಮಾಡಿದರು ಮತ್ತು ಇದು ಜೇಮ್ಸ್ ವ್ಯಾಟ್ಸನ್ ಮತ್ತು ಫ್ರಾನ್ಸಿಸ್ ಕ್ರೀಕ್ ಎರಡು ತಂತುಗಳ ಅಥವಾ ಎಳೆಗಳ ಡಿಎನ್ಎ ಅಣುವಿನ ಮಾದರಿ ಪ್ರಕಟಿಸಲು ಕಾರಣವಾಯಿತು. ಇಲ್ಲಿಯ ಡಿಎನ್ಎ ಅಣುವಿನ ನ್ಯೂಕ್ಲಿಯೊಟೈಡ್‌ ಜೋಡಿ ವಂಶವಾಹಿ ನಕಲಿಸುವ ಮೆಕಾನಿಸಂ ಒಂದನ್ನು ಸೂಚಿಸುವ ಊಹೆಗೆ ದಾರಿಮಾಡಿ ಕೊಟ್ಟಿತು.[೧೬][೧೭] ಒಟ್ಟಾರೆಯಾಗಿ ಈ ಸಂಶೋಧನೆಗಳ ಸಮೂಹ ಅಣ್ವಿಕ ಜೀವಶಾಸ್ತ್ರದ ಕೇಂದ್ರ ಡಾಗ್ಮ (ವಿಚಾರಕ್ಕೆಡಗೊಡದ ನಂಬಿಕೆ) ಆಯಿತು. ಇದು ಡಿಎನ್‌ಎ ಆರ್‌ಎನ್ಎಯನ್ನು ಲಿಪ್ಯಂತರಿಸುತ್ತದೆಂತಲೂ ಮತ್ತು ಆರ್‌ಎನ್ಎ ಪ್ರೋಟೀನ್‌ಗಳನ್ನು ಅನುವಾದಿಸುತ್ತವೆಯೆಂತಲೂ ಹೇಳುತ್ತದೆ. ಈ ಡಾಗ್ಮಕ್ಕೆ ರಿಟ್ರೊವೈರಾಣುಗಳಲ್ಲಿನ ಹಿಮ್ಮುಖದ ಲಿಪ್ಯಂತರಗಳಂತಹ ಅಪವಾದಗಳಿವೆ ಎಂದು ತೋರಿಸ ಕೊಡಲಾಗಿದೆ. ತಳಿವಿಜ್ಞಾನದ ಡಿಎನ್ಎ ಮಟ್ಟದ ಆಧುನಿಕ ಅದ್ಯಯನವನ್ನು ಅಣ್ವಿಕ ಜೀವಶಾಸ್ತ್ರ (ಮಾಲೆಕ್ಯೂಲಾರ್ ಬಯಾಲಜಿ) ಎಂದು ಕರೆಯಲಾಗಿದೆ.
೧೯೭೨ರಲ್ಲಿ ವಾಲ್ಟರ್ ಫಿಯೆರ್ಸ್ ಮತ್ತು ಅವರ ತಂಡ ಘೆಂಟ್ ಯುನಿವರ್ಸಿಟಿಯಲ್ಲಿ ಮೊದಲು ಬ್ಯಾಕ್ಟೀರಿಯಫೇಸ್‌ನ ಎಂಎಸ್೨ ಪ್ರೋಟೀನ್ ಕವಚದ ವಂಶವಾಹಿಯ ಸರಣಿಯನ್ನು ನಿರ್ಣಯಿಸಿತು.[೧೮] ನಂತರದಲ್ಲಿ ೧೯೭೭ರಲ್ಲಿ ಫ್ರೆಡೆರಿಕ್ ಸ್ಯಾಂಗರ್ ಸರಪಣಿ-ಕೊನೆಗೊಳಿಸುವಿಕೆ ಡಿಎನ್ಎ ಸರಣಿಯನ್ನು ಅಭಿವೃದ್ಧಿ ಪಡಿಸಿ ಸರಣಿ ಗುರುತಿಸುವ ಕಾರ್ಯಕ್ಷಮತೆಯನ್ನು ಹೆಚ್ಚಿಸಿದ ಮತ್ತು ಅದನ್ನು ರೂಢಿಯ ಪ್ರಯೋಗಶಾಲೆ ಪರಿಕರವನ್ನಾಗಿಸಿದ.[೧೯] ಮಾನವ ಜಿನೋಮ್ ಪ್ರಾಜೆಕ್ಟ್‌ನ ಆರಂಭಿಕ ಹಂತದಲ್ಲಿ ಸ್ಯಾಂಗರ್ ಪದ್ಧತಿಯ ಸ್ವಯಂಚಾಲಿತ ಆವೃತ್ತಿಯನ್ನು ಬಳಸಲಾಯಿತು.[೨೦]

ಆಧುನಿಕ ವಿಕಸನೀಯ ಸಂಯೋಜನೆ


೧೯೩೦ರ ದಶಕ ಮತ್ತು ೧೯೪೦ರ ದಶಕಗಳಲ್ಲಿ ಅಣ್ವಿಕ ತಳಿವಿಜ್ಞಾನ ಮತ್ತು ಡಾರ್ವಿನ್‌ನ ವಿಕಾಸವಾದಗಳನ್ನು ಬೆಸೆಯಲು ಅಭಿವೃದ್ಧಿ ಪಡಿಸಿದ ಸಿದ್ಧಾಂತಗಳಿಗೆ ಆಧುನಿಕ ವಿಕಸನೀಯ ಸಂಯೋಜನೆ (ಮಾರ್ಡನ್ ಎವುಲ್ಯೂಶನರಿ ಸಿಂಥೆಸಿಸ್) ಎಂದು ಕರೆಯಲಾಗಿದ್ದು ಈ ಪದವನ್ನು ಜ್ಯೂಲಿಯಸ್ ಹಕ್ಸಲಿ ಬಳಕೆಗೆ ತಂದ.[೨೧] ವಿಕಸನೀಯ ಜೀವಶಾಸ್ತ್ರಜ್ಞರು ನಂತರ ಈ ಪರಿಕಲ್ಪನೆಯನ್ನು ಸುಧಾರಿಸಿದರು. ಇಂತಹ ಸುಧಾರಣೆ ಮಾಡಿದವರಲ್ಲಿ ಜಾರ್ಜ ಸಿ ವಿಲಿಯಮ್ಸ್ ಒಬ್ಬ. ಅವನು ತನ್ನ ‌ವಂಶವಾಹಿ-ಕೇಂದ್ರಿತ ವಿಕಾಸದ ದೃಷ್ಟಿಕೋನದಲ್ಲಿ ಇದನ್ನು ಮಾಡಿದ. ಅವನು ವಂಶವಾಹಿಯ ವಿಕಸನೀಯ ಪರಿಕಲ್ಪನೆಯನ್ನು ನೈಸರ್ಗಿಕ ಆಯ್ಕೆಯ ಘಟಕ ಎಂದು ಸೂಚಿಸಿದ ಮತ್ತು ಅದನ್ನು “ಯಾವುದು ಗಮನಾರ್ಹವಾಗುವಷ್ಟು ಸಲ ಬೇರ್ಪಡುತ್ತದೆ ಮತ್ತು ಪುನಸೇರುತ್ತದೆಯೊ ಅದು ” ಎಂದು ವ್ಯಾಖ್ಯಾನಿಸಿದ.[೨೨]:೨೪ ಈ ಚಿಂತನೆಯಲ್ಲಿ ಅಣ್ವಿಕ ವಂಶವಾಹಿಯು ಒಂದು ಘಟಕವಾಗಿ ಲಿಪ್ಯಂತರವಾಗುತ್ತದೆ ಮತ್ತು ವಿಕಸನೀಯ ವಂಶವಾಹಿ ಒಂದು ಘಟಕವಾಗಿ ಮುಂದಿನ ಪೀಳಿಗೆಗೆ ಕೊಡಲ್ಪಡುತ್ತದೆ. ವಿಕಾಸದಲ್ಲಿ ವಂಶವಾಹಿಗಳ ಪ್ರಾಮುಖ್ಯತೆಯನ್ನು ಸಂಬಂಧಿತ ಚಿಂತನೆಗಳಿಗೆ ಒತ್ತುಹಾಕುವ ಮೂಲಕ ರಿಚರ್ಡ್ ಡಾವ್ಕಿನ್ಸ್ ಜನಪ್ರಿಯಗೊಳಿಸಿದ.[೨೩][೨೪]

ಅಣ್ವಿಕ ತಳಹದಿ

ಡಿಎನ್ಎ

ಡಿಎನ್ಎ ಎರಡು ತಂತುಗಳ ಭಾಗವಾದ ನಾಲ್ಕು ಪ್ರತ್ಯಾಮ್ಲ ಜೋಡಿಗಳ ರಾಸಾಯನಿಕ ರಚನೆ. ಸಕ್ಕರೆ-ಫಾಸ್ಪೇಟ್ ಬೆನ್ನೆಲುಬಿನ ಸರಪಳಿಗಳು ವಿರುದ್ಧ ದಿಕ್ಕಿನಲ್ಲಿದ್ದು ಪ್ರತ್ಯಾಮ್ಲಗಳು ಒಳಗೆ ಮುಖಮಾಡಿವೆ. Aಯು Tಗೆ ಮತ್ತು Cಯು Gಗೆ ಪ್ರತ್ಯಾಮ್ಲ ಜೋಡಿಯಾಗುತ್ತವೆ.


ಬಹುತೇಕ ಜೀವಿಗಳು ಉದ್ದನೆಯ ಡಿಎನ್ಎ ತಂತುವಿನಲ್ಲಿ ವಂಶವಾಹಿಯನ್ನು ಸಂಕೇತಿಸುತ್ತವೆ. ಡಿಎನ್ಎ ಒಂದು ನಾಲ್ಕು ರೀತಿಯ ನ್ಯೂಕ್ಲಿಯೊಟೈಡ್‌ಗಳ ಸರಪಣಿ ಮತ್ತು ಪ್ರತಿಯೊಂದು ನ್ಯೂಕ್ಲಿಯೊಟೈಡ್‌ನಲ್ಲಿ ಒಂದು ಐದು ಇಂಗಾಲ ಸಕ್ಕರೆ, ಒಂದು ಫಾಸ್ಪೇಟ್ ಗುಂಪು ಮತ್ತು ಅಡೆನಿನ್, ಸಿಸ್ಟೊಸಿನ್, ಗ್ವಾನಿನ್ ಮತ್ತು ತೈಮಿನ್ ನಾಲ್ಕರಲ್ಲಿ ಒಂದು ಪ್ರತ್ಯಾಮ್ಲ ಇರುತ್ತವೆ.[೨]:೨.೧
ಎರಡು ತಂತುಗಳೂ ಒಂದಕ್ಕೂಂದು ಸುರುಳಿ ಸುತ್ತಿಕೊಂಡಿದ್ದು ಹೊರಗಡೆ ತಂತುವಿನ ಬೆನ್ನೆಲುಬಾಗಿ ಸಕ್ಕರೆ ಮತ್ತು ಫಾಸ್ಲೇಟ್‌ಗಳಿದ್ದರೆ ಒಳ ಮೈಯಲ್ಲಿ ಪ್ರತ್ಯಾಮ್ಲಗಳು ಜೋಡಿಯಾಗಿರುತ್ತವೆ. ಒಂದು ತಂತುವಿನ ಅಡೆನಿನ್ ಯಾವಾಗಲೂ ಇನ್ನೊಂದು ತಂತುವಿನ ತೈಮಿನ್ ಜೊತೆಗೆ ಮತ್ತು ಒಂದು ತಂತುವಿನ ಸಿಸ್ಟೊಸಿನ್ ಯಾವಾಗಲೂ ಇನ್ನೊಂದು ತಂತುವಿನ ಗ್ವಾನಿನ್‌ನೊಂದಿಗೆ ಜೋಡಿಯಾಗುತ್ತದೆ. ಅಡೆನಿನ್ ತೈಮಿನ್‌ಗಳ ನಡುವೆ ಎರಡು ಜಲಜನಕ ಬಂಧನಗಳು ರೂಪಗೊಂಡರೆ ಸಿಸ್ಟೊಸಿನ್ ಗ್ವಾನಿನ್‌ಗಳ ನಡುವೆ ಮೂರು ಜಲಜನಕ ಬಂಧನಗಳು ಏರ್ಪಡುತ್ತವೆ. ಹೀಗಾಗಿ ಎರಡೂ ತಂತುಗಳೂ ಒಂದಕ್ಕೊಂದು ಪೂರಕ.[೨]:೪.೧
ಡಿಎನ್ಎ ಅಣುವಿಗೆ ದಿಕ್ಕು ಇರುತ್ತದೆ, ಫಾಸ್ಪೇಟ್ ಗುಂಪು ಸಕ್ಕರೆಯ ೫’ ಕೊನೆಗೆ ಇದ್ದರೆ ಅದನ್ನು ಅಣುವಿನ ೫’ರ ಕೊನೆ ಎನ್ನಲಾಗುತ್ತದೆ, ಫಾಸ್ಪೇಟ್‌ ಗುಂಪು ಸಕ್ಕರೆಯ ೩’ರ ಕೊನೆಗೆ ಇದ್ದರೆ ಅದನ್ನು ಅಣುವಿನ ೩’ ಕೊನೆ ಎನ್ನಲಾಗುತ್ತದೆ. ಎರಡು ತಂತುಗಳು ವಿರುದ್ಧ ದಿಕ್ಕಿನಲ್ಲಿ ಇರುತ್ತವೆ, ಅಂದರೆ ಒಂದು ತಂತುವಿನ ೫’ ಕೊನೆ ಇನ್ನೊಂದು ತಂತುವಿನ ೩’ ಕೊನೆಗೆ ಜೋಡಿಯಾಗುತ್ತದೆ (ಪರಿಣಾಮವಾಗಿ ಆ ತಂತುವಿನ ಇನ್ನೊಂದು ಕೊನೆಯಾದ ೩’ರ ಕೊನೆ ಇನ್ನೊಂದು ತಂತುವಿನ ೫’ ಕೊನೆಗೆ ಜೊತೆಯಾಗಿರುತ್ತದೆ). ಡಿಎನ್‌ಎ ನಕಲಿಸುವಿಕೆ, ನ್ಯೂಕ್ಲಿಯಿಕ್ ಆಮ್ಲ ಸಂಯೋಜನೆ, ಲಿಪ್ಯಂತರ ೫’→೩’ ದಿಕ್ಕಿನಲ್ಲಿ ನಡೆಯುತ್ತದೆ ಏಕೆಂದರೆ ಹೊಸ ನ್ಯೂಕ್ಲಿಯೊಟೈಡ್‌ಗಳನ್ನು ೩’ ಹೈಡ್ರೋಕ್ಸಿಲ್ ಬಳಸಿ ನಿರ್ಜಲವಾಗಿಸುವ ಕ್ರಿಯೆಯ ಮೂಲಕ ಸೇರಿಸಲಾಗುತ್ತದೆ.[೨೫] :೨೭.೨
ಡಿಎನ್ಎನಲ್ಲಿ ಸಂಕೇತಿಸಲಾದ ವಂಶವಾಹಿಗಳ ಅಭಿವ್ಯಕ್ತಿಯು ಅಥವಾ ಪ್ರಕಟಗೊಳ್ಳುವುದು ಆರ್‌ಎನ್‌ಎ ಆಗಿ ಲಿಪ್ಯಂತರಗೊಳ್ಳುವುದರೊಂದಿಗೆ ಆರಂಭವಾಗುತ್ತದೆ. ಆರ್‌ಎನ್ಎ ಡಿನ್ಎನ್ಎಯನ್ನು ಹೋಲುವ ಇನ್ನೊಂದು ನ್ಯೂಕ್ಲಿಯಿಕ್ ಆಮ್ಲ. ಇದರ ಸಕ್ಕರೆ ಡಿಆಕ್ಸಿರೈಬೋಸ್ ಬದಲಿಗೆ ರೈಬೋಸ್ ಆಗಿರುತ್ತದೆ ಮತ್ತು ಆರ್‌ಎನ್ಎನಲ್ಲಿ ಪ್ರತ್ಯಾಮ್ಲ ತೈಮಿನ್ ಬದಲು ಯುರಾಸಿಲ್ ಇರುತ್ತದೆ. ಆರ್‌ಎನ್ಎ ಅಣುಗಳು ಡಿಎನ್ಎ ಅಣುಗಳಿಗಿಂತ ಕಡಿಮೆ ಸ್ಥಿರ ಮತ್ತು ಸಾಮಾನ್ಯವಾಗಿ ಒಂದೇ ತಂತುವಿನಲ್ಲಿರುತ್ತದೆ. ಪ್ರೋಟೀನನ್ನು ಸಂಕೇತಿಸುವ ವಂಶವಾಹಿಗಳು ಕೊಡಾನ್‌ಗಳು ಎಂದು ಕರೆಯಲಾದ ಮೂರು-ನ್ಯೂಕ್ಲಿಯೊಟೈಡ್‌ಗಳ ಸರಣಿ ಮತ್ತು ಇವು ತಳಿವಿಜ್ಞಾನ “ಭಾಷೆ”ಯ “ಪದಗಳು”. ಜೆನೆಟಿಕ್ ಕೋಡ್‌ ಪ್ರೋಟೀನ್ ಅನುವಾದದಲ್ಲಿ ಕೋಡಾನುಗಳು ಮತ್ತು ಅಮಿನೊ ಆಮ್ಲಗಳ ನಡುವೆ ಪರಸ್ಪರ ಸಂಬಂಧವನ್ನು ನಿರ್ದಿಷ್ಟಗೊಳಿಸುತ್ತದೆ. ಜೆನೆಟಿಕ್ ಕೋಡ್ ಬಹುತೇಕ ಎಲ್ಲಾ ಜೀವಿಗಳಲ್ಲಿಯೂ ಒಂದೇ ರೀತಿಯಾಗಿದೆ.[೨]೪.೧

ವರ್ಣತಂತುಗಳು

ಚಿತ್ರ ವಿವರಣೆ- ಪ್ರತಿದೀಪ್ತಿ ಮೈಕ್ರೊಸ್ಕೋಪಿ ಚಿತ್ರ. ಚಿತ್ರವು ಮಾನವ ಹೆಣ್ಣಿನ ಪೂರ್ಣ ವರ್ಣತಂತುಗಳು ೨೩ ಜೋಡಿಯನ್ನು ತೋರಿಸುತ್ತಿದೆ. ಡಿಎನ್ಎ ಕೆಂಪು ಬಣ್ಣದಲ್ಲಿದೆ ಮತ್ತು ಜೀವಕೋಶದ ಮೂಲಭೂತ ಕಾರ್ಯನಿರ್ವಹಣೆ ಅಗತ್ಯವಾದ ವಂಶವಾಹಿಗಳು ಹಸಿರು ಬಣ್ಣದಲ್ಲಿವೆ. ಅತಿ ದೊಡ್ಡ ವರ್ಣತಂತು ಅತಿ ಚಿಕ್ಕ ವರ್ಣತಂತಿನ ಹತ್ತರಷ್ಟು ದೊಡ್ಡದಿದೆ.[೨೬]


ಜೀವಿಯ ಅಥವಾ ಜೀವಕೋಶದ ಒಟ್ಟಾರೆ ವಂಶವಾಹಿಗಳನ್ನು ಜಿನೋಮ್ ಎಂದು ಕರೆಯಲಾಗಿದೆ ಮತ್ತು ಇದು ಒಂದು ಅಥವಾ ಹೆಚ್ಚು ವರ್ಣತಂತುಗಳಾಗಿ ರೂಪಗೊಂಡಿರುತ್ತದೆ. ಸಾವಿರಾರು ವಂಶವಾಹಿಗಳು ಇರುವ ಒಂದೇ ಅತಿ ಉದ್ದವಾದ ಡಿಎನ್ಎ ತಂತುವನ್ನು ವರ್ಣತಂತು ಎಂದು ಕರೆಯಲಾಗಿದೆ [೨]:೪.೨ ನಿರ್ದಿಷ್ಟ ವಂಶವಾಹಿ ಇರುವ ಸ್ಥಳವನ್ನು ನೆಲೆ (ಲೊಕಸ್) ಎಂದು ಕರೆಯ ಬಹುದು. ಪ್ರತಿ ನೆಲೆಯೂ ‌ವಂಶವಾಹಿಯ ಒಂದು ಅಲೆಲ್‌ನ್ನು ಹೊಂದಿರುತ್ತದೆ. ವರ್ಣತಂತುವಿನ ಒಂದು ನೆಲೆಯಲ್ಲಿ ‌ಪ್ರತಿಯೊಂದು ತುಸು ಭಿನ್ನ ಸರಣಿ ಹೊಂದಿದ ಭಿನ್ನ ರೀತಿಯ ಹಲವು ಅಲೆಲ್‌ಗಳು ಜನಸಂಖ್ಯೆಯಲ್ಲಿ[ಟಿಪ್ಪಣಿ ೭] ಇರಬಹುದು.
ಬಹುತೇಕ ಯೂಕ್ಯಾರಿಯೋಟ್ ವಂಶವಾಹಿಗಳು ದೊಡ್ಡ, ಉದ್ದನೆಯ ವರ್ಣತಂತುಗಳಲ್ಲಿ ಸಂಗ್ರಹವಾಗಿವೆ. ಬೀಜಕಣದೊಳಗೆ ಇರುವ ವರ್ಣತಂತುಗಳು ಹಿಸ್ಟೋನ್‌ಗಳೆಂಬ ದಾಸ್ತಾನು ಪ್ರೋಟೀನ್‌ಗಳೊಂದಿಗೆ ಸಂಕೀರ್ಣಗಳಾಗಿವೆ ಮತ್ತು ಇವನ್ನು ನ್ಯೂಕ್ಲಿಯೊಸೋಮ್‌ಗಳು ಎಂದು ಕರೆಯಲಾಗಿದೆ. ಈ ರೀತಿ ತುಂಬಲಾದ ಮತ್ತು ಸಾಂದ್ರಗೊಳಿಸಿದ ಡಿಎನ್ಎಯನ್ನು ಕ್ರೊಮಾಟಿನ್ ಎಂದು ಕರೆಯಲಾಗಿದೆ.[೨]:೪.೨ ಹಿಸ್ಟೋನ್ ಮೇಲೆ ಡಿಎನ್ಎ ಸಂಗ್ರಹವಾದ ರೀತಿ ಮತ್ತು ಸ್ವತಹ ಹಿಸ್ಟೋನ್‌ನ ರಾಸಾಯನಿಕ ಮಾರ್ಪಾಡು ಒಂದು ಡಿಎನ್ಎಯ ಯಾವ ನಿರ್ದಿಷ್ಟ ಪ್ರದೇಶ ವಂಶವಾಹಿ ಅಭಿವ್ಯಕ್ತಿಗೆ (ಪ್ರಕಟಗೊಳ್ಳಲು) ಲಭ್ಯವಾಗುತ್ತದೆ ಎಂಬುದನ್ನು ನಿಯಂತ್ರಿಸುತ್ತದೆ. ಯೂಕ್ಯಾರಿಯೋಟ್‌ಗಳಲ್ಲಿ ವಂಶವಾಹಿಗಳಲ್ಲದೆ ಡಿಎನ್ಎ ಕೊನೆಯ ಪ್ರದೇಶಗಳು ಗುಣ ತಗ್ಗದೆ ನಕಲಾಗಲು ಮತ್ತು ಕೋಶ ವಿಭಜನೆಯ ಸಮಯದಲ್ಲಿ ಮರಿ ಜೀವಕೋಶಗಳಿಗೆ ವಿಂಗಡಿಸಲು ಅಗತ್ಯವಾದ ವರ್ಣತಂತು ಸರಣಿಗಳಿವೆ. ಇವು ರೆಪ್ಲಿಕೇಶನ್ ಆರಂಭಗಳು, ಟೆಲೊಮರೇಸ್ ಮತ್ತು ಸೆಂಟ್ರೋಮಿಯರ್‌ಗಳು.[೨]:೪.೨ ರೆಪ್ಲಿಕಿಶೇನ್ ಆರಂಭವು ವರ್ಣತಂತುಗಳ ಎರಡು ಪ್ರತಿಗಳಾಗುವ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಆರಂಭಿಸುವ ಸರಣಿ. ಟೆಲೊಮರೇಸ್ ಉದ್ದನೆಯ ಪುನರಾವರ್ತನೆಯಾಗುವ ಸರಣಿ. ಇವು ಉದ್ದನೆಯ ವರ್ಣತಂತುಗಳ ತುದಿಗೆ ಮುಚ್ಚಳಗಳಾಗುತ್ತವೆ ಮತ್ತು ಡಿಎನ್‌ಎ ನಕಲಾಗುವ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ಸಂಕೇತಿಸುವ ಮತ್ತು ನಿಯಂತ್ರಿಸುವ ಭಾಗವು ಹಾಳಾಗದೆ ನಕಲಾಗುವಂತೆ ನೋಡಿಕೊಳ್ಳುತ್ತವೆ. ಟೆಲೊಮರೇಸ್‌ನ ಉದ್ದ ಪ್ರತಿ ಸಲ ಜಿನೋಮ್ ನಕಲಾದಾಗ ಸಣ್ಣದಾಗುತ್ತದೆ ಮತ್ತು ವಯಸ್ಸಾಗುವಿಕೆ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ಇದರ ಪಾತ್ರವಿದೆ ಎನ್ನಲಾಗಿದೆ.[೨೭] ಕೋಶ ವಿಭಜನೆ ಸಮಯದಲ್ಲಿ ಸೆಂಟ್ರೋಮಿಯರ್ ಸ್ಪಿಂಡಲ್ ಫೈಬರ್ ಮರಿ ಕ್ರೊಮಾಟಿಡ್‌ಗಳನ್ನು ಬಂಧಿಸಲು ಮತ್ತು ಮರಿ ಜೀವಕೋಶಗಳಾಗುವ ನಿಟ್ಟಿನಲ್ಲಿ ಬೇರೆ ಮಾಡಲು ಅಗತ್ಯ[೨]:೧೮.೨
ಮಾದರಿ ಪ್ರೋಕ್ಯಾರಿಯೋಟ್‌ಗಳಲ್ಲಿ (ಬ್ಯಾಕ್ಟೀರಿಯ ಮತ್ತು ಆರ್ಕಿಯ) ಜಿನೋಮ್ ಒಂದೇ ದೊಡ್ಡ ಚಕ್ರಾಕಾರದ ವರ್ಣತಂತುವಾಗಿ ಸಂಘಟಿತವಾಗಿದೆ. ಹಾಗೆಯೇ ಕೆಲವೊಂದು ಯೂಕ್ಯಾರಿಯೋಟ್‌ ಅಂಗಕಗಳಲ್ಲಿ ಸಣ್ಣ ಪ್ರಮಾಣದ ವಂಶವಾಹಿಗಳು ಚಕ್ರಾಕಾರದ ವರ್ಣತಂತುವಾಗಿದೆ.[೨]:೧೪.೪ ಪ್ರೋಕ್ಯಾರಿಯೋಟ್‌ಗಳಲ್ಲಿ ಕೆಲವೊಮ್ಮೆ ವರ್ಣತಂತುಗೆ ಪೂರಕವಾಗಿ ಪ್ಲಾಸ್ಮಿಡ್‌ಗಳು ಎಂದು ಕರೆಯಲಾದ ಡಿಎನ್ಎನ ಸಣ್ಣ ಚಕ್ರಗಳು ಇರುತ್ತವೆ. ಇವು ಸಾಮಾನ್ಯವಾಗಿ ಕೆಲವೇ ವಂಶವಾಹಿಗಳನ್ನು ಹೊಂದಿದ್ದು ಒಂದು ಜೀವಿಯಿಂದ ಇನ್ನೊಂದು ಜೀವಿಗೆ ವರ್ಗಾವಣೆಗೊಳ್ಳ ಬಹುದು. ಉದಾಹರಣೆಗೆ ಸಾಮಾನ್ಯವಾಗಿ ಪ್ರತಿಜೀವಕ ಪ್ರತಿರೋಧ (ಯಾಂಟಿಬಯಾಟಿಕ್ ರೆಸಿಸ್ಟೆನ್ಸ್) ವಂಶವಾಹಿಗಳು ಬ್ಯಾಕ್ಟೀರಿಯಗಳ ಪ್ಲಾಸ್ಮಿಡ್‌ನಲ್ಲಿ ಇದ್ದು ಒಂದು ಜೀವಕೋಶದಿಂದ ಇನ್ನೊಂದು ಜೀವಕೋಶಕ್ಕೆ (ಬೇರೆ ಜೀವಸಂಕುಲದವಕ್ಕೂ ಸಹ) ಸಮತಲ ವಂಶವಾಹಿ ವರ್ಗಾವಣೆಯ ಮೂಲಕ ರವಾನಿಸಲ್ಪಡುತ್ತವೆ.[೨೮]
ಪ್ರೋಕ್ಯಾರಿಯೋಟ್ ವರ್ಣತಂತುಗಳ ಮೇಲೆ ಹೋಲಿಕೆಯಲ್ಲಿ ಹೆಚ್ಚು ಸಾಂದ್ರ ವಂಶವಾಹಿ ಇದೆ. ಆದರೆ ಯೂಕ್ಯಾರಿಯೋಟ್‌ಗಳು ಕೆಲವು ಸಲ ನಿಚ್ಚಳವಾಗಿ ಯಾವ ಕೆಲಸವನ್ನೂ ಮಾಡದ ಡಿಎನ್ಎ ಪ್ರದೇಶಗಳಿವೆ. ಸರಳ ಏಕಕೋಶಿ ಯೂಕ್ಯಾರಿಯೋಟ್‌ಗಳಲ್ಲಿ ಇಂತಹ ಡಿಎನ್‌ಎ ಪ್ರಮಾಣ ಸಣ್ಣದು. ಆದರೆ ಮಾನವನನ್ನೂ ಒಳಗೊಂಡು ಸಂಕೀರ್ಣ ಬಹುಕೋಶ ಜೀವಿಗಳಲ್ಲಿ ಬಹುತೇಕ ಡಿಎನ್ಎಯ ಕೆಲಸವನ್ನು ಗುರುತಿಸಲಾಗಿಲ್ಲ.[೨೯] ಈ ಡಿಎನ್ಎಯನ್ನು ಕೆಲವೊಮ್ಮೆ “ಜಂಕ್ ಡಿಎನ್ಎ” ಎಂದು ಕರೆಯಲಾಗಿದೆ. ಆದರೆ, ಇತ್ತೀಚಿನ ವಿಶ್ಲೇಷಣೆಗಳು ಪ್ರೋಟೀನ್ ಸಂಕೇತಿಸುವ ಡಿಎನ್ಎ ಕೇವಲ ಶೇ ೨ ರಷ್ಟು ಇದ್ದಾಗ್ಯೂ ಜಿನೋಮ್‌ನ ಸುಮಾರು ಶೇ೮೦ರಷ್ಟು ಪ್ರತ್ಯಾಮ್ಲಗಳು ಅಭಿವ್ಯಕ್ತಿಸುತ್ತಿರ ಬಹುದು ಎಂದು ಸೂಚಿಸುತ್ತವೆ. ಹೀಗಾಗಿ ಈ “ಜಂಕ್ ಡಿಎನ್ಎ” ಹೆಸರು ತಪ್ಪು ಹೆಸರಾಗಿರಲು ಸಾಧ್ಯ.[೫]

ರಚನೆ ಮತ್ತು ಕಾರ್ಯಭಾರ

ಯೂಕ್ಯಾರಿಯೋಟ್‌ ಪ್ರೋಟೀನ್‌-ಸಂಕೇತಿಸುವ ವಂಶವಾಹಿಯ ರಚನೆ. ನಿಯಂತ್ರಕ ಸರಣಿಯು ಪ್ರೋಟೀನ್‌ ಸಂಕೇತಿಸುವ ಪ್ರದೇಶವು ಎಲ್ಲಿ ಮತ್ತು ಯಾವಾಗ ಅಭಿವ್ಯಕ್ತಿಸುತ್ತದೆ ಎಂಬುದನ್ನು ಹತೋಟಿಯಲ್ಲಿಡುತ್ತದೆ. ಉತ್ತೇಜಕ ಮತ್ತು ವರ್ಧಕ ಪ್ರದೇಶಗಳು (ಹಳದಿ ಬಣ್ಣ) ವಂಶವಾಹಿ ಪ್ರಿ-ಎಂಆರ್‌ಎನ್ಎ ಆಗಿ ಲಿಪ್ಯಂತರವಾಗುವುದನ್ನು ನಿಯಂತ್ರಿಸುತ್ತವೆ. ಪ್ರಿ-ಎಂಆರ್‌ಎನ್ಎ ೫’ ಮುಚ್ಚಳ ಮತ್ತು ಪಾಲಿ-ಎ ಬಾಲ (ಬೂದು ಬಣ್ಣ) ಪಡೆದು, ಇಂಟ್ರೋನ್‌ಗಳು ತೆಗೆದು ಹಾಕಲ್ಪಟ್ಟು ಮಾರ್ಪಾಟಾಗುತ್ತದೆ. ಎಂಆರ್‌ಎನ್ಎಯ ೫’ ಮತ್ತು ೩’ ಅನುವಾದಿಸದ ಪ್ರದೇಶಗಳು (ನೀಲಿ ಬಣ್ಣ) ಕೊನೆಯಲ್ಲಿ ಪ್ರೋಟೀನ್ ಉತ್ಪನ್ನವಾಗುವ ಅನುವಾದವನ್ನು ನಿಯಂತ್ರಿಸುತ್ತವೆ.
ಪ್ರೋಕ್ಯಾರಿಯೋಟ್ ಪ್ರೋಟೀನ್ ಸಂಕೇತಿಸುವ ವಂಶವಾಹಿಗಳ ಒಪೆರಾನು.[ಟಿಪ್ಪಣಿ ೮] ನಿಯಂತ್ರಕ ಸರಣಿಯು ಅನೇಕ ಪ್ರೋಟೀನು ಸಂಕೇತಿಸುವ ಪ್ರದೇಶಗಳು (ಕೆಂಪು ಬಣ್ಣ) ಯಾವಾಗ ಅಭಿವ್ಯಕ್ತಿಗೊಳ್ಳ ಬೇಕು ಎಂಬುದನ್ನು ನಿಯಂತ್ರಿಸುತ್ತವೆ. ಉತ್ತೇಜಕ, ನಿರ್ವಾಹಕ ಮತ್ತು ವರ್ಧಕ ಪ್ರದೇಶಗಳು (ಹಳದಿ ಬಣ್ಣ) ವಂಶವಾಹಿ ಎಂಆರ್‌ಎನ್ಎ ಲಿಪ್ಯಂತರವಾಗುವುದನ್ನು ನಿಯಂತ್ರಿಸುತ್ತವೆ. ಎಂಆರ್‌ಎನ್ಎನ ಅನುವಾದಿಸದ ಪ್ರದೇಶ (ನೀಲಿ ಬಣ್ಣ) ಕೊನೆಯಲ್ಲಿ ಪ್ರೋಟೀನ್ ಉತ್ಪಾದನೆ ಮಾಡುವ ಅನುವಾದನ್ನು ನಿಯಂತ್ರಿಸುತ್ತದೆ.


ವಂಶವಾಹಿಯ ರಚನೆಯು ಹಲವು ಅಂಶಗಳನ್ನು ಹೊಂದಿದ್ದು ವಾಸ್ತವದಲ್ಲಿ ಪ್ರೋಟೀನ್ ಸಂಕೇತಿಸುವ ಸರಣಿ ಅದರ ಒಂದು ಸಣ್ಣ ಭಾಗ ಮಾತ್ರವಾಗಿದೆ. ಇವು ಲಿಪ್ಯಂತರವಾಗದ ಡಿಎನ್ಎ ಪ್ರದೇಶ ಮತ್ತು ಆರ್‌ಎನ್ಎನ ಅನುವಾದಿಸದ ಪ್ರದೇಶಗಳನ್ನು ಒಳಗೊಂಡಿದೆ.
ಮೊದಲನೆಯದಾಗಿ ಎಲ್ಲಾ ವಂಶವಾಹಿಗಳ ಮುಕ್ತ ಓದುವಿಕೆಯ ಚೌಕ್ಕಟ್ಟಿನ[ಟಿಪ್ಪಣಿ ೯] ಪಕ್ಕದಲ್ಲಿಯೇ ಸಾಮಾನ್ಯವಾಗಿ ಅದರ ಅಭಿವ್ಯಕ್ತಿಗೆ ಅಗತ್ಯವಾದ ನಿಯಂತ್ರಕ ಸರಣಿ ಇರುತ್ತದೆ. ವಂಶವಾಹಿ ಅಭಿವ್ಯಕ್ತಿಗೊಳ್ಳಲು ಉತ್ತೇಜಕ ಸರಣಿ ಅಗತ್ಯ. ಉತ್ತೇಜಕವನ್ನು ಲಿಪ್ಯಂತರ ಏಜೆಂಟುಗಳು ಮತ್ತು ಆರ್‌ಎನ್‌ಎ ಪಾಲಿಮರೇಸ್‌ಗಳು ಬಂಧಿಸಿ ಲಿಪ್ಯಂತರವನ್ನು ಆರಂಭಿಸುತ್ತವೆ.[೨]:೭.೧ ವಂಶವಾಹಿಯೊಂದರಲ್ಲಿ ಒದಕ್ಕಿಂತ ಹೆಚ್ಚು ಉತ್ತೇಜಕಗಳಿರ ಬಹುದು ಮತ್ತು ಪರಿಣಾಮವಾಗಿ ಒದ್ದಕಿಂತ ಹೆಚ್ಚು ಎಂಆರ್‌ಎನ್‌ಎಗಳು ರೂಪಗೊಳ್ಳುತ್ತವೆ ಮತ್ತು ಅವುಗಳ ೫’ ಕೊನೆ ಹೇಗೆ ಚಾಚಿದೆ ಎನ್ನುವದರ ಮೇಲೆ ಈ ಎಂಆರ್‌ಎನ್‌ಎಗಳು ಭಿನ್ನವಾಗಿರುತ್ತವೆ.[೩೦] ಉತ್ತೇಜಕ ಪ್ರದೇಶಗಳಲ್ಲಿ ಒಮ್ಮತದ ಸರಣಿ[ಟಿಪ್ಪಣಿ ೧೦] ಇರುತ್ತದೆ. ಬಹಳಷ್ಟು ಸಲ ಲಿಪ್ಯಂತರಗೊಳ್ಳುವ ವಂಶವಾಹಿಗಳಲ್ಲಿ ಲಿಪ್ಯಂತರ ಯಂತ್ರಾಗವನ್ನು ಚೆನ್ನಾಗಿ ಬಂಧಿಸುವ “ಬಲವಾದ” ಉತ್ತೇಜಕಗಳು ಇರುತ್ತವೆ, ಇದಕ್ಕೆ ಭಿನ್ನವಾಗಿ ಇತರ ವಂಶವಾಹಿಗಳಲ್ಲಿ “ಬಲಹೀನ” ಉತ್ತೇಜಕಗಳಿದ್ದು ಚೆನ್ನಾಗಿ ಬಂಧಿತವಾಗುವುದಿಲ್ಲ ಮತ್ತು ಇಲ್ಲಿ ಪದೇಪದೇ ಲಿಪ್ಯಂತರವಾಗುವುದಿಲ್ಲ.[೨]:೭.೨ ಯೂಕ್ಯಾರಿಯೋಟ್ ಉತ್ತೇಜಕ ಪ್ರದೇಶಗಳು ಪ್ರೋಕ್ಯಾರಿಯೋಟ್ ಉತ್ತೇಜಕ ಪ್ರದೇಶಗಳಿಗಿಂತ ಹೆಚ್ಚು ಸಂಕೀರ್ಣ ಮತ್ತು ಅವುಗಳನ್ನು ಗುರುತಿಸುವುದು ಕಷ್ಟವೂ ಸಹ.[೨]:೭.೩
ವಂಶವಾಹಿಗಳ ಮುಕ್ತ ಓದುವಿಕೆಯ ಚೌಕಟ್ಟಿನ ಸಾವಿರ ಪ್ರತ್ಯಾಮ್ಲಗಳ ಕೆಳಗೆ ಅಥವಾ ಮೇಲೆ ನಿಯಂತ್ರಕ ಪ್ರದೇಶಗಳು ಇರಬಹುದು. ಇವು ಲಿಪ್ಯಂತರ ಏಜೆಂಟುಗಳನ್ನು ಬಂಧಿಸಿ ಕ್ರಿಯಾಶೀಲವಾಗುತ್ತವೆ ಮತ್ತು ಲಿಪ್ಯಂತರ ಏಜೆಂಟು ಡಿಎನ್ಎಯನ್ನು ಕುಣಿಕೆಯಂತಾಗಿಸುವ ಮೂಲಕ ನಿಯಂತ್ರಕ ಸರಣಿಯು (ಮತ್ತು ಬಂಧಿತವಾದ ಲಿಪ್ಯಂತರ ಏಜೆಂಟು) ಆರ್‌ಎನ್ಎ ಪಾಲಿಮರೇಸ್‌ ಬಂಧನದ ಸ್ಥಳಕ್ಕೆ ಹತ್ತಿರವಾಗುತ್ತದೆ.[೩೧] ಉದಾಹರಣೆಗೆ ವರ್ಧಕಗಳು (ಎನ್‌ಹ್ಯಾನ್ಸರ್) ಸಕ್ರಿಯಕಾರಕ (ಯಾಕ್ಟಿವೇಟರ್) ಪ್ರೋಟೀನನ್ನು ಬಂಧಿಸುತ್ತವೆ ಮತ್ತು ಇದು ಆರ್‌ಎನ್ಎ ಪಾಲಿಮರೇಸ್‌ ಉತ್ತೇಜಕದೊಂದಿಗೆ ಸೇರಿಕೊಳ್ಳಲು ಸಹಾಯ ಮಾಡುತ್ತದೆ. ಹೀಗೆ ವರ್ಧಕಗಳು ಲಿಪ್ಯಂತರವನ್ನು ಹೆಚ್ಚಿಸುತ್ತವೆ. ಇದಕ್ಕೆ ವಿರುದ್ಧವಾಗಿ ನಿಶ್ಶಬ್ದಕಗಳು ಹತ್ತಿಕುವ ಪ್ರೋಟೀನ್‌ಗಳನ್ನು ಬಂಧಿಸಿ ಡಿಎನ್ಎಗೆ ಆರ್‌ಎನ್ಎ ಪಾಲಿಮರೇಸ್ ಕಡಿಮೆ ಲಭ್ಯವಾಗುವಂತೆ ಮಾಡುತ್ತವೆ.[೩೨]
ಲಿಪ್ಯಂತರ ಗೊಂಡ ಪ್ರಿ-ಎಂಆರ್‌ಎನ್ಎನಲ್ಲಿ ಅನುವಾದಿಸದ ಪ್ರದೇಶಗಳು ಎರಡೂ ತುದಿಯಲ್ಲಿ ಇರುತ್ತವೆ ಮತ್ತು ಇವುಗಳಲ್ಲಿ ಒಂದು ರೈಬೋಸೋಮ್‌ ಬಂಧಿಸುವ ಸ್ಥಳ, ಅಂತ್ಯಕ (ಟರ್ಮಿನೇಟರ್) ಮತ್ತು ಆರಂಭ ಹಾಗೂ ಕೊನೆಗೊಳಿಸುವಿಕೆ ಕೋಡಾನುಗಳು ಇರುತ್ತವೆ.[೩೩] ಇದಲ್ಲದೆ ಬಹುತೇಕ ಯೂಕ್ಯಾರಿಯೋಟ್‌ಗಳ ಮುಕ್ತ ಓದುವಿಕೆ ಚೌಕಟ್ಟು ಅನುವಾದಿಸದ ಇಂಟ್ರೋನುಗಳನ್ನು[ಟಿಪ್ಪಣಿ ೩] ಹೊಂದಿರುತ್ತದೆ ಮತ್ತು ಇವುಗಳನ್ನು ಎಕ್ಸೋನ್‌ಗಳು ಅನುವಾದವಾಗುವ ಮುಂಚೆ ತೆಗೆಯಲಾಗುತ್ತದೆ. ಸರಣಿಯ ಕೊನೆಯಲ್ಲಿರುವ ಇಂಟ್ರೋನ್‌ಗಳು ಪ್ರೋಟೀನ್ ಅಥವಾ ಆರ್‌ಎನ್ಎ ಉತ್ಪತ್ತಿ ಮಾಡುವ ಕಡೆಯ ಪಕ್ವ ಎಂಆರ್‌ಎನ್‌ಎಯನ್ನು ಉತ್ಪಾದಿಸುವಂತೆ ಜೋಡಣೆ ಸ್ಥಳಗಳಿಗೆ ನಿರ್ದೇಶಿಸುತ್ತದೆ.[೩೪]
ಹಲವು ಪ್ರೋಕ್ಯಾರಿಯೋಟ್‌ನಲ್ಲಿನ ವಂಶವಾಹಿಗಳು ಅನೇಕ ಪ್ರೋಟೀನ್‌-ಸಂಕೇತಗಳ ಸರಣಿಯನ್ನು ಒಂದು ಲಿಪ್ಯಂತರ ಘಟಕಗಳಾಗಿ ಮತ್ತು ಒಪೆರಾನುಗಳಾಗಿ[ಟಿಪ್ಪಣಿ ೧೧] ಸಂಘಟಿತವಾಗಿವೆ.[೩೫][೩೬] ಒಪೆರಾನು ವಂಶವಾಹಿಗಳಿಗೆ ಸಂಬಂಧಿತ ಕೆಲಸಗಳಿರುತ್ತವೆ ಅಥವಾ ಅದೇ ನಿಯಂತ್ರಕ ಜಾಲದಲ್ಲಿ ತೊಡಗಿಕೊಂಡಿರುತ್ತವೆ.[೨]:೭.೩

ಕಾರ್ಯಭಾರಿ ವ್ಯಾಖ್ಯಾನ


ಡಿಎನ್ಎ ಸರಣಿಯ ಯಾವ ಭಾಗ ವಂಶವಾಹಿ ಎಂದು ವ್ಯಾಖ್ಯಾನಿಸುವುದು ಕಷ್ಟದ ಕೆಲಸ.[೩] ರೇಖೆರೀತಿಯ ಅಣುಗಳ ಮೇಲೆ ವರ್ಧಕಗಳಂತಹ ನಿಯಂತ್ರಕ ಪ್ರದೇಶಗಳು ಸಂಕೇತಿಸುವ ಸರಣಿಗೆ ಹತ್ತಿರವೇ ಇರಬೇಕಾದ ಅಗತ್ಯವಿಲ್ಲ ಏಕೆಂದರೆ ಮಧ್ಯ ಬರುವ ಡಿಎನ್ಎಯು ಕುಣಿಕೆಯಲ್ಲಿ ಹೊರಹೋಗಿ ವಂಶವಾಹಿ ಮತ್ತು ಅದರ ನಿಯಂತ್ರಕ ಪ್ರದೇಶವನ್ನು ಹತ್ತಿರ ತರುತ್ತದೆ. ಹಾಗೆಯೇ, ವಂಶವಾಹಿಯ ಇಂಟ್ರೋನುಗಳು[ಟಿಪ್ಪಣಿ ೩] ಅದರ ಎಕ್ಸೋನುಗಳಿಗಿಂತ ತೀರ ದೊಡ್ಡವಿರ ಬಹುದು. ನಿಯಂತ್ರಕ ಪ್ರದೇಶಗಳು ಪೂರ್ಣವಾಗಿ ಬೇರೆ ವರ್ಣತಂತುವಿನ ಮೇಲೂ ಇರಬಹುದು ಮತ್ತು ಒಂದು ವರ್ಣತಂತು ಮೇಲಿನ ನಿಯಂತ್ರಕ ಪ್ರದೇಶವು ಇನ್ನೊಂದು ಗುರಿ ಮಾಡಿಕೊಂಡ ವಂಶವಾಹಿ ಇರುವ ವರ್ಣತಂತು ಎರಡೂ ಹತ್ತಿರ ಬರುವಂತೆ ಚಲಿಸ ಬಹುದು.[೩೭][೩೮]
ಅಣ್ವಿಕ ತಳಿವಿಜ್ಞಾನದ ಆರಂಭಿಕ ಕೆಲಸಗಳು ಒಂದು ವಂಶವಾಹಿ ಒಂದು ಪ್ರೋಟೀನನ್ನು ತಯಾರಿಸುತ್ತದೆ ಎಂಬ ಮಾದರಿಯನ್ನು ಸೂಚಿಸುತ್ತಿದ್ದವು. ಆದರೆ ಒಂದು ವಂಶವಾಹಿ ಹಲವು ಪ್ರೋಟೀನುಗಳನ್ನು ಬದಲಿ ಅಥವಾ ಪರ್ಯಾಯ ಜೋಡಣೆಗಳ ಮೂಲಕ ಸಂಕೇತಿಸುವುದನ್ನು ಕಂಡುಹಿಡಿದ ನಂತರ ಈ ಮಾದರಿಯಲ್ಲಿ ಸುಧಾರಣೆಯಾಗಿದೆ. ಜಿನೋಮ್‌ನಾದ್ಯಂತ ಹಂಚಿಹೋದ ಸಣ್ಣ ಸರಣಿಯ ಭಾಗಗಳು ಎಂಆರ್‌ಎನ್ಎ ಟ್ರಾನ್ಸ್-ಜೋಡಣೆಯಲ್ಲಿ ಒಟ್ಟು ಸೇರುತ್ತವೆ.[೫][೩೯][೪೦]
ಈ ವೈವಿದ್ಯಮಯ ಸಂಕೀರ್ಣ ವಿದ್ಯಮಾನವನ್ನು ಸಮರ್ಥವಾಗಿ ನಿಭಾಯಿಸಲು ವಿಶಾಲ ಉಪಯೋಗಿಸಬಲ್ಲ ವ್ಯಾಖ್ಯಾನವನ್ನು ಕೆಲವೊಮ್ಮೆ ಬಳಸಲಾಗುತ್ತದೆ. ಇಂತಹ ವ್ಯಾಖ್ಯಾನದಲ್ಲಿ ವಂಶವಾಹಿಯು ಸುಸಂಗತ, ಒಂದರಮೇಲೊಂದು ವ್ಯಾಪಿಸ ಬಹುದಾದ ಕಾರ್ಯನಿರ್ವಾಹಕ ಉತ್ಪನ್ನಗಳ ಸಮೂಹವನ್ನು ಸಂಕೇತಿಸುವ ಜಿನೋಮ್‌ನ ಸರಣಿಗಳ ಮೊತ್ತ.[೧೧] ಈ ವ್ಯಾಖ್ಯಾನವು ವಂಶವಾಹಿಯನ್ನು ನಿರ್ದಿಷ್ಟ ಡಿಎನ್ಎ ನೆಲೆ ಎನ್ನುವದರ ಬದಲು ಅದರ ಕಾರ್ಯನಿರ್ವಹಿಸ ಬಲ್ಲ ಉತ್ಪನ್ನಗಳ (ಪ್ರೋಟೀನ್ ಅಥವಾ ಆರ್‌ಎನ್ಎ) ಆಧಾರದ ಮೇಲೆ ವರ್ಗೀಕರಿಸುತ್ತದೆ ಮತ್ತು ನಿಯಂತ್ರಕ ಅಂಶಗಳನ್ನು ವಂಶವಾಹಿಗೆ ಸಂಬಂದಿಸಿದ ಪ್ರದೇಶ ಎಂದು ವರ್ಗೀಕರಿಸುತ್ತದೆ.[೧೧][ಟಿಪ್ಪಣಿ ೧೨]

ವಂಶವಾಹಿ ಅಭಿವ್ಯಕ್ತಿ


ಎಲ್ಲಾ ಜೀವಿಗಳಲ್ಲಿಯೂ ವಂಶವಾಹಿಯ ಡಿಎನ್ಎಯಲ್ಲಿ ಸಂಕೇತಿಸಲಾದ ಮಾಹಿತಿಯನ್ನು ಓದುವುದು ಮತ್ತು ಅದು ನಿರ್ದಿಷ್ಟವಾಗಿ ಹೇಳಿದ ಪ್ರೋಟೀನನ್ನು ತಯಾರಿಸುವದು ಈ ಎರಡು ಹೆಜ್ಜೆಗಳು ಇವೆ.[೨]:೬.೧ ಮೊದಲನೆಯದರಲ್ಲಿ ವಂಶವಾಹಿಯ ಡಿಎನ್‌ಎ ಲಿಪ್ಯಂತರ ಎಂಬ ಪ್ರಕ್ರಿಯೆಯ ಮೂಲಕ ಎಂಆರ್‌ಎನ್ಎ ಆಗುತ್ತದೆ.[೨]:೬.೨ ಎರಡನೆಯದರಲ್ಲಿ ಎಂಆರ್‌ಎನ್ಎ ಪ್ರೋಟೀನಾಗಿ ಅನುವಾದಿತವಾಗುತ್ತದೆ (ಇಲ್ಲಿಯ ಲಿಪ್ಯಂತರ ಮತ್ತು ಅನುವಾದ ಪ್ರಕ್ರಿಯೆಗಳು ಜೈವಿಕ ಪ್ರಕ್ರಿಯೆಗಳು). ಆರ್‌ಎನ್ಎ ಸಂಕೇತಿಸುವ ವಂಶವಾಹಿಗಳಲ್ಲಿ ಮೊದಲ ಹೆಜ್ಜೆ ಇದೆ ಅದರೆ ಪ್ರೋಟೀನಾಗಿ ಅನುವಾದಿತವಾಗುವುದಿಲ್ಲ.[೪೧] ಜೈವಿಕವಾಗಿ ಕಾರ್ಯನಿರ್ವಹಿಸ ಬಲ್ಲ ಆರ್‌ಎನ್ಎ ಅಥವಾ ಪ್ರೋಟೀನಿನ ಅಣು ತಯಾರಾಗುವ ಪ್ರಕ್ರಿಯೆಯನ್ನು ವಂಶವಾಹಿ ಅಭಿವ್ಯಕ್ತಿ ಎಂದು ಕರೆಯಲಾಗಿದೆ ಮತ್ತು ಹೀಗೆ ಉಂಟಾದ ಅಣುವನ್ನು ವಂಶವಾಹಿ ಉತ್ಪಾದನೆ ಎಂದು ಕರೆಯಲಾಗಿದೆ.

ಜೆನೆಟಿಕ್ ಕೋಡ್

ಮೂರು ಪ್ರತ್ಯಾಮ್ಲಗಳ ಕೋಡಾನು ತೋರಿಸುವ ಒಂದು ತಂತು ಆರ್‌ಎನ್ಎ ಅಣು. ಪ್ರತೀ ಮೂರು ನ್ಯೂಕ್ಲಿಯೊಟೈಡ್‌ಗಳ ಕೊಡಾನ್ ಪ್ರೋಟೀನ್ ಆಗಿ ಅನುವಾದಿಸಿದಾಗ ಒಂದು ಅಮಿನೊ ಆಮ್ಲಕ್ಕೆ ಸಂವಾದಿಯಾಗಿರುತ್ತದೆ.


ವಂಶವಾಹಿ ಡಿಎನ್ಎಯ ನ್ಯೂಕ್ಲಿಯೊಟೈಡ್ ಸರಣಿಯು ಪ್ರೋಟೀನಿನ ನಿರ್ದಿಷ್ಟ ಅಮಿನೊ ಆಮ್ಲ ಸರಣಿಯನ್ನು ಜೆನೆಟಿಕ್ ಕೋಡ್ ಮೂಲಕ ಹೇಳುತ್ತದೆ. ಮೂರು ನ್ಯೂಕ್ಲಿಯೊಟೈಡುಗಳ ಸಮೂಹಗಳನ್ನು ಕೊಡಾನುಗಳೆಂದು ಎಂದು ಕರೆಯಲಾಗಿದೆ ಪ್ರತಿಯೊಂದು ಕೊಡಾನು ನಿರ್ದಿಷ್ಟ ಅಮಿನೊ ಆಮ್ಲಕ್ಕೆ ಸಂವಾದಿಯಾಗಿವೆ.[೨]:೬ ಜೊತೆಗೆ ಒಂದು “ಆರಂಭ ಕೋಡಾನು” ಮತ್ತು ಮೂರು “ನಿಲ್ಲಿಸು ಕೋಡಾನು”ಗಳಿವೆ ಮತ್ತು ಇವು ಪ್ರೋಟೀನ್ ಸಂಕೇತ ಪ್ರದೇಶದ ಆರಂಭ ಮತ್ತು ಕೊನೆಯನ್ನು ಸೂಚಿಸುತ್ತವೆ. ಮೂರು ನ್ಯೂಕ್ಲಿಯೊಟೈಡ್ ಪ್ರಕಾರ ೬೪ ಕೋಡಾನುಗಳು ಸಾಧ್ಯ (ಮೂರರ ಪ್ರತಿ ಸ್ಥಾನದಲ್ಲಿ ನಾಲ್ಕು ನ್ಯೂಕ್ಲಿಯೊಟೈಡ್ ಸಾದ್ಯ, ಹೀಗಾಗಿ ೪೩ ಕೋಡಾನುಗಳು ಸಾಧ್ಯ) ಮತ್ತು ೨೦ ಅಮಿನೊ ಆಮ್ಲಗಳಿವೆ. ಆದ್ದರಿಂದ ಕೋಡಾನುಗಳು ಅಧಿಕ ಮತ್ತು ಹಲವು ಕೋಡಾನುಗಳು ಒಂದೇ ಅಮಿನೊ ಆಮ್ಲವನ್ನು ನಿರ್ದೇಶಿಸುತ್ತವೆ. ಕೊಡಾನು ಮತ್ತು ಅಮಿನೊ ಆಮ್ಲಗಳ ನಡುವಿನ ಸಂವಾದಿತ್ವ ಎಲ್ಲಾ ಜೀವಿಗಳಲ್ಲಿಯೂ ಬಹುತೇಕ ಸಾರ್ವತ್ರಿಕವಾಗಿದೆ.[೪೨]

ಲಿಪ್ಯಂತರ


ಲಿಪ್ಯಂತರವು ಒಂದು ತಂತುವಿನ ಮೆಸೆಂಜರ್ ಅಥವಾ ದೂತ ಆರ್‌ಎನ್ಎ (ಎಂಆರ್‌ಎನ್ಎ) ಎಂದು ಕರೆಯಲಾದ ಆರ್‌ಎನ್ಎ ಅಣುವನ್ನು ಉತ್ಪಾದಿಸುತ್ತದೆ ಮತ್ತು ಇದರ ನ್ಯೂಕ್ಲಿಯೊಟೈಡ್ ಸರಣಿಯು ಲಿಪ್ಯಂತರ ಮಾಡಿದ ಡಿಎನ್ಎಯ ಸರಣಿಗೆ ಪೂರಕವಾಗಿರುತ್ತದೆ.[೨]:೬.೧ ಎಂಆರ್‌ಎನ್ಎ ಡಿಎನ್ಎ ವಂಶವಾಹಿ ಮತ್ತು ಅದರ ಕೊನೆಯಾದ ಪ್ರೋಟೀನ್ ಉತ್ಪನ್ನಗಳ ನಡುವಿನ ಮಧ್ಯವರ್ತಿಯಾಗಿ ಕೆಲಸ ಮಾಡುತ್ತದೆ. ಎಂಆರ್‌ಎನ್ಎ ಸರಣಿ ‌ವಂಶವಾಹಿ ಡಿಎನ್ಎ ಸಂಕೇತಿಸುವ ತಂತುವಿಗೆ ಸರಿಸಾಟಿಯಾಗಿರುತ್ತದೆ ಏಕೆಂದರೆ ಅದು ಪಡಿಯಚ್ಚು ತಂತುವಿಗೆ ಪೂರಕವಾಗಿ ತಯಾರಾಗುತ್ತದೆ. ಲಿಪ್ಯಂತರವನ್ನು ಆರ್‌ಎನ್ಎ ಪಾಲಿಮರೇಸ್ ಎಂದು ಕರೆಯಲಾದ ಕಿಣ್ವ ಮಾಡುತ್ತದೆ. ಅದು ಪಡಿಯಚ್ಚು ತಂತುವನ್ನು (ಡಿಎನ್ಎ ತಂತು) ೩’ ನಿಂದ ೫’ ದಿಕ್ಕಿಗೆ ಓದುತ್ತದೆ ಮತ್ತು ೫’ ನಿಂದ ೩’ ದಿಕ್ಕಿನ ಆರ್‌ಎನ್ಎಯನ್ನು ತಯಾರಿಸುತ್ತದೆ. ಲಿಪ್ಯಂತರ ಆರಂಭಿಸಲು ಪಾಲಿಮರೇಸ್ ಮೊದಲು ‌ವಂಶವಾಹಿಯ ಉತ್ತೇಜಕ ಪ್ರದೇಶವನ್ನು ಗುರುತಿಸಿ, ಬಂಧಿಸುತ್ತದೆ. ಹೀಗಾಗಿ ಉತ್ತೇಜಕ ಪ್ರದೇಶವನ್ನು ತಡೆಹಿಡಿಯುವುದು ಅಥವಾ ಪ್ರತ್ಯೇಕಿಸುವುದು ವಂಶವಾಹಿ ನಿಯಂತ್ರಣದ ಪ್ರಮುಖ ಮೆಕಾನಿಸಂ. ಇದನ್ನು ಪಾಲಿಮರೇಸನ್ನು ಭೌತಿಕವಾಗಿ ತಡೆಹಿಡಿಯುವ ಹತ್ತಿಕುವ ಅಣುಗಳ ಬಿಗಿಯಾದ ಬಂಧನದಿಂದಲಾಗಲಿ ಅಥವಾ ಉತ್ತೇಜಕ ಭಾಗವು ಸಿಗದಂತೆ ಮಾಡುವುದರ ಮೂಲಕವಾಗಲಿ ಸಾಧಿಸಲಾಗುತ್ತದೆ.[೨]:೭
ಪ್ರೋಕ್ಯಾರಿಯೋಟ್‌ಗಳಲ್ಲಿ ಲಿಪ್ಯಂತರವು ಜೀವರಸದಲ್ಲಿ ಆಗುತ್ತದೆ. ತೀರ ದೊಡ್ಡ ಲಿಪ್ಯಂತರಗಳಲ್ಲಿ ಅನುವಾದವು ೫’ ಕೊನೆ ಇನ್ನೂ ಲಿಪ್ಯಂತರವಾಗುತ್ತಿರುವಾಗಲೇ ೩’ ಕೊನೆಯ ಅನುವಾದ ಆರಂಭವಾಗುತ್ತದೆ. ಯೂಕ್ಯಾರಿಯೋಟ್‌ಗಳಲ್ಲಿನ ಲಿಪ್ಯಂತರವು ಡಿಎನ್ಎ ಇರುವ ಬೀಜಕಣದಲ್ಲಿ ನಡೆಯುತ್ತದೆ. ಪಾಲಿಮರೇಸ್ ಉತ್ಪಾದಿಸಿದ ಆರ್‌ಎನ್ಎ ಅಣುವನ್ನು ಪ್ರಾಥಮಿಕ ಲಿಪ್ಯಂತರ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಇದು ಲಿಪ್ಯಂತರ ನಂತರದ ಮಾರ್ಪಾಡಿನ ನಂತರವೇ ಜೀವರಸಕ್ಕೆ ರಫ್ತಾಗುತ್ತದೆ. ಈ ಮಾರ್ಪಾಡುಗಳಲ್ಲಿ ಒಂದು ಲಿಪ್ಯಂತರ ಪ್ರದೇಶದಲ್ಲಿನ ಪ್ರೋಟೀನನ್ನು ಸಂಕೇತಿಸದ ಸರಣಿಗಳು ಅಥವಾ ಇಂಟ್ರೋನುಗಳನ್ನು ಜೋಡಿಸುವುದು. ಬದಲೀ ಅಥವಾ ಪರ್ಯಾಯ ಜೋಡಣೆಯ ಮೆಕಾನಿಸಂ ಪರಿಣಾಮವಾಗಿ ಒಂದೇ ವಂಶವಾಹಿಯ ಪಕ್ವ ಲಿಪ್ಯಂತರಗಳು ಬೇರೆ ಬೇರೆ ಸರಣಿ ಹೊಂದಿರುತ್ತವೆ ಮತ್ತು ಬೇರೆ ಬೇರೆ ಪ್ರೋಟೀನುಗಳನ್ನು ಸಂಕೇತಿಸುತ್ತವೆ. ಇದು ಯೂಕ್ಯಾರಿಯೋಟ್ ಜೀವಕೋಶಗಳಲ್ಲಿನ ನಿಯಂತ್ರಣದ ಪ್ರಮುಖ ರೂಪ ಮತ್ತು ಕೆಲವು ಪ್ರೋಕ್ಯಾರಿಯೋಟ್‌ಗಳಲ್ಲಿಯೂ ಇದು ಆಗುತ್ತದೆ.[೨]೭.೫[೪೩]

ಅನುವಾದ

ಪ್ರೋಟೀನ್ ಸಂಕೇತಿಸುವ ವಂಶವಾಹಿಗಳು ಮಧ್ಯವರ್ತಿ ಎಂಆರ್‌ಎನ್ಎ ಆಗಿ ಲಿಪ್ಯಂತರವಾಗುತ್ತವೆ. ನಂತರ ಕೆಲಸ ಮಾಡುವ ಪ್ರೋಟೀನಾಗಿ ಅನುವಾದಿಸಲ್ಪಡುತ್ತವೆ. ಆರ್‌ಎನ್‌ಎ ಸಂಕೇತಿಸುವ ವಂಶವಾಹಿಗಳು ಕೆಲಸ ಮಾಡುವ ಸಂಕೇತಿಸದ ಆರ್‌ಎನ್ಎಯಾಗಿ ಲಿಪ್ಯಂತರ ಗೊಳ್ಳುತ್ತವೆ.


ಪಕ್ವ ಎಂಆರ್‌ಎನ್ಎ ಅಣುವನ್ನು ಪಡಿಯಚ್ಚಾಗಿ ಬಳಸಿ ಪ್ರೋಟೀನ್ ತಯಾರಿಸುವ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಅನುವಾದ ಎಂದು ಕರೆಯಲಾಗಿದೆ.[೨]:೬.೨ ಅನುವಾದವನ್ನು ದೊಡ್ಡ ಆರ್‌ಎನ್ಎ ಸಂಕೀರ್ಣಗಳು ಮತ್ತು ಪ್ರೋಟೀನ್‌ಗಳಿಂದ ರೂಪಗೊಂಡ ರೈಬೋಸೋಮ್‌ಗಳು ಮಾಡುತ್ತವೆ. ಅವು ರಸಾಯನಿಕ ಕ್ರಿಯೆಯ ಮೂಲಕ ಬೆಳೆಯುತ್ತಿರುವ ಪಾಲಿಪೆಪ್‌ಟೈಡ್ ಸರಪಣಿಗೆ ಪೆಪ್‌ಟೈಡ್ ಬಂಧಕಗಳನ್ನು ರಚಿಸಿ ಅಮಿನೊ ಆಮ್ಲಗಳನ್ನು ಸೇರಿಸುತ್ತವೆ. ಒಂದು ಕೋಡಾನ್‌ನಲ್ಲಿ ಮೂರು ನ್ಯೂಕ್ಲಿಯೋಟೈಡ್‌ಗಳು ಇದ್ದು ಅದನ್ನು ಒಂದು ಘಟಕವಾಗಿ ಪರಿಗಣಿಸಲಾಗಿದೆ.ಇದನ್ನು ವಿಶೇಷ ಆರ್‌ಎನ್ಎಯಾದ ವರ್ಗಾವಣೆ ಆರ್‌ಎನ್ಎ (ಟಿಆರ್‌ಎನ್ಎ) ಓದುತ್ತದೆ. ಪ್ರತೀ ಟಿಆರ್‌ಎನ್ಎಯಲ್ಲಿ ಪ್ರತಿಕೋಡಾನುಗಳು ಎಂದು ಕರೆಯಲಾದ ಮೂರು ಜೋಡಿಯಾಗದ ಪ್ರತ್ಯಾಮ್ಲಗಳು (ಬೇಸ್) ಇರುತ್ತವೆ. ಟಿಆರ್‌ಎನ್ಎಯು ಸಹವೆಲೆನ್ಸಿ ಬಂಧದ ಮೂಲಕ ಪೂರಕ ಕೋಡಾನು ನಿರ್ಣಯಿಸಿದ ಅಮಿನೊ ಆಮ್ಲಕ್ಕೆ ಅಂಟಿಕೊಂಡಿರುತ್ತದೆ. ಟಿಆರ್‌ಎನ್ಎಯು ಎಂಆರ್‌ಎನ್ಎ ತಂತುವಿನ ಪೂರಕ ಕೋಡಾನಿನಿಂದ ಬಂಧಿತವಾದಾಗ ರೈಬೋಸೋಮ್ ಟಿಆರ್‌ಎನ್ಎ ಮೇಲಿರುವ ಅಮಿನೊ ಆಮ್ಲವನ್ನು ಹೊಸ ಪಾಲಿಪೆಪ್‌ಟೈಡ್‌ ಸರಪಳಿಗೆ ಅಂಟಿಸುತ್ತದೆ. ಈ ಸರಪಳಿಯು ಅಮಿನೊ[ಟಿಪ್ಪಣಿ ೧೩] ಕೊನೆಯಿಂದ ಕಾರ್ಬೊಕ್ಸಿಲ್‌[ಟಿಪ್ಪಣಿ ೧೪] ಕೊನೆಗೆ ಸಂಯೋಜಿಸಲ್ಪಡುತ್ತದೆ. ಸಂಯೋಜನೆಯ ಸಮಯದಲ್ಲಿ ಮತ್ತು ನಂತರ ಹೊಸ ಪ್ರೋಟೀನುಗಳು ಜೀವಕೋಶದ ಕೆಲಸಗಳಲ್ಲಿ ತೊಡಗಿಕೊಳ್ಳುವ ಮುಂಚೆ ತಮ್ಮ ಸಕ್ರಿಯ ಮೂರು ಆಯಮಗಳ ರಚನೆ ಪಡೆಯಲು ಮಡಿಚಿಕೊಳ್ಳ ಬೇಕು.[೨]:೩

ನಿಯಂತ್ರಣ


ವಂಶವಾಹಿಗಳ ಅಭಿವ್ಯಕ್ತಿಯು ಸೀಮಿತ ಸಂಪನ್ಮೂಲಗಳನ್ನು ಬಳಸುವುದರಿಂದ ಉತ್ಪನ್ನವು ಅಗತ್ಯವಿದ್ದಾಗ ಮಾತ್ರ ಅಭಿವ್ಯಕ್ತಿಸುವ ಮೂಲಕ ನಿಯಂತ್ರಣಕ್ಕೆ ಒಳಪಡುತ್ತವೆ.[೨]:೭ ಜೀವಕೋಶವು ಹೊರ ಪರಿಸರ (ಉದಾ. ಪೋಷಕಾಂಶಗಳ ಲಭ್ಯತೆ, ತಾಪಮಾನ ಮತ್ತು ಇತರ ಒತ್ತಡಗಳು ), ಅದರ ಒಳ ಪರಿಸರ (ಕೋಶ ವಿಭಜನೆ ಚಕ್ರ, ಚಯಾಪಚಯ ಅಥವಾ ಮೆಟಬಾಲಿಸಂ, ಸೋಂಕಿನ ಸ್ಥಿತಿ) ಮತ್ತು ಬಹುಕೋಶಿ ಜೀವಿಗಳಲ್ಲಿ ವಹಿಸುವ ನಿರ್ದಿಷ್ಟ ಪಾತ್ರದ ಆಧಾರದ ಮೇಲೆ ತನ್ನ ವಂಶವಾಹಿಯ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ನಿಯಂತ್ರಿಸುತ್ತದೆ. ಲಿಪ್ಯಂತರ ಆರಂಭದಿಂದ ಹಿಡಿದು, ಆರ್‌ಎನ್ಎ ಸಂಸ್ಕರಣ, ಪ್ರೋಟೀನ್‌ನ ಅನುವಾದ ನಂತರದ ಮಾರ್ಪಾಟುವರೆಗೆ ಯಾವ ಹೆಜ್ಜೆಯಲ್ಲಿಯಾದರೂ ವಂಶವಾಹಿಯ ಅಭಿವ್ಯಕ್ತಿ ನಿಯಂತ್ರಣಕ್ಕೆ ಒಳಗಾಗಬಹುದು. ಎಸ್ಕರೆಕಿಯಾ ಕೊಲಿಯ (ಒಂದು ಬ್ಯಾಕ್ಟೀರಿಯ) ಲ್ಯಾಕ್ಟೋಸ್ ಚಯಾಪಚಯ ವಂಶವಾಹಿಯ ನಿಯಂತ್ರಣವು ಮೊದಲು ವಿವರಿಸಲಾದ (೧೯೬೧ರಲ್ಲಿ) ಅಂತಹ ಮೆಕಾನಿಸಂ.[೪೪]

ಆರ್‌ಎನ್ಎ ವಂಶವಾಹಿಗಳು


ಮಾದರಿ ಪ್ರೋಟೀನ್ ಸಂಕೇತಿಸುವ ವಂಶವಾಹಿಯು ಕೊನೆಯ ಉತ್ಪನ್ನ ತಯಾರಾಗುವ ಮುನ್ನ ಒಂದು ಮಧ್ಯಂತರ ಆರ್‌ಎನ್ಎಯಾಗಿ ನಕಲಾಗುತ್ತದೆ.[೨]:೬.೧ ರೈಬೋಸೋಮ್ ಆರ್‌ಎನ್ಎ ಮತ್ತು ವರ್ಗಾವಣೆ ಆರ್‌ಎನ್ಎಗಳ ಸಂಯೋಜನೆಗಳಲ್ಲಿದ್ದಂತೆ ಇತರ ಸಂದರ್ಭಗಳಲ್ಲಿ ಆರ್‌ಎನ್ಎ ಅಣುಗಳು ವಾಸ್ತವದ ಕಾರ್ಯನಿರ್ವಹಿಸುವ ಉತ್ಪನ್ನಗಳು. ರೈಬೋಕಿಣ್ವ ಎಂದು ಕರೆಯಲಾದ ಕೆಲವು ಆರ್‌ಎನ್ಎಗಳಿಗೆ ಕಿಣ್ಣದಂತೆ ಕೆಲಸಮಾಡುವ ಸಾಮರ್ಥ್ಯ ಇದೆ ಮತ್ತು ಮೈಕ್ರೋಆರ್‌ಎನ್ಎಗೆ[ಟಿಪ್ಪಣಿ ೧೫] ನಿಯಂತ್ರಕ ಪಾತ್ರವಿದೆ. ಇಂತಹ ಆರ್‌ಎನ್ಎಯಾಗಿ ಲಿಪ್ಯಂತರಗೊಳ್ಳುವ ಡಿಎನ್ಎ ಸರಣಿಯನ್ನು ಸಂಕೇತಿಸದ ಆರ್‌ಎನ್ಎ ವಂಶವಾಹಿಗಳು ಎಂದು ಕರೆಯಲಾಗಿದೆ.[೪೧]
ಕೆಲವು ವೈರಾಣುಗಳಲ್ಲಿ ಪೂರ್ಣ ಜಿನೋಮ್‌ ಆರ್‌ಎನ್ಎ ರೂಪದಲ್ಲಿದ್ದು ಮತ್ತು ಡಿಎನ್ಎ ಇರುವುದೇ ಇಲ್ಲ.[೪೫][೪೬] ಇಂತಹ ಸಂದರ್ಭಗಳಲ್ಲಿ ಅತಿಥೇಯ ಸೋಂಕಿಗೊಳಗಾದ ಜೀವಕೋಶಗಳು ಲಿಪ್ಯಂತರ ಆಗುವುದಕ್ಕಾಗಿ ಕಾಯದೇ ತಕ್ಷಣವೇ ಪ್ರೋಟೀನ್ ತಯಾರಿಯಲ್ಲಿ ತೊಡಗಬಹುದು.[೪೭] ಇದಕ್ಕೆ ಭಿನ್ನವಾಗಿ ಹಿಐವಿಗಳಂತಹ ಆರ್‌ಎನ್ಎ ರಿಟ್ರೊವೈರಾಣುಗಳಲ್ಲಿ ಜಿನೋಮ್‌ನ ಹಿಮ್ಮೊಗ ಲಿಪ್ಯಂತರ ಇದೆ. ಇಲ್ಲಿ ಆರ್‌ಎನ್ಎಯಿಂದ ಪ್ರೋಟೀನ್ ತಯಾರಾಗುವ ಮುಂಚೆ ಡಿಎನ್ಎ ತಯಾರಾಗುತ್ತದೆ. ಆರ್‌ಎನ್ಎ ಮಧ್ಯವರ್ತಿಯಾದ ಎಪಿಜೆನೆಟಿಕ್ ಅನುವಂಶಿಕತೆಯು[ಟಿಪ್ಪಣಿ ೧೬] ಸಸ್ಯಗಳಲ್ಲಿ ಕಂಡುಬಂದಿದ್ದು ತೀರ ವಿರಳವಾಗಿ ಪ್ರಾಣಿಗಳಲ್ಲಿ ಕಂಡುಬರುತ್ತದೆ.[೪೮]

ಅನುವಂಶಿಕತೆ

ಎರಡು ಭಿನ್ನ ಅಲೆಲ್‌ಗಳು (ನೀಲಿ ಮತ್ತು ಬಿಳಿ) ಇರುವ ವಂಶವಾಹಿಯ ಅನುವಂಶಿಕ ಗುಣ. ‌ವಂಶವಾಹಿಯು ಆಟೋವರ್ಣತಂತು (ಲೈಗಿಂಕ ವರ್ಣತಂತುಗಳಲ್ಲದವು) ಮೇಲಿದೆ. ಬಿಳಿಯ ಅಲೆಲ್‌ಗೆ ನೀಲಿ ಅಲೆಲ್ ಅಪ್ರಭಾವಿ. ನಂತರದ ಪೀಳಿಗೆಯ ಪ್ರತೀ ಜೀವಿ ಪಡೆಯಬಹುದಾದ ಸಂಭವನೀಯತೆ ಶೇ ೨೫ ಅಥವಾ ಕಾಲು ಭಾಗ.[೨]:೧


ಜೀವಿಯು ತನ್ನ ತಂದೆತಾಯಿಗಳಿಂದ ವಂಶವಾಹಿಗಳನ್ನು ಪಡೆಯುತ್ತದೆ. ಲೈಂಗಿಕೇತರ ಜೀವಿಗಳು ಪೂರ್ವಜನ ಪೂರ್ಣ ಜಿನೋಮ್‌ನ್ನು ಪಡೆಯುತ್ತವೆ. ಲೈಂಗಿಕ ಜೀವಿಗಳು ಪ್ರತಿ ವರ್ಣತಂತುವಿನ ಎರಡು ನಕಲುಗಳಲ್ಲಿ ಒಂದು ನಕಲು ತಂದೆ ಮತ್ತು ಒಂದು ನಕಲು ತಾಯಿಯಿಂದ ಪಡೆಯುತ್ತವೆ.

ಮೆಂಡಲನ ಅನುವಂಶಿಕತೆ


ಮೆಂಡಲನ ಅನುವಂಶಿಕತೆಯ ಪ್ರಕಾರ ಜೀವಿಯ ವ್ಯಕ್ತನಮೂನೆಯಲ್ಲಿನ[ಟಿಪ್ಪಣಿ ೫] ಭಿನ್ನತೆಗಳು ಆ ಜೀವಿಯ ಜೀನ್‌ನಮೂನೆಯಲ್ಲಿನ (ನಿರ್ದಿಷ್ಟ ವಂಶವಾಹಿಗಳ ಸಮೂಹ) ವ್ಯತ್ಯಾಸಗಳ ಕಾರಣಕ್ಕೆ ಆಗುತ್ತವೆ. ಪ್ರತಿ ವಂಶವಾಹಿಯು ನಿರ್ದಿಷ್ಟ ಗುಣದ ಬಗೆಗೆ ಇರುತ್ತದೆ ಮತ್ತು ವಂಶವಾಹಿಗಳ ಎರಡು ಭಿನ್ನ ಜೋಡಿಗಳು ಭಿನ್ನ ವ್ಯಕ್ತನಮೂನೆಗೆ ಕಾರಣವಾಗುತ್ತವೆ. ಬಹಳಷ್ಟು ಯೂಕ್ಯಾರಿಯೋಟ್ ಜೀವಿಗಳಲ್ಲಿ (ಮೆಂಡಲ್‌ ಕೆಲಸಮಾಡಿದ ಬಟಾಣಿ ಸಸ್ಯಗಳಲ್ಲಿದಂತೆ) ಪ್ರತಿ ಗುಣಕ್ಕೂ ತಂದೆ ಮತ್ತು ತಾಯಿಯಿಂದ ಕೊಡಲ್ಪಟ್ಟ ಎರಡು ಅಲೆಲ್‌ಗಳು ಇರುತ್ತವೆ.[೨]೨೦
ಒಂದು ನೆಲೆಯಲ್ಲಿ ಇರುವ ಅಲೆಲ್‌ಗಳು ಪ್ರಭಾವಿ ಅಥವಾ ಅಪ್ರಭಾವಿ ಇರಬಹುದು. ಪ್ರಭಾವಿ ಅಲೆಲ್‌ಗಳು ಇತರ ಯಾವುದೇ ಅಲೆಲ್‌ನೊಂದಿಗೆ ಜೋಡಿಯಾದಾಗಲೂ ಸಂಬಂಧಿಸಿದ ವ್ಯಕ್ಯನಮೂನೆಗೆ ಕಾರಣವಾಗುತ್ತವೆ. ಇದಕ್ಕೆ ಭಿನ್ನವಾಗಿ ಅಪ್ರಭಾವಿ ಅಲೆಲ್‌ಗಳು ಇನ್ನೊಂದು ಜೋಡಿ ಅದೇ ಅಲೆಲ್‌ನ ನಕಲಾದಾಗ ಮಾತ್ರ ಸಂಬಂಧಿಸಿದ ವ್ಯಕ್ಯನಮೂನೆಗೆ ಕಾರಣವಾಗುತ್ತವೆ. ಉದಾಹರಣೆಗೆ ಬಟಾಣಿ ಗಿಡದ ಎತ್ತರದ ಕಾಂಡದ ಗುಣವನ್ನು ನಿರ್ಣಯಿಸುವ ಅಲೆಲ್ ಗಿಡ್ಡ ಕಾಂಡವನ್ನು ನಿರ್ಣಯಿಸುವ ಅಲೆಲ್‌ ಮೇಲೆ ಪ್ರಭಾವಿಯಾಗಿದ್ದರೆ ಒಂದು ತಂದೆಯಿಂದ (ಅಥವಾ ತಾಯಿ) ಎತ್ತರದ ಅಲೆಲ್ ಮತ್ತು ತಾಯಿಯಿಂದ (ಅಥವಾ ತಂದೆಯಿಂದ) ಗಿಡ್ಡ ಅಲೆಲ್ ಅನುವಂಶಿಕವಾಗಿ ಪಡೆದ ಸಂತತಿಯಲ್ಲಿ ಎಲ್ಲವೂ ಎತ್ತರವಾಗಿರುತ್ತವೆ. ಮೆಂಡಲ್ ಮಾಡಿದ ಕೆಲಸವು ಅಲೆಲ್‌ಗಳು ಗ್ಯಾಮೇಟ್‌ ಅಥವಾ ಯುಗ್ಮಕ [ಟಿಪ್ಪಣಿ ೧೭] ಉತ್ಪಾದನೆಯಲ್ಲಿ ಸ್ವತಂತ್ರವಾಗಿ ಬೇರೆಬೇರೆಯಾಗುತ್ತವೆ ಮತ್ತು ಈ ಮೂಲಕ ವ್ಯತ್ಯಾಸಕ್ಕೆ ಕಾರಣವಾಗುತ್ತವೆ ಎಂದು ತೋರಿಸಿಕೊಟ್ಟಿತು. ಮೆಂಡಲ್‌ನ ಅನುವಂಶಿಕತೆಯ ಮಾದರಿಯು ಒಂದೇ ವಂಶವಾಹಿ ನಿರ್ದೇಶಿಸುವ ಹಲವು ಗುಣಗಳ (ಹಲವು ಅನುವಂಶಿಕತೆಯ ಕಾಯಿಲೆಗಳನ್ನೂ ಒಳಗೊಂಡು) ಬಗೆಗೆ ಒಳ್ಳೆಯ ಮಾದರಿಯಾಗಿ ಉಳಿದುಕೊಂಡರೂ ಅದು ಡಿಎನ್ಎ ನಕಲಾಗುವಿಕೆ ಮತ್ತು ಕೋಶ ವಿಭಜನೆ ಪ್ರಕ್ರಿಯೆಗಳನ್ನು ಒಳಗೊಂಡಿಲ್ಲ.[೪೯][೫೦]

ಡಿಎನ್ಎ ನಕಲಾಗುವಿಕೆ ಮತ್ತು ಕೋಶ ವಿಭಜನೆ


ಜೀವಿಗಳ ಬೆಳವಣಿಗೆ ಮತ್ತು ಸಂತಾನೋತ್ಪತ್ತಿಯು ಕೋಶ ವಿಭಜನೆಯ ಮೇಲೆ ಅವಲಂಭಿತವಾಗಿದೆ. ಈ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ಒಂದು ಜೀವಕೋಶವು ಎರಡು ಸಾಮಾನ್ಯವಾಗಿ ಒಂದೇ ರೀತಿಯ ಮರಿ ಜೀವಕೋಶಗಳಾಗುತ್ತದೆ. ಈ ಪ್ರಕ್ರಿಯೆಗೆ ಡಿಎನ್ಎ ನಕಲಾಗುವಿಕೆ ಎಂದು ಕರೆಯಲಾದ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ಜಿನೋಮ್‌ನ ಎಲ್ಲ ವಂಶವಾಹಿಗಳೂ ಎರಡನೆಯ ಪ್ರತಿಯಾಗಿ ನಕಲಾಗುವುದು ಅಗತ್ಯ.[೨]:೫.೨ ನಕಲು ಪ್ರತಿಯನ್ನು ಡಿಎನ್ಎ ಪಾಲಿಮರೇಸ್‌ಗಳು ಎಂದು ಕರೆಯಲಾದ ವಿಶೇಷ ಕಿಣ್ವಗಳು ಮಾಡುತ್ತವೆ. ಇವು ಪಡಿಯಚ್ಚು ತಂತು ಎಂದು ಕರೆಯಲಾದ ಡಿಎನ್ಎ ಎರಡು ತಂತುಗಳಲ್ಲಿನ ಒಂದನ್ನು “ಓದುತ್ತವೆ” ಮತ್ತು ಹೊಸ ಪೂರಕ ತಂತುವನ್ನು ತಯಾರುಮಾಡುತ್ತವೆ. ಡಿಎನ್ಎ ಎರಡು ತಂತುಗಳ ಸುರಳಿಯು ಪ್ರತ್ಯಾಮ್ಲ ಜೋಡಿಗಳ ಮೂಲಕ ಬಂಧಿತವಾಗಿದ್ದು ಒಂದು ತಂತುವಿನ ಸರಣಿ ಇನ್ನೊಂದು ಪೂರಕ ತಂತುವನ್ನು ಸ್ಪಷ್ಟವಾಗಿ ಹೇಳುತ್ತದೆಯಾದ್ದರಿಂದ ಕಿಣ್ವವು ಮೂಲಕ್ಕೆ ಚ್ಯುತಿ ಬರದ ಇನ್ನೊಂದು ಪ್ರತಿ ಮಾಡಲು ಒಂದು ತಂತುವನ್ನು ಓದಿದರೆ ಸಾಕು. ಡಿಎನ್ಎ ನಕಲಾಗುವ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಅರೆಸಂಪ್ರದಾಯಿಕ ಎಂದು ಕರೆಯಲಾಗಿದೆ ಏಕೆಂದರೆ ಪ್ರತಿ ಮರಿ ಜೀವಕೋಶ ಒಂದು ಮೂಲ ಡಿಎನ್ಎ ಪ್ರತಿಯ ತಂತುಗಳನ್ನು ಹೊಂದಿದ್ದರೆ ಇನ್ನೊಂದು ಹೊಸತಾಗಿ ಸಂಯೋಜಿಸಿದ ಪ್ರತಿಯ ತಂತುಗಳನ್ನು ಒಳಗೊಂಡಿರುತ್ತದೆ.[೨]೫.೨
ಡಿಎನ್ಎ ನಕಲಾಗುವಿಕೆ ಮುಗಿದ ನಂತರ ಜೀವಕೋಶವು ಎರಡು ಜಿನೋಮ್‌ ಪ್ರತಿಗಳನ್ನು ಭೌತಿಕವಾಗಿ ಬೇರ್ಪಡಿಸುತ್ತದೆ. ನಂತರ ಎರಡು ಕೋಶಪೊರೆಯಿಂದ ಸುತ್ತುವರೆದ ಪ್ರತ್ಯೇಕ ಜೀವಕೋಶಗಳಾಗುತ್ತವೆ.[೨]:೧೮.೨ ಪ್ರೋಕ್ಯಾರಿಯೋಟ್ (ಬ್ಯಾಕ್ಟೀರಿಯ ಮತ್ತು ಆರ್ಕಿಯ) ಜೀವಕೋಶಗಳಲ್ಲಿ ಈ ಪ್ರಕ್ರಿಯೆಯು ಸಾಕ್ಷೇಪಿಕವಾಗಿ ಸರಳವಾದ ದ್ವಿವಿದಲನ (ಬೈನರಿ ಫಿಶನ್) ಮೂಲಕ ಆಗುತ್ತದೆ. ಈ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ಪ್ರತಿ ಚಕ್ರಾಕಾರದ ಜಿನೋಮ್ ಕೋಶಪೊರೆಗೆ ಅಂಟಿಕೊಳ್ಳುತ್ತದೆ ಮತ್ತು ಪೊರೆಯು ಒಳಮಡಿಚಿಕೊಳ್ಳುವ ಮೂಲಕ ಜೀವರಸವನ್ನು ಎರಡು ಪೊರೆಯಿಂದ ಸುತ್ತವರೆದ ಭಾಗಗಳಾಗಿ ಬೇರ್ಪಡಿಸಿದಾಗ ಅದರೊಂದಿಗೆ ಜಿನೋಮ್‌ ಸಹ ಬೇರೆಯಾಗುತ್ತದೆ. ದ್ವಿವಿದಲನದ ವೇಗವು ಯೂಕ್ಯಾರಿಯೋಟ್‌ಗಳಲ್ಲಿನ ಕೋಶ ವಿಭಜನೆಯ ವೇಗಕ್ಕೆ ಹೋಲಿಸಿದಾಗ ತೀರ ಹೆಚ್ಚು. ಯೂಕ್ಯಾರಿಯೋಟ್‌ಗಳಲ್ಲಿನ ಕೋಶ ವಿಭಜನೆ ಕೋಶ ಚಕ್ರ ಎಂದು ಕರೆಯಲಾದ ಹೆಚ್ಚು ಸಂಕೀರ್ಣ ಪ್ರಕ್ರಿಯೆ. ಡಿಎನ್ಎ ನಕಲಾಗುವಿಕೆಯು ಚಕ್ರದ ಎಸ್‌ ಹಂತ (ಸಿಂಥೆಸಿಸ್ ಅಥವಾ ಸಂಯೋಜನೆ ಹಂತ) ಎಂದು ಕರೆಯಲಾದ ಹಂತದಲ್ಲಿ ಆಗುತ್ತದೆ ಮತ್ತು ವರ್ಣತಂತುಗಳ ಬೇರ್ಪಡುವಿಕೆ ಮತ್ತು ಜೀವರಸದ ಬೇರೆಯಾಗುವಿಕೆ ಎಂ ಹಂತದಲ್ಲಿ (ಮೈಟಾಸಿಸ್ ಹಂತ) ಆಗುತ್ತವೆ.[೨]:೧೮.೧

ಅಣ್ವಿಕ ಅನುವಂಶಿಕತೆ


ಒಂದು ಪೀಳಿಗೆಯ ಜೀವಕೋಶಗಳ ಅನುವಂಶಿಕ ಪದಾರ್ಥವು ಇನ್ನೊಂದು ಪೀಳಿಗೆಗೆ ನಕಲಾಗುವುದು ಮತ್ತು ವರ್ಗಾವಣೆಯಾಗುವುದು ಅನುವಂಶಿಕತೆಗೆ ಆಧಾರ ಮತ್ತು ಕ್ಲಾಸಿಕಲ್ ವಂಶವಾಹಿ ಚಿತ್ರಣ ಹಾಗೂ ಅಣ್ವಿಕ ವಂಶವಾಹಿ ಚಿತ್ರಣಗಳ ನಡುವಿನ ಕೊಂಡಿ. ಜೀವಿಯು ಜನ್ಮದಾತದ ಗುಣಗಳನ್ನು ವಂಶಪಾರಂಪರ್ಯವಾಗಿ ಪಡೆಯುವುದು ಸಂತತಿಯು ಜನ್ಮದಾತದ ವಂಶವಾಹಿಗಳ ನಕಲನ್ನು ಹೊಂದಿರುವ ಕಾರಣಕ್ಕೆ. ಲೈಂಗಿಕೇತರವಾಗಿ ಸಂತಾನೋತ್ಪತ್ತಿ ಮಾಡುವ ಜೀವಿಗಳಲ್ಲಿ ಸಂತತಿಯು ಜನ್ಮದಾತದ ವಂಶವಾಹಿಗಳ ನಕಲಾಗಿರುತ್ತದೆ. ಲೈಂಗಿಕವಾಗಿ ಸಂತಾನೋತ್ಪತ್ತಿ ಮಾಡುವ ಜೀವಿಗಳಲ್ಲಿ ವಿಶೇಷ ರೀತಿಯ ಕೋಶ ವಿಭಜನೆ ಮಿಯಾಸಿಸ್‌ನಲ್ಲಿ ಗ್ಯಾಮೇಟ್ ಅಥವಾ ಯುಗ್ಮಕ ಎನ್ನುವ ಅರ್ಧ ಸಂಖ್ಯೆಯ ವರ್ಣತಂತುಗಳಿರುವ ಜೀವಕೋಶ ಉತ್ಪತ್ತಿಯಾಗುತ್ತದೆ ಮತ್ತು ಇದರಲ್ಲಿ ಪ್ರತಿ ವಂಶವಾಹಿಯ ಒಂದು ಪ್ರತಿ ಇರುತ್ತದೆ.[೨]:೨೦.೨ ಹೆಣ್ಣು ಉತ್ಪತ್ತಿ ಮಾಡಿದ ಯುಗ್ಮಕವನ್ನು ಅಂಡಾಣು ಎಂತಲೂ ಮತ್ತು ಗಂಡು ಉತ್ಪತ್ತಿ ಮಾಡಿದ ಯುಗ್ಮಕವನ್ನು ರೇತ್ರಾಣು (ಸ್ಪರ್ಮ್) ಎಂತಲೂ ಕರೆಯಲಾಗಿದೆ. ಎರಡು ಯುಗ್ಮಕಗಳೂ ಸೇರಿ ತಂದೆತಾಯಿಗಳಿಂದ ಪಡೆದ ಎರಡು ವಂಶವಾಹಿಗಳ ಸಮೂಹ ಸೇರಿ ಪೂರ್ಣ ಸಂಖ್ಯೆಯ ವರ್ಣತಂತುಗಳಿರುವ ಫಲೀಕರಿಸಿದ ಅಂಡವಾಗುತ್ತದೆ[೨]:೨೦ (ಇದನ್ನು ಜೈಗೋಟ್ ಅಥವಾ ಯುಗ್ಮಜ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ).
ಮಿಯಾಸಿಸ್ ಕೋಶ ವಿಭನೆಯ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ಜೆನೆಟಿಕ್ ಮರುಜೋಡಣೆಗೆ ಅಥವಾ ಕ್ರಾಸಿಂಗ್-ಓವರ್ ಎಂದು ಕರೆಯಲಾದ ಘಟನೆ ನಡೆಯುತ್ತದೆ. ಇದರಲ್ಲಿ ಒಂದು ಕ್ರೊಮಾಟಿಡ್‌ನ[ಟಿಪ್ಪಣಿ ೧೮] ದೊಡ್ಡ ಡಿಎನ್ಎ ತುಂಡು ಇನ್ನೊಂದು ಅಂತಹುದೇ ಸಂಬಂಧಿಸಿದ ಕ್ರೊಮಾಟಿಡ್‌ನ ಡಿಎನ್‌ಎ ತುಂಡಿನೊಂದಿಗೆ ಅದಲುಬದಲು ಆಗಬಹುದು. ಕ್ರೊಮಾಟಿಡ್‌ನ ಅಲೆಲ್‌ಗಳು ಒಂದೇ ರೀತಿಯವಾದರೆ ಯಾವ ಪರಿಣಾಮವೂ ಇರುವುದಿಲ್ಲ. ಆದರೆ ಅವು ಭಿನ್ನವಾಗಿದ್ದು ಅಲೆಲ್‌ಗಳು ತಗಲು ಹಾಕಿಕೊಂಡಿದ್ದರೆ (ಲಿಂಕ್‌ ಆಗಿದ್ದರೆ) ಅವು ಬೇರೆ ಬೇರೆಯಾಗ ಬಹುದು.[೨]:೫.೫ ಮೆಡಲ್‌ನ ನಿಯಮವು ತಂದೆತಾಯಿಗಳ ಎರಡು ವಂಶವಾಹಿಗಳು ಪ್ರತಿ ಗುಣಕ್ಕೂ ಸ್ವತಂತ್ರವಾಗಿ ಯುಗ್ಮಕಗಳಾಗಿ ಪ್ರತ್ಯೇಕವಾಗುತ್ತವೆ ಎಂದು ಹೇಳುತ್ತದೆ. ಅದರ ಪ್ರಕಾರ ಜೀವಿಯ ಒಂದು ಗುಣದ ಅಲೆಲ್‌ಗೂ ಮತ್ತು ಇನ್ನೊಂದು ಗುಣದ ಅಲೆಲ್‌ಗೂ ಸಂಬಂಧವಿರುವುದಿಲ್ಲ. ಇದು ವಾಸ್ತವದಲ್ಲಿ ವಂಶವಾಹಿಗಳು ಒಂದೇ ವರ್ಣತಂತುಗಳ ಮೇಲೆ ಇಲ್ಲದಿದ್ದಾಗ ಅಥವಾ ಒಂದೇ ವರ್ಣತಂತುವಿನ ಮೇಲೆ ಒಂದಕ್ಕೊಂದು ಬಹಳ ದೂರವಿದ್ದಾಗ ಮಾತ್ರ ಸತ್ಯ, ಒಂದೇ ವರ್ಣತಂತುವಿನ ಮೇಲೆ ಹತ್ತಿರವಿದ್ದ ವಂಶವಾಹಿಗಳು ಯುಗ್ಮಕಗಳಾಗುವ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿಯೂ ಹತ್ತಿರವೇ ಇರುತ್ತವೆ ಮತ್ತು ಅವು ಜೊತೆಗೆ ಕಾಣಬರುವುದು ಸಾಮಾನ್ಯ. ‌ವಂಶವಾಹಿಗಳು ವರ್ಣತಂತುವಿನ ಮೇಲೆ ತೀರ ಹತ್ತಿರವಿದ್ದರೆ ಮೂಲಭೂತವಾಗಿ ಯಾವಾಗಲೂ ಬೇರ್ಪಡುವುದಿಲ್ಲ ಏಕೆಂದರೆ ಅವುಗಳ ನಡುವೆ ಕ್ರಾಸ್-ಓವರ್ ಸಂಭವಿಸುವ ಸಾಧ್ಯತೆ ತೀರ ಕಡಿಮೆ. ಇದನ್ನು ಜೆನೆಟಿಕ್ ಲಿಂಕೇಜ್ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.[೫೧]

ಅಣ್ವಿಕ ವಿಕಾಸ

ವ್ಯತ್ಯಯನ


ಡಿಎನ್ಎ ನಕಲಾಗುವಿಕೆಯು ಬಹುತೇಕ ತೀರ ನಿಖರ ಆದರೆ ಕೆಲವೊಮ್ಮೆ ತಪ್ಪುಗಳೂ ಆಗಬಹುದು.[೨]:೭.೬ ಇವನ್ನು ಮ್ಯುಟೇಶನ್‌ಗಳು ಅಥವಾ ವ್ಯತ್ಯಯನಗಳು ಎಂದು ಕರೆಯಲಾಗಿದೆ. ಯೂಕ್ಯಾರಿಯೋಟ್‌ಗಳಲ್ಲಿನ ತಪ್ಪಿನ ದರ ತೀರ ಕಡಿಮೆ ಅದು ನ್ಯೂಕ್ಲಿಯೊಟೈಡ್ ನಕಲಿಸುವುದು ೧೦-೮ ಅಥವಾ ಹತ್ತು ಕೋಟಿ ಸಲ ಆದರೆ ಒಂದು ಬಾರಿ ಆಗುವ ಸಂಭವ ಇದೆ.[೫೨][೫೩] ಕೆಲವೊಂದು ಆರ್‌ಎನ್ಎ ವೈರಾಣುಗಳಲ್ಲಿ ಇದು ೧೦-೩ರಷ್ಟು ಹೆಚ್ಚು.[೫೪] ಪ್ರತಿ ಮಾನವ ಜೀನೋಮ್‌ನ ಪೀಳೆಗೆಯಲ್ಲಿ ಒಂದರಿಂದ ಎರಡು ಹೊಸ ವ್ಯತ್ಯಯನಗಳು ಆಗುತ್ತವೆ.[೫೪] ಸಣ್ಣ ಮ್ಯುಟೇಶನ್‌ಗಳು ಡಿಎನ್ಎ ನಕಲಿಸುವಿಕೆ ಮತ್ತು ಡಿಎನ್ಎ ಜಕಂನಿಂದ ಆಗುತ್ತವೆ. ಇದರಲ್ಲಿ ಒಂದು ಪ್ರತ್ಯಾಮ್ಲ (ನ್ಯೂಕ್ಲಿಯೊಟೈಡ್ ಪ್ರತ್ಯಾಮ್ಲ) ಬದಲಾವಣೆ ಆಗುವ ಪಾಯಿಂಟ್‌ ಮ್ಯುಟೇಶನ್ ಅಥವಾ ಬಿಂದು ವ್ಯತ್ಯಯನ ಮತ್ತು ಒಂದು ನ್ಯೂಕ್ಲಿಯೊಟೈಡ್ ಪ್ರತ್ಯಾಮ್ಲ ಸೇರಿಸುವ ಅಥವಾ ತೆಗೆದು ಹಾಕುವ ಫ್ರೇಮ್‌ ಶಿಪ್ಟ್ ಅಥವಾ ಚೌಕಟ್ಟು ಸರಿಸುವ ವ್ಯತ್ಯಯನಗಳು ಸೇರಿವೆ. ಈ ಎರಡೂ ವ್ಯತ್ಯಯನಗಳು ವಂಶವಾಹಿಯ ಅರ್ಥಬದಲಾವಣೆ (ಕೊಡಾನನ್ನು ಭಿನ್ನ ಅಮಿನೊ ಆಮ್ಲ ಸಂಕೇತಿಸುವಂತೆ ಮಾಡಬಹುದು) ಅಥವಾ ಅರ್ಥಹೀನ ಮಾಡಬಹುದು (ಮುಂಚೆಯೇ ನಿಲ್ಲಿಸು ಕೋಡಾನ್ ಬರುವುದು).[೫೫] ದೊಡ್ಡ ವ್ಯತ್ಯಯನಗಳು ಮರುಜೋಡಣೆಯ ತಪ್ಪುಗಳಿಂದಾಗಿ ಎರಡಾಗಿ ನಕಲುಗೊಳ್ಳುವುದು, ಅಳಿಸಿ ಹಾಕುವುದು, ಮರುಹೊಂದಾಣಿಕೆ ಅಥವಾ ಕ್ರಮ ಹಿಂದುಮುಂದಾಗುವದನ್ನು ಒಳಗೊಂಡು ವರ್ಣತಂತುವಿನ ಅಸಹಜತೆಗೆ ಕಾರಣವಾಗ ಬಹುದು. ಜೊತೆಗೆ ವ್ಯತ್ಯಯನಗಳನ್ನು ಮೊದಲಿನಂತೆ ಮಾಡುವ ಡಿಎನ್ಎ ದುರಸ್ತಿಯ ಮೆಕಾನಿಸಂ ಅಣುವಿನ ಭೌತಿಕ ಜಕಂನ್ನು ದುರಸ್ತಿ ಮಾಡುವಾಗ ತಪ್ಪನ್ನು ಒಳ ತರಬಹುದು. ಅಲ್ಲಿ ಭೌತಿಕವಾಗಿ ಜಕಂ ಆದ ಅಣುವನ್ನು ಸರಿಪಡಿಸುವದು ಅದು ಮೊದಲಿದ್ದಂತೆ ಮಾಡುವುದಕ್ಕಿಂತ ಹೆಚ್ಚು ಮುಖ್ಯವಾಗಿರುತ್ತದೆ. ಎರಡು-ತಂತುಗಳು ಜೋಡಿ ತುಂಡಾದಾಗ ಮಾಡುವ ದುರಸ್ತಿ ಇದಕ್ಕೆ ಉದಾಹರಣೆ.[೨]:೫.೪
ಒಂದು ವಂಶವಾಹಿಯ ಹಲವು ಭಿನ್ನ ಅಲೆಲ್‌ಗಳು ಜೀವಸಂಕುಲದ ಜನಸಂಖ್ಯೆಯಲ್ಲಿ ‌ಇವೆ ಎಂದಾದಲ್ಲಿ ಅದನ್ನು ಪಾಲಿಮಾರ್ಫಿಕ್ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಬಹಳಷ್ಟು ಬೇರೆ ಬೇರೆ ವಂಶವಾಹಿಗಳು ಒಂದೇ ರೀತಿ ಕೆಲಸ ಮಾಡುತ್ತವೆ ಆದರೆ ಕೆಲವು ಅಲೆಲ್‌ಗಳು ಭಿನ್ನ ವ್ಯಕ್ತನಮೂನೆ[ಟಿಪ್ಪಣಿ ೫] ಗುಣಗಳನ್ನು ಉಂಟುಮಾಡ ಬಹುದು. ಒಂದು ವಂಶವಾಹಿಯ ಬಹಳ ಸಾಮಾನ್ಯ ಅಲೆಲ್‌ಲನ್ನು ವನ್ಯ ನಮೂನೆ (ವೈಲ್ಡ್ ಟೈಪ್) ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ ವಿರಳ ಅಲೆಲ್‌ಗಳನ್ನು ಮುಟ್ಯಾಂಟ್‌ಗಳು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಭಿನ್ನ ಅಲೆಲ್‌ಗಳ ಸಾಕ್ಷೇಪಿಕ ಸಂಭವನೀಯತೆಯ ಅನುವಂಶಿಕ ವ್ಯತ್ಯಾಸವು ನೈಸರ್ಗಿಕ ಆಯ್ಕೆ ಮತ್ತು ಜೆನೆಟಿಕ್‌ ಡ್ರಿಫ್ಟ್‌ನಿಂದ ಉಂಟಾಗುತ್ತದೆ.[೫೬] ವನ್ಯ ನಮೂನೆಯ ಅಲೆಲ್ ಹೆಚ್ಚು ಸಾಮಾನ್ಯವಲ್ಲದ ಅಲೆಲ್‌ಗಳ ಪೂರ್ವಜನಲ್ಲ ಅಥವಾ ಅದು ಹೆಚ್ಚು ಯೋಗ್ಯವಾದುದೂ ಆಗಬೇಕಿಲ್ಲ.
ವಂಶವಾಹಿಯೊಳಗಿನ ಅತಿ ಹೆಚ್ಚು ವ್ಯತ್ಯಯನಗಳು ತಟಸ್ಥವಾದವು ಮತ್ತು ಇವು ಜೀವಿಯ ವ್ಯಕ್ತನಮೂನೆಯ ಮೇಲೆ ಯಾವ ಪರಿಣಾಮವನ್ನೂ ಬಿರುವುದಿಲ್ಲ (ನಿಶ್ಶಬ್ಧಕ ವ್ಯತ್ಯಯನ). ಕೆಲವು ವ್ಯತ್ಯಯನಗಳು ಅಮಿನೊ ಆಮ್ಲದ ಸರಣಿಯನ್ನು ಬದಲಿಸುವುದಿಲ್ಲ ಏಕೆಂದರೆ ಒಂದಕ್ಕೂ ಹೆಚ್ಚು ಕೊಡಾನುಗಳು ಒಂದೇ ಅಮಿನೊ ಆಮ್ಲವನ್ನು ಸಂಕೇತಿಸುತ್ತವೆ (ಸಮಾನಾರ್ಥಕ ವ್ಯತ್ಯಯನ). ವ್ಯತ್ಯಯನದಿಂದಾಗಿ ಅಮಿನೊ ಆಮ್ಲದ ಸರಣಿ ಬದಲಾಗಿಯೂ ಸಹ ಪ್ರೋಟೀನ್ ಹೊಸ ಅಮಿನೊ ಆಮ್ಲದೊಂದಿಗೆಯೂ ಮೊದಲಿನ ಹಾಗೆಯೇ ಕೆಲಸ ಮಾಡಿದರೆ (ಉದಾಹರಣೆ ಸಂಪ್ರದಾಯಿಕ ವ್ಯತ್ಯಯ) ಅದನ್ನು ತಟಸ್ಥ ವ್ಯತ್ಯಯನದಲ್ಲಿ ಸೇರಿಸ ಬಹುದು. ಆದರೆ ಹಲವು ವ್ಯತ್ಯಯನಗಳು ಹಾನಿಕಾರಕ ಅಥವಾ ಮಾರಕವೂ ಆಗಿರುತ್ತವೆ ಮತ್ತು ನೈಸರ್ಗಿಕ ಆಯ್ಕೆಯ ಮೂಲಕ ಜನಸಂಖ್ಯೆಯಿಂದ ಹೊರದೂಡಲ್ಪಡುತ್ತವೆ. ಜೆನೆಟಿಕ್ ಅಸಹಜತೆಗಳು ಹಾನಿಕಾರಕ ವ್ಯತ್ಯಯನಗಳು ಜೀವಿಯೊಳಗೆ ತನ್ನಷ್ಟಕ್ಕೆ ತಾನೇ ಆದವು ಮತ್ತು ಅನುವಂಶಿಕವಾಗಿ ಮುಂದಿನ ಪೀಳಿಗೆಗೆ ದಾಟಬಲ್ಲವು. ಕೊನೆಯದಾಗಿ ಸಣ್ಣ ಪ್ರಮಾಣದ ವ್ಯತ್ಯಯನಗಳು ಉಪಯುಕ್ತವಾದವು ಮತ್ತು ಜೀವಿಯ ಯೋಗ್ಯತೆಯನ್ನು ಸುಧಾರಿಸುತ್ತವೆ. ಇವು ವಿಕಾಸದಲ್ಲಿ ಬಹುಮುಖ್ಯವಾದವು ಏಕೆಂದರೆ ಇವುಗಳ ಆಯ್ಕೆ ಜೀವಿಗಳು ಪರಿಸರಕ್ಕೆ ಹೊಂದಿಕೊಳ್ಳುವ ವಿಕಾಸಕ್ಕೆ ಕಾರಣವಾಗುತ್ತವೆ.[೨]:೭.೬

ಸರಣಿ ಸಮಾನರೂಪತೆ

ಸಸ್ತನಿ ಹಿಸ್ಟೋನ್ ಪ್ರೋಟೀನ್‌ನ ಕ್ಲಸ್ಟಲ್ಒ[ಟಿಪ್ಪಣಿ ೧೯] ರೂಪಿಸಿದ ಒಂದು ಸರಣಿ ಸಾಲುಗುವಿಕೆ


ವಂಶವಾಹಿಗಳು ತೀರ ಇತ್ತೀಚಿನ ಸಾಮಾನ್ಯ ಪೂರ್ವಜರನ್ನು ಹೊಂದಿದ ಮತ್ತು ಹೀಗೆ ಹಂಚಿಕೊಂಡು ವಿಕಾಸಗೊಂಡ ವಂಶಾವಳಿ ಹೊಂದಿರುವವನ್ನು ಹೊಮೊಲಾಗ್‌ಗಳೆಂದು ಕರೆಯಲಾಗಿದೆ.[೫೭] ಈ ವಂಶವಾಹಿಗಳು ಜೀವಿಯ ಒಳಗೆ ನಕಲು-ಪ್ರತಿಯಾಗಿ ಅದರ ಜಿನೋಮ್‌ನಲ್ಲಿ ಕಾಣಿಸಿಕೊಳ್ಳುತ್ತವೆ (ಹೀಗಿದ್ದಲ್ಲಿ ಅವನ್ನು ಪ್ಯಾರಲೋಗಸ್‌ ವಂಶವಾಹಿಗಳು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ) ಇಲ್ಲವೆ ಜೀವಸಂಕುಲವಾಗುವ ಘಟನೆಯ ಪರಿಣಾಮವಾಗಿ ನಂತರ ಭಿನ್ನವಾಗುತ್ತವೆ (ಹೀಗಿದ್ದಲ್ಲಿ ಅದನ್ನು ಆರ್ಥೋಲೋಗಸ್ ವಂಶವಾಹಿಗಳು ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ) [೨]:೭.೬ ಮತ್ತು ಸಂಬಂಧಿತ ಜೀವಿಗಳಲ್ಲಿ ಬಹುತೇಕ ಒಂದೇ ಅಥವಾ ಹೋಲುವ ಕೆಲಸಗಳನ್ನು ಮಾಡುತ್ತವೆ. ಕೆಲವೊಮ್ಮೆ ಆರ್ಥೋಲೋಗಸ್ ವಂಶವಾಹಿಗಳ ಕೆಲಸಗಳಲ್ಲಿ ಪ್ಯಾರಲೋಗಸ್ ವಂಶವಾಹಿಗಳ ಕೆಲಸಗಳಿಗಿಂತ ಹೆಚ್ಚು ಸಾಮ್ಯತೆ ಇದೆ ಎಂದು ಭಾವಿಸಲಾಗಿದೆ ಆದರೂ ವ್ಯತ್ಯಾಸ ಗೌಣವಾದುದು.[೫೮][೫೯]
ವಂಶವಾಹಿಗಳ ನಡುವಿನ ಸಂಬಂಧವನ್ನು ಸರಣಿ ಸಾಲುಗುವಿಕೆಯನ್ನು[ಟಿಪ್ಪಣಿ ೨೦] ಹೋಲಿಸುವ ಮೂಲಕ ಅಳೆಯ ಬಹುದು.[೨]:೭.೬ ಒಂದೇ ರೀತಿಯ ವಂಶವಾಹಿಗಳ ನಡುವಿನ ಸರಣಿ ಸಾಮ್ಯತೆಯ ಮಟ್ಟವನ್ನು ಕಾಪಾಡಿಕೊಂಡ ಸರಣಿ ಎಂದು ಕರೆಯ ಬಹುದು. ಬಹಳಷ್ಟು ವಂಶವಾಹಿಯ ಸರಣಿಯ ಬದಲಾವಣೆಗಳು ವಂಶವಾಹಿಯ ಕೆಲಸದ ಪರಿಣಾಮ ಬೀರುವುದಿಲ್ಲ. ಹೀಗಾಗಿ ವಂಶವಾಹಿಗಳು ಕೆಲ ಕಾಲ ತಟಸ್ಥ ಅಣ್ವಿಕ ವಿಕಾಸದ ವ್ಯತ್ಯಯಗಳು ಸಂಚಿತಗೊಳ್ಳುತ್ತವೆ. ಜೊತೆಗೆ ಯಾವುದೇ ಸರಣಿಯು ಆಯ್ಕೆಯಾಗುವುದು ಪ್ರತ್ಯೇಕವಾಗುವ ದರ ಬದಲಾಗುವದಕ್ಕೆ ಕಾರಣವಾಗುತ್ತದೆ. ಸ್ಥಿರವಾಗುವ ಆಯ್ಕೆಯ[ಟಿಪ್ಪಣಿ ೨೧] ಕೆಳಗೆ ಬರುವ ವಂಶವಾಹಿಗಳು ಹಿಡಿದಿಡಲ್ಪಡುತ್ತವೆ ಹೀಗಾಗಿ ನಿಧಾನವಾಗಿ ಬದಲಾಗುತ್ತವೆ. ಆದರೆ ನಿರ್ದೇಶಿತ ಆಯ್ಕೆ[ಟಿಪ್ಪಣಿ ೨೨] ಕೆಳಗೆ ಬರುವ ವಂಶವಾಹಿಗಳು ಸರಣಿಯನ್ನು ವೇಗವಾಗಿ ಬದಲಾಯಿಸಿಕೊಳ್ಳುತ್ತವೆ.[೬೦] ವಂಶವಾಹಿಗಳ ನಡುವೆ ಸರಣಿಯ ವ್ಯತ್ಯಾಸವನ್ನು ‌ವಂಶವಾಹಿಗಳು ಹೇಗೆ ವಿಕಾಸವಾಗಿವೆ ಮತ್ತು ಅವುಗಳು ಯಾವುದರಿಂದ ಬಂದವೊ ಆ ಜೀವಿಗಳು ಒದಕ್ಕೊಂದು ಹೇಗೆ ಸಂಬಂಧಿಸಿವೆ ಎಂಬುದನ್ನು ಅಧ್ಯಯನ ಮಾಡಿ ವಂಶವಿಕಾಸದ ವಿಶ್ಲೇಷಣೆಗೆ ಬಳಸ ಬಹುದು.[೬೧][೬೨]

ಹೊಸ ವಂಶವಾಹಿಗಳ ಹುಟ್ಟು

ನಕಲು ಪ್ರತಿ ವಂಶವಾಹಿಗಳ ವಿಕಾಸದ ಭವಿಷ್ಯ


ಯೂಕ್ಯಾರಿಯೋಟ್‌ಗಳಲ್ಲಿನ ಬಹಳ ಸಾಮಾನ್ಯ ಹೊಸ ವಂಶವಾಹಿಯ ಆಕರ ವಂಶವಾಹಿಯ ನಕಲು-ಪ್ರತಿ ಮತ್ತು ಇದು ಜಿನೋಮ್‌ನಲ್ಲಿನ ಈಗ ಇರುವ ವಂಶವಾಹಿಯ ಕಾಪಿ-ನಂಬರ್ ವ್ಯತ್ಯಾಸವನ್ನು[ಟಿಪ್ಪಣಿ ೨೩] ಹುಟ್ಟುಹಾಕುತ್ತದೆ.[೬೩][೬೪] ಹೀಗೆ ಆದ ವಂಶವಾಹಿಗಳು ಸರಣಿಯಲ್ಲಿಯೂ ಮತ್ತು ಕಾರ್ಯಗಳಲ್ಲಿಯೂ ಭಿನ್ನವಾಗ ಬಹುದು. ಹೀಗೆ ರೂಪಗೊಂಡ ವಂಶವಾಹಿಗಳ ಸಮೂಹವನ್ನು ವಂಶವಾಹಿಗಳ ಕುಟುಂಬ ಎಂದು ಕರೆಯಲಾಗಿದೆ. ವಂಶವಾಹಿ ನಕಲು-ಪ್ರತಿಯಾಗುವುದು ಮತ್ತು ಕಳೆದು ಹೊಗುವುದು ಈ ಕುಟುಂಬದೊಳಗೆ ಸಾಮಾನ್ಯ ಮತ್ತು ಇದು ವಿಕಾಸದ ಜೀವ ವೈವಿದ್ಯತೆಯ ಪ್ರಮುಖ ಆಕರ.[೬೫] ಕೆಲವೊಮ್ಮೆ ವಂಶವಾಹಿಯ ನಕಲು ಪ್ರತಿಯಿಂದಾಗಿ ವಂಶವಾಹಿ ಕೆಲಸ ಮಾಡದೆ ಹೋಗಬಹುದು ಅಥವಾ ಕೆಲಸ ಮಾಡುವ ಪ್ರತಿಯಲ್ಲಿ ವ್ಯತ್ಯಯಗಳು ನಡೆದು ಪರಿಣಾಮವಾಗಿ ವಂಶವಾಹಿಯು ಕೆಲಸ ಮಾಡದಿರ ಬಹುದು. ಇಂತಹ ‌ವಂಶವಾಹಿಗಳನ್ನು ಹುಸಿವಂಶವಾಹಿಗಳು ಎಂದು ಕರೆಯಲಾಗಿದೆ.[೨]:೭.೬
ಹೊಸ ಅಥವಾ “ಅನಾಥ” ವಂಶವಾಹಿಗಳ ಸರಣಿಯು ಈಗ ಇರುವ ವಂಶವಾಹಿಗಳ ಸರಣಿಯೊಂದಿಗೆ ಯಾವ ರೀತಿಯ ಹೋಲಿಕೆಯೂ ಇಲ್ಲದಿರ ಬಹುದು ಆದರೆ ಇಂತಹವು ತೀರಾ ವಿರಳ. ಮಾನವನ ಜಿನೋಮ್‌ನಲ್ಲಿನ ಹೊಸ ವಂಶವಾಹಿಗಳ ಸಂಖ್ಯೆಯನ್ನು ೧೮[೬೬] ರಿಂದ ೬೦[೬೭] ರವರೆಗೆ ಅಂದಾಜಿಸಲಾಗಿದೆ. ಬಹಳಷ್ಟು ಯೂಕ್ಯಾರಿಯೋಟ್ ವಂಶವಾಹಿಗಳಿಗಿಂತ ಇಂತಹ ವಂಶವಾಹಿಗಳು ಸಣ್ಣವು ಮತ್ತು ರಚನೆಯಲ್ಲಿ ಸರಳ ಬಹಳ ಕಡಿಮೆ ಮತ್ತು ಇಂಟ್ರೋನ್‌ಗಳು[ಟಿಪ್ಪಣಿ ೩] ಇವೆ ಎಂದಾದಲ್ಲಿ ಬಹಳ ಸಣ್ಣವು ಇರುತ್ತವೆ[೬೩]. ಅನಾಥ ಪೋಟೀನ್‌ ಸಂಕೇತಿಸುವ ವಂಶವಾಹಿಗಳ ಎರಡು ಪ್ರಾಥಮಿಕ ಆಕರಗಳಲ್ಲಿ ಮೊದಲನೆಯದು ವಂಶವಾಹಿಯ ನಕಲು-ಪ್ರತಿ ಮತ್ತು ಮೂಲ ಸಂಬಂಧವನ್ನು ಸರಣಿಯ ಅನುಕ್ರಮ ಹೋಲಿಸಿ ಗುರುತಿಸಲಾರದಷ್ಟು ತೀರಾ ತೀವ್ರವಾದ ಸರಣಿ ಬದಲಾವಣೆ. ಎರಡನೆಯದು “ಗುಪ್ತ” ಲಿಪ್ಯಂತರ ಆರಂಭದ ಸ್ಥಳಗಳಲ್ಲಿನ ವ್ಯತ್ಯಯ- ಇದು ಜಿನೋಮ್‌ನ ಹಿಂದೆ ಪ್ರೋಟೀನು ಸಂಕೇತಿಸದ ಪ್ರದೇಶಲ್ಲಿ ಹೊಸ ಮುಕ್ತ ಓದುವ ಚೌಕಟ್ಟನ್ನು [ಟಿಪ್ಪಣಿ ೯] ಒಳತರುತ್ತದೆ.[೬೮][೬೯]
ಸಮತಲ ವಂಶವಾಹಿ ವರ್ಗಾವಣೆಯಲ್ಲಿ ಸಂತಾನೋತ್ಪತ್ತಿಯಲ್ಲದೆ ಅನ್ಯ ಮೆಕಾನಿಸಂ ಮೂಲಕ ಅನುವಂಶಿಕ ಪದಾರ್ಥವನ್ನು ವರ್ಗಾವಣೆ ಮಾಡಲಾಗುತ್ತದೆ. ಪ್ರೋಕ್ಯಾರಿಯೋಟ್‌ಗಳಲ್ಲಿ ಈ ಮೆಕಾನಿಸಂ ಹೊಸ ವಂಶವಾಹಿಗಳ ಸಾಮಾನ್ಯ ಆಕರ. ಕೆಲವೊಮ್ಮೆ ಇದು ವಂಶವಾಹಿ ನಕಲು-ಪ್ರತಿಗಿಂತ ಹೆಚ್ಚು ಅನುವಂಶಿಕ ವ್ಯತ್ಯಾಸಕ್ಕೆ ಕಾರಣವಾಗುತ್ತದೆ ಎಂದು ಬಣ್ಣಿಸಲಾಗಿದೆ.[೭೦] ಇದು ಪ್ರತಿಜೀವಕ ಪ್ರತಿರೋದ, ತೀವ್ರತೆ ಮತ್ತು ಹೊಂದಾಣಿಕೆಯ ಚಯಾಪಚಯ ಕೆಲಸಗಳು ಹರಡುವ ಸಾಮಾನ್ಯ ಸಾಧನ.[೨೮][೭೧] ಸಮತಲ ವಂಶವಾಹಿ ವರ್ಗಾವಣೆ ಯೂಕ್ಯಾರಿಯೋಟ್‌ಗಳಲ್ಲಿ ವಿರಳವಾದರೂ ಬ್ಯಾಕ್ಟೀರಿಯ ಮೂಲದ ವಂಶವಾಹಿಗಳನ್ನು ಹೊಂದಿದ ಪ್ರೋಟಿಸ್ಟ್ ವರ್ಗ ಮತ್ತು ಪಾಚಿಗಳಲ್ಲಿ ಕೆಲವು ಉದಾಹರಣೆಗಳನ್ನು ಗುರುತಿಸಲಾಗಿದೆ.[೭೨][೭೩]

ಜಿನೋಮ್

ಜಿನೋಮ್ ಜೀವಿಯೊಂದರ ಅನುವಂಶಿಕ ಪದಾರ್ಥದ ಮೊತ್ತ ಮತ್ತು ಇದು ವಂಶವಾಹಿಗಳು ಮತ್ತು ಸಂಕೇತಿಸದ ಸರಣಿಯನ್ನು ಒಳಗೊಂಡಿದೆ.[೭೪]

ವಂಶವಾಹಿಗಳ ಸಂಖ್ಯೆ

ಪ್ರಾತಿನಿಧಿಕ ಸಸ್ಯಗಳು (ಹಸಿರು), ಕಶೇರುಕಗಳು (ನೀಲಿ), ಅಕಶೇರುಕಗಳು (ಕೆಂಪು), ಶಿಲೀಂಧ್ರ (ಹಳದಿ), ಬ್ಯಾಕ್ಟೀರಿಯ (ನೇರಳೆ) ಮತ್ತು ವೈರಾಣುಗಳ (ಬೂದು) ಜಿನೋಮ್‌ ಗಾತ್ರ. ಬಲಗಡೆಯ ಭಾಗ ೧00 ಪಟ್ಟು ದೊಡ್ಡದು ಮಾಡಿದ ಸಣ್ಣ ಜಿನೋಮ್ ತೋರಿಸುತ್ತದೆ.[೭೫][೭೬][೭೭][೭೮][೭೯][೮೦][೮೧][೮೨]


ಜಿನೋಮ್ ಗಾತ್ರ ಮತ್ತು ಅದು ಸಂಕೇತಿಸುವ ವಂಶವಾಹಿಗಳು ಜೀವಿಯಿಂದ ಜೀವಿಗೆ ಬೇರೆಯಾಗಿವೆ. ತೀರ ಸಣ್ಣ ಜಿನೋಮ್ ವೈರಾಣುಗಳಲ್ಲಿ (ಇದು ಎರಡು ಪ್ರೋಟೀನ್‌ಗಳನ್ನು ಸಂಕೇತಿಸುವ ವಂಶವಾಹಿಗಳಷ್ಟು ಸಣ್ಣದಿರ ಬಹುದು)[೮೩] ಮತ್ತು ವೈರಾಯ್ಡ್‌ಗಳಲ್ಲಿ ಕಂಡುಬರುತ್ತದೆ (ಒಂದು ಸಂಕೇತಿಸದ ಆರ್‌ಎನ್ಎ ವಂಶವಾಹಿ)[೮೪]. ಇದಕ್ಕೆ ಭಿನ್ನವಾಗಿ ಸಸ್ಯಗಳಲ್ಲಿ ತೀರ ದೊಡ್ಡ ಜಿನೋಮ್‌ಗಳಿರುತ್ತವೆ.[೮೫] ಭತ್ತದ ಜಿನೋಮ್‌ನಲ್ಲಿ ೪೬,೦೦೦ ಪ್ರೋಟೀನ್ ಸಂಕೇತಿಸುವ ವಂಶವಾಹಿಗಳಿವೆ.[೮೬] ಭೂಮಿಯ ಮೇಲಿರುವ (ಭೂಮಿಯ ಪ್ರೊಟಿಯೊಮ್) ಪ್ರೋಟೀನ್‌-ಸಂಕೇತಿಸುವ ವಂಶವಾಹಿಗಳು ೫ ದಶಲಕ್ಷ ಸರಣಿಗಳು ಎಂದು ಅಂದಾಜಿಸಲಾಗಿದೆ.[೮೭]
ಮಾನವ ಜಿನೋಮ್‌ನಲ್ಲಿನ ಡಿಎನ್ಎ ಪ್ರತ್ಯಾಮ್ಲ-ಜೋಡಿಗಳು ೧೯೬೦ರ ದಶಕದಿಂದಲೂ ತಿಳಿದಿದ್ದಾಗ್ಯೂ ಅಂದಾಜಿಸಿದ ವಂಶವಾಹಿಗಳ ಸಂಖ್ಯೆ ಕಾಲ ಕಳೆದಂತೆ ವಂಶವಾಹಿ ವ್ಯಾಖ್ಯಾನದ ಬದಲಾವಣೆಯ ಜೊತೆಗೆ ಮತ್ತು ಅವುಗಳನ್ನು ಪತ್ತೆ ಹಚ್ಚುವ ಪದ್ಧತಿ ಸುಧಾರಿಸಿದಂತೆ ಬದಲಾಗಿದೆ. ಆರಂಭಿಕ ಸೈದ್ಧಾಂತಿಕ ಅಂದಾಜು ೨೦ ಲಕ್ಷಗಳಷ್ಟು ದೊಡ್ಡದಿತ್ತು.[೮೮] ಆರಂಭಿಕ ಪ್ರಾಯೋಗಿಕ ಅಳೆಯುವಿಕೆಯು ಲಿಪ್ಯಂತರಗೊಂಡ ವಂಶವಾಹಿಗಳ ಸಂಖ್ಯೆ ೫೦,೦೦೦ ದಿಂದ ೧೦೦,೦೦೦ ಎನ್ನುತ್ತಿತ್ತು.[೮೯] ನಂತರದಲ್ಲಿ ಮಾನವ ಜಿನೋಮ್ ಪ್ರಾಜೆಕ್ಟ್‌ನ ಸರಣಿಯ ಅನುಕ್ರಮ ಗುರುತಿಸುವಿಕೆ ಸಮಯದಲ್ಲಿ ಹಲವು ಲಿಪ್ಯಂತರಗಳು ಒಂದೇ ವಂಶವಾಹಿಯ ಬದಲೀ ವ್ಯತ್ಯಾಸಗಳು ಎಂದು ಗುರುತಿಸಲಾಯಿತು. ಹೀಗಾಗಿ ಪ್ರೋಟೀನ್ ಸಂಕೇತಿಸುವ ವಂಶವಾಹಿಗಳ ಸಂಖ್ಯೆ ಸುಮಾರು ೨೦,೦೦೦ಕ್ಕೂ[೮೨] ಮತ್ತು ಮೈಟೋಕಾಂಡ್ರಿಯನ್‌ನಲ್ಲಿರುವ ವಂಶವಾಹಿಗಳ ಸಂಖ್ಯೆ ೧೩ಕ್ಕೂ[೮೦] ಕುಗ್ಗಿತು. ಮಾನವ ಜಿನೋಮ್‌ನ ಶೇ ೧-೨ ಭಾಗ ಮಾತ್ರ ಪ್ರೋಟೀನ್-ಸಂಕೇತಿಸುವ ವಂಶವಾಹಿಗಳನ್ನು ಹೊಂದಿದೆ[೯೦] ಮತ್ತು ಉಳಿದದು ಇಂಟ್ರೋನ್‌ಗಳು, ರಿಟ್ರೊಟ್ರಾನ್‌ಸ್ಪಾನ್ಸ್‌ಗಳಂತಹ ‘ಸಂಕೇತಿಸಿದ ಡಿಎನ್ಎ’ ಮತ್ತು ಸಂಕೇತಿಸದ ಆರ್‌ಎನ್ಎಗಳನ್ನು ಒಳಗೊಂಡಿದೆ.[೯೦][೯೧] ಪ್ರತಿ ಜೀವಿಯ ಎಲ್ಲಾ ವಂಶವಾಹಿಗಳೂ ದೇಹದ ಎಲ್ಲಾ ಜೀವಕೋಶಗಳಲ್ಲಿ ಇರುತ್ತವೆ ಆದರೆ ಎಲ್ಲಾ ವಂಶವಾಹಿಗಳೂ ಎಲ್ಲಾ ಜೀವಕೋಶಗಳಲ್ಲಿಯೂ ಕೆಲಸ ಮಾಡುವುದಿಲ್ಲ.

ಅಗತ್ಯ ವಂಶವಾಹಿಗಳು

ಸಂಯೋಜಿತ ಜಿನೋಮ್‌ ಸೈನ್ ೩ರ ಕನಿಷ್ಠ ಜಿನೋಮ್‌ನಲ್ಲಿ ವಂಶವಾಹಿಗಳ ಕೆಲಸ[೯೨]


ಅಗತ್ಯ ವಂಶವಾಹಿಗಳು ಜೀವಿಯ ಬದುಕುವಿಕೆಗೆ ಅಗತ್ಯವಾದ ನಿರ್ಣಾಯಕ ವಂಶವಾಹಿಗಳು ಎಂದು ಭಾವಿಸಲಾಗಿದೆ.[೯೩] ಈ ವ್ಯಾಖ್ಯಾನವು ಎಲ್ಲಾ ಸಂಬಂಧಿಸಿದ ಪೋಷಕಾಂಶಗಳು ಅಗತ್ಯಕ್ಕೆ ಅನುಗುಣವಾಗಿ ಲಭ್ಯವಾಗುತ್ತವೆ ಮತ್ತು ಪರಿಸರದ ಒತ್ತಡ ಇರುವುದಿಲ್ಲ ಎಂದು ಊಹಿಸುತ್ತದೆ. ಜೀವಿಯ ವಂಶವಾಹಿಗಳ ಸಣ್ಣ ಭಾಗ ಮಾತ್ರ ಅಗತ್ಯ ಎಂದು ಹೇಳಬಹುದು. ಬ್ಯಾಕ್ಟೀರಿಯಗಳಾದ ಎಸ್ಕರೆಕಿಯಾ ಕೊಲಿ ಮತ್ತು ಬ್ಯಾಸಿಲಸ್ ಸಬ್ಟಿಲಿಸ್‌ನಲ್ಲಿ ೨೫೦ ರಿಂದ ೪೦೦ ‌ವಂಶವಾಹಿಗಳು ಮಾತ್ರ ಅಗತ್ಯವಾಗಿದ್ದು ಇದು ಜೀವಿಯ ವಂಶವಾಹಿಗಳ ಶೇ ೧೦ಕ್ಕೂ ಕಡಿಮೆ.[೯೪][೯೫][೯೬] ಎರಡೂ ಜೀವಿಗಳಲ್ಲಿ ಈ ವಂಶವಾಹಿಗಳ ಅರ್ಧದಷ್ಟು ಆರ್ಥೊಲಾಗ್‌ಗಳು[ಟಿಪ್ಪಣಿ ೨೪] ಮತ್ತು ಬಹುತೇಕ ಪ್ರೋಟೀನ್ ಸಂಯೋಜನೆಯಲ್ಲಿ ಪಾತ್ರವಹಿಸುತ್ತವೆ.[೯೬] ಮೊಳಕೆ ಹುದುಗುನಲ್ಲಿ (ಬಡ್ಡಿಂಗ್ ಈಸ್ಟ್-ಸ್ಯಾಕರೊಮೈಸೆಸ್ ಸೆರವಿಸೆ) ಅಗತ್ಯ ವಂಶವಾಹಿಗಳು ೧೦೦೦ ‌(ಜೀವಿಯ ವಂಶವಾಹಿಗಳ ಸುಮಾರು ಶೇ ೨೦).[೯೭] ಮೇಲ್ದರ್ಜೆಯ ಯೂಕ್ಯಾರಿಯೋಟ್‌ಗಳಲ್ಲಿ ಇವುಗಳನ್ನು ಅರಿಯುವುದು ಹೆಚ್ಚು ಕಷ್ಟ, ಇಲಿ ಮತ್ತು ಮಾನವನಲ್ಲಿ ಅಗತ್ಯ ವಂಶವಾಹಿಗಳು ಸುಮಾರು ೨,೦೦೦ ಎಂದು ಅಂದಾಜಿಸಲಾಗಿದೆ (ಜೀವಿಯ ವಂಶವಾಹಿಗಳ ಶೇ ೧೦ರಷ್ಟು)[೯೮]. ಸೈನ್ ೩ ಎಂದು ಕರೆಯಲಾದ ಸಂಯೋಜಿತ ಜೀವಿಯಲ್ಲಿನ ಕನಿಷ್ಠ ಜಿನೋಮ್ ೪೭೩ ಅಗತ್ಯ ವಂಶವಾಹಿಗಳು, ಭಾಗಂಶ ಅಗತ್ಯ ವಂಶವಾಹಿಗಳು (ವೇಗವಾಗಿ ಬೆಳಯಲು ಅಗತ್ಯವಾದ) ಇವೆ. ಆದರೆ ಇವುಗಳಲ್ಲಿನ ೧೪೯ ವಂಶವಾಹಿಗಳು ಮಾಡುವ ಕೆಲಸ ತಿಳಿದಿಲ್ಲ.[೯೨]
ಅಗತ್ಯ ವಂಶವಾಹಿಗಳು ಹೌಸ್‌ಕೀಪಿಂಗ್ ವಂಶವಾಹಿಗಳನ್ನು[ಟಿಪ್ಪಣಿ ೨೫][೯೯] ಮತ್ತು ಜೀವಿಯ ಬೆಳವಣಿಗೆ ಅಥವಾ ಜೀವನ ಚಕ್ರಕ್ಕೆ ಬೇರೆ ಬೇರೆ ಸಮಯದಲ್ಲಿ ಅಗತ್ಯವಾದ ವಂಶವಾಹಿಗಳನ್ನೂ ಒಳಗೊಂಡಿವೆ[೧೦೦]. ಹೌಸ್‌ಕೀಪಿಂಗ್ ವಂಶವಾಹಿಗಳನ್ನು ವಂಶವಾಹಿ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ವಿಶ್ಲೇಷಿಸುವಾಗ ಪ್ರಾಯೋಗಿಕ ಕಂಟ್ರೋಲ್‌ಗಳಾಗಿ ಬಳಸಲಾಗುತ್ತದೆ. ಏಕೆಂದರೆ ಅವು ಸಾಕ್ಷೇಪಿಕವಾಗಿ ಒಂದೇ ಮಟ್ಟದಲ್ಲಿ ಯಾವಾಗಲೂ ಅಭಿವ್ಯಕ್ತಿಸಲ್ಪಡುತ್ತವೆ.

ಜೆನೆಟಿಕ್ ಮತ್ತು ಜಿನೋಮಿಕ್ ಹೆಸರಿಸುವಿಕೆ


ವಂಶವಾಹಿಗಳ ಹೆಸರಿಸುವಿಕೆಯನ್ನು ಪ್ರತೀ ಮಾನವ ವಂಶವಾಹಿಯ ಒಪ್ಪಿತ ಹೆಸರು ಮತ್ತು ಸಂಕೇತವನ್ನು ರೂಪಿಸುವ ಮೂಲಕ ಹೆಚ್‌ಯುಜಿಒ ಜೀನ್ ನಾಮೆನ್‌ಕ್ಲೇಚರ್ ಕಮಿಟಿ (ಹೆಚ್‌ಜಿಎನ್‌ಸಿ) ಮಾಡಿದೆ ಮತ್ತು ಈ ದತ್ತಾಂಶವು ಎಲ್ಲರಿಗೂ ಲಭ್ಯವಾಗುವಂತೆ ಹೆಚ್‌ಜಿಎನ್‌ಸಿ ಮಾಡಿದೆ. ಸಂಕೇತಗಳು ವಿಶಿಷ್ಟವಾಗಿದ್ದು ಪ್ರತೀ ವಂಶವಾಹಿಗೂ ಒಂದೇ ಸಂಕೇತವಿದೆ (ಆದರೆ ಈ ಸಂಕೇತಗಳು ಕೆಲವೊಮ್ಮೆ ಬದಲಾಗ ಬಹುದು.). ಸಂಕೇತಗಳು ವಂಶವಾಹಿ ಕುಟುಂಬದ ಇತರ ಸದಸ್ಯರ ಮತ್ತು ಇತರ ಜೀವಸಂಕುಲಗಳ ಹೊಮೊಲಾಗ್‌ಗಳಿಗೆ ಸಂಗತವಾಗಿವೆ. ವಿಶೇಷವಾಗಿ ಸಾಮಾನ್ಯ ಮಾದರಿ ಜೀವಿಯಾಗಿ[ಟಿಪ್ಪಣಿ ೧೧] ಅದರ ಪಾತ್ರದ ಹಿನ್ನೆಲೆಯಲ್ಲಿ ಇಲಿಯೊಂದಿಗೆ ಸಂಗತವಾಗುವಂತೆ ನೋಡಿಕೊಳ್ಳಲಾಗಿದೆ.[೧೦೧]

ಜೆನೆಟಿಕ್ ಇಂಜಿನಿಯರಿಂಗ್

ಸಂಪ್ರದಾಯಿಕ ಟ್ರಾನ್ಸ್‌ಜೆನಿಕ್ ಮತ್ತು ಸಿಸ್‌ಜೆನಿಕ್ ಸಸ್ಯ ಬ್ರೀಡಿಂಗ್


ಜೆನೆಟಿಕ್ ಇಂಜಿನಿಯರಿಂಗ್ ಎಂದರೆ ಬಯೋಟೆಕ್ನಾಲಜಿ ಅಥವಾ ಜೈವಿಕ ತಂತ್ರಜ್ಞಾನ ಬಳಸಿ ಜೀವಿಯ ಜಿನೋಮ್‌ನ್ನು ಮಾರ್ಪಡಿಸುವುದು. ೧೯೭೦ರ ದಶಕದ ಈಚೆ ನಿರ್ದಿಷ್ಟವಾಗಿ ಜೀವಿಯ ಜಿನೋಮ್‌ಗೆ ಸೇರಿಸಲು, ತೆಗೆಯಲು ಮತ್ತು ಮಾರ್ಪಡಿಸಲು ಹಲವಾರು ತಂತ್ರಗಳನ್ನು ಅಭಿವೃದ್ಧಿ ಪಡಿಸಲಾಗಿದೆ.[೧೦೨] ಇತ್ತಿಚೆಗೆ ಅಭಿವೃದ್ಧಿ ಪಡಿಸದ ಜಿನೋಮ್ ಇಂಜಿನಿಯರಿಂಗ್ ತಂತ್ರಗಳು ಸಂಯೋಜಿಸಿದ ನ್ಯೂಕ್ಲಿಯೇಸ್‌ ಕಿಣ್ವಗಳನ್ನು ಬಳಸಿ ವರ್ಣತಂತುನಲ್ಲಿನ ಡಿಎನ್ಎ ದುರಸ್ತಿ ಗುರಿಯನ್ನು ಹುಟ್ಟಿಸಿಕೊಂಡು ತುಂಡಾದುರ ದುರಸ್ತಿಯಲ್ಲಿ ‌ವಂಶವಾಹಿಯನ್ನು ಒಡೆಯುತ್ತವೆ ಅಥವಾ ಬದಲಾಯಿಸುತ್ತವೆ.[೧೦೩][೧೦೪][೧೦೫][೧೦೬] ಸಂಬಂಧಿತ ಪದ ಸಿಂಥೆಟಿಕ್ ಜೀವಶಾಸ್ತ್ರ ಕೆಲವೊಮ್ಮೆ ಜೀವಿಯ ಜಿನೋಮ್‌ನ ದೊಡ್ಡ ಮಟ್ಟದಲ್ಲಿ ಬದಲಾಯಿಸುವುದಕ್ಕೆ ಅನ್ವಯಿಸಲಾಗಿದೆ.[೧೦೭]
ಮಾದರಿ ಜೀವಿಗಳಲ್ಲಿ[ಟಿಪ್ಪಣಿ ೧೧] ಇಂದು ಜೆನಿಟಿಕ್ ಇಂಜಿನಿಯರಿಂಗ್ ಒಂದು ಸಾಮಾನ್ಯವಾಗಿರುವ ಸಂಶೋದನೆಯ ಪರಿಕರ. ಉದಾಹರಣೆಗೆ ವಂಶವಾಹಿಗಳನ್ನು ಬ್ಯಾಕ್ಟೀರಿಯದಲ್ಲಿ ಸುಲಭವಾಗಿ ಸೇರಿಸ ಬಹುದು.[೧೦೮] ಮತ್ತು ನಾಕ್-ಔಟ್ ಇಲಿಯ[ಟಿಪ್ಪಣಿ ೨೬] ‌ವಂಶದ ಜೀವಿಗಳ ನಿರ್ದಿಷ್ಟ ವಂಶವಾಹಿಯ ಕೆಲಸವನ್ನು ಹಾಳು ಮಾಡುವುದನ್ನು ಆ ವಂಶವಾಹಿಯು ಮಾಡುವ ಕೆಲಸವನ್ನು ಪತ್ತೆ ಹಚ್ಚಲು ಬಳಸ ಬಹುದು.[೧೦೯][೧೧೦] ಹಲವು ಜೀವಿಗಳ ಅನುವಂಶಿಕತೆಯನ್ನು ಕೃಷಿ, ಕೈಗಾರಿಕಾ ಜೈವಿಕ ತಂತ್ರಜ್ಞಾನ ಮತ್ತು ವೈದಕೀಯದಲ್ಲಿ ಬಳಸಲು ಮಾರ್ಪಡಿಸಲಾಗುತ್ತಿದೆ.
ಬಹುಕೋಶ ಜೀವಿಗಳಲ್ಲಿ ಸಾಮಾನ್ಯವಾಗಿ ಭ್ರೂಣವನ್ನು ಮಾರ್ಪಡಿಸಲಾಗುತ್ತದೆ ಮತ್ತು ಇದು ಅನುವಂಶಿಕತೆ ಮಾರ್ಪಡಿಸಿದ ವಯಸ್ಕ ಜೀವಿಯಾಗಿ ಬೆಳೆಯುತ್ತದೆ.[೧೧೧] ಆದರೆ ವಯಸ್ಕ ಜೀವಿಯ ಜೀವಕೋಶಗಳ ಜಿನೋಮನ್ನು ವಂಶವಾಹಿ ಥೀರಪಿ ತಂತ್ರಗಳ ಮೂಲಕ ಬದಲಾಯಿಸಿ ವಂಶವಾಹಿ ಕಾಯಿಲೆಗಳಿಗೆ ಚಿಕಿತ್ಸೆ ಮಾಡಬಹುದು.

ಹೆಚ್ಚಿನ ಮಾಹಿತಿ

ಟಿಪ್ಪಣಿಗಳು

ಉಲ್ಲೇಖಗಳು

ಪ್ರಮುಖ ಪಠ್ಯಪುಸ್ತಕ
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). Molecular Biology of the Cell (Fourth ed.). New York: Garland Science. ISBN 978-0-8153-3218-3. – A molecular biology textbook available free online through NCBI Bookshelf.