Многочлены Лежандра

Многочлен Лежа́ндра — многочлен, который в наименьшей степени отклоняется от нуля в смысле среднего квадратического.Образует ортогональную систему многочленов на отрезке в пространстве .Многочлены Лежандра могут быть получены из многочленов ортогонализацией Грама ― Шмидта.

Многочлены Лежандра
Общая информация
Формула
Скалярное произведение
Область определения
Дополнительные характеристики
Дифференциальное уравнение
Норма
Названы в честьЛежандр, Адриен Мари

Названы по имени французского математика Адриен Мари Лежандра.

Определение

Полиномы Лежандра и присоединённые функции Лежандра первого и второго рода

Рассмотрим дифференциальное уравнение вида

(1)

где  — комплексная переменная. Решения этого уравнения при целых имеют вид многочленов, называемых многочленами Лежандра. Полином Лежандра степени можно представить через формулу Родрига в виде[1]

Часто вместо записывают косинус полярного угла:

Уравнение (1) можно получить из частного случая гипергеометрического уравнения, называемого уравнением Лежандра

(2)

где ,  — произвольные комплексные постоянные. Интерес представляют его решения, являющиеся однозначными и регулярными при (в частности, при действительных ) или когда действительная часть числа больше единицы. Его решения называют присоединёнными функциями Лежандра или сферическими функциями (гармониками). Подстановка вида в (2) даёт уравнение Гаусса, решение которого в области принимает вид

где  — гипергеометрическая функция. Подстановка в (2) приводит к решению вида

определённым на . Функции и называют функциями Лежандра первого и второго рода.[2]

Справедливы соотношения[3]

и

Выражение через суммы

Многочлены Лежандра также определяются по следующей формуле:

Рекуррентная формула

Они также могут быть вычислены по рекуррентной формуле (при )[4]:

(3)

причём первые две функции имеют вид

Производная полинома Лежандра

Вычисляется по формуле[5]

(4)

Корни полинома Лежандра

Вычисляются итеративно по методу Ньютона[5]:

причём начальное приближение для -го корня ( ) берётся по формуле[5]

Значение полинома можно вычислять, используя рекуррентную формулу для конкретного значения x.Производную также можно вычислять для конкретного значения x, используя формулу для производной.

Формулы с разложениями

Многочлены Лежандра также определяются следующими разложениями:

  для  
  для  

Следовательно,

Присоединённые многочлены Лежандра

Присоединённые многочлены Лежандра определяются по формуле

которую также можно представить в виде

При функция совпадает с .

Нормировка по правилу Шмидта

Нормированные по правилу Шмидта полиномы Лежандра выглядят следующим образом[6]:

Сдвинутые многочлены Лежандра

Сдвинутые многочлены Лежандра определяются как , где сдвигающая функция (это аффинное преобразование) выбрана так, чтобы однозначно отображать интервал ортогональности многочленов на интервал , в котором уже ортогональны сдвинутые многочлены :

Явное выражение для смещённых многочленов Лежандра задаётся как

Аналогом формулы Родрига для смещенных многочленов Лежандра является

Выражения для некоторых первых сдвинутых многочленов Лежандра:

n
0
1
2
3
4

Матрица функции многочлена Лежандра

Эта матрица является верхнетреугольной. Её определитель равен нулю, а собственные значения равны , где .

Примеры

Первые 6 многочленов Лежандра

Первые многочлены Лежандра в явном виде:

Поскольку , то

Свойства

  • Если , то
  • Для степень равна .
  • Сумма коэффициентов многочлена Лежандра равна 1.
  • Уравнение имеет ровно различных корней на отрезке
  • Пусть . Тогда
    Невозможно разобрать выражение (SVG (MathML можно включить с помощью плагина для браузера): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «http://localhost:6011/ru.wikipedia.org/v1/»:): {\displaystyle (x^2 - 1) U'_n(x) - 2nx U_n(x) = 0.}
  • Присоединённые многочлены Лежандра являются решениями дифференциального уравнения
При уравнение принимает вид
  • Производящая функция для многочленов Лежандра равна
  • Условие ортогональности этих полиномов на отрезке :
где  — символ Кронекера.
  • Для норма равна
  • Нормированная функция многочленов Лежандра связана с нормой следующим соотношением:
  • При каждом система присоединённых функций Лежандра полна в .
  • В зависимости от и присоединённые многочлены Лежандра могут быть как чётными, так и нечётными функциями:
     — чётная функция,
     — нечётная функция.
  • , поскольку , а .
  • Для выполняется .

Ряды многочленов Лежандра

Разложение липшицевой функции в ряд многочленов Лежандра

Липшицевая функция является функцией со свойством

, где .

Эта функция разлагается в ряд многочленов Лежандра.

Пусть  — пространство непрерывных отображений на отрезке , , и .

Пусть

тогда удовлетворяет следующему условию:

Пусть и удовлетворяет следующим условиям:

  1. , где

Липшицеву функцию можно записать следующим образом:

Разложение голоморфной функции

Всякая функция , голоморфная внутри эллипса с фокусами −1 и +1, может быть представлена в виде ряда:

Теорема сложения

Для величин, удовлетворяющих условиям , , ,  — действительное число, можно записать теорему сложения для полиномов Лежандра первого рода:[7]

или, в альтернативной форме через гамма-функцию:

Для полиномов Лежандра второго рода теорема сложения выглядит как[8]

при условиях , , , .

Функции Лежандра

Многочлены Лежандра (вместе с присоединёнными функциями Лежандра ) естественно возникают в теории потенциала.

Шаровые функции — это функции (в сферических координатах ) вида (с точностью до константы)

и

где  — присоединённые многочлены Лежандра.Они также представимы в виде , где  — сферические функции.

Шаровые функции удовлетворяют уравнению Лапласа всюду в .

Примечания

Литература

  • Бейтмен Г., Эрдейи А. Высшие трансцендентные функции = Higher Transcendental Functions / Пер. Н. Я. Виленкина. — Изд. 2-е,. — М.: Наука, 1973. — Т. 1. — 296 с. — 14 000 экз.
  • Владимиров В. С., Жаринов В. В. Уравнения математической физики. — М.: Физматлит, 2004. — ISBN 5-9221-0310-5.
  • Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. — Изд. 4-е, перераб. — М.: Государственное издательство физико-математической литературы, 1963. — 19 000 экз.
  • Кампе де Ферье Ж., Кемпбелл Р., Петьо Г., Фогель Т. Функции математической физики. — М.: Физматлит, 1963.
  • Никольский С. М. Квадратурные формулы. — М.: Наука, 1988.
  • Цимринг Ш. Е. Специальные функции и определенные интегралы. Алгоритмы. Программы для микрокалькуляторов: Справочник. — М.: Радио и связь, 1988.

Ссылки

🔥 Top keywords: Заглавная страницаЯндексДуров, Павел ВалерьевичСлужебная:ПоискYouTubeЛунин, Андрей АлексеевичПодносова, Ирина ЛеонидовнаВКонтактеФоллаут (телесериал)WildberriesTelegramРеал Мадрид (футбольный клуб)Богуславская, Зоя БорисовнаДуров, Валерий СемёновичРоссияXVideosСписок умерших в 2024 годуЧикатило, Андрей РомановичFallout (серия игр)Список игроков НХЛ, забросивших 500 и более шайбПопков, Михаил ВикторовичOzon17 апреляИльин, Иван АлександровичMail.ruСёгун (мини-сериал, 2024)Слово пацана. Кровь на асфальтеПутин, Владимир ВладимировичЛига чемпионов УЕФАГагарина, Елена ЮрьевнаБишимбаев, Куандык ВалихановичЛига чемпионов УЕФА 2023/2024Турнир претендентов по шахматам 2024Манчестер СитиMGM-140 ATACMSРоссийский миротворческий контингент в Нагорном КарабахеЗагоризонтный радиолокаторПинапВодительское удостоверение в Российской Федерации