Dimethyl sulfide

Dimethyl sulfide (DMS) or methylthiomethane is an organosulfur compound with the formula (CH3)2S. The simplest thioether, it is a flammable liquid that boils at 37 °C (99 °F) and has a characteristic disagreeable odor. It is a component of the smell produced from cooking of certain vegetables, notably maize, cabbage, beetroot, and seafoods. It is also an indication of bacterial contamination in malt production and brewing. It is a breakdown product of dimethylsulfoniopropionate (DMSP), and is also produced by the bacterial metabolism of methanethiol.

Dimethyl sulfide
Skeletal formula of dimethyl sulfide with all implicit hydrogens shown
Spacefill model of dimethyl sulfide
Space-filling model of the molecular structure[1][2]
Names
Preferred IUPAC name
(Methylsulfanyl)methane[3]
Other names
  • (Methylthio)methane[3]
  • Dimethyl sulfide[3]
  • Dimethyl thioether[4]
Identifiers
3D model (JSmol)
3DMet
1696847
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard100.000.770 Edit this at Wikidata
EC Number
  • 200-846-2
KEGG
MeSHdimethyl+sulfide
RTECS number
  • PV5075000
UNII
UN number1164
  • InChI=1S/C2H6S/c1-3-2/h1-2H3 checkY
    Key: QMMFVYPAHWMCMS-UHFFFAOYSA-N checkY
  • Key: QMMFVYPAHWMCMS-UHFFFAOYAH
Properties
(CH3)2S
Molar mass62.13 g·mol−1
AppearanceColourless liquid
OdorStench: cabbage, sulfurous, unpleasant
Density0.846 g·cm−3
Melting point−98 °C; −145 °F; 175 K
Boiling point35 to 41 °C; 95 to 106 °F; 308 to 314 K
log P0.977
Vapor pressure53.7 kPa (at 20 °C)
−44.9×10−6 cm3/mol
1.435
Thermochemistry
−63.9 to −66.9 kJ⋅mol−1
−2.1812 to −2.1818 MJ⋅mol−1
Hazards
GHS labelling:
GHS02: Flammable GHS05: Corrosive GHS07: Exclamation mark
Danger
H225, H315, H318, H335
P210, P261, P280, P305+P351+P338
Flash point−36 °C (−33 °F; 237 K)
206 °C (403 °F; 479 K)
Explosive limits19.7%[clarification needed]
Safety data sheet (SDS)osha.gov
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Occurrence and production

DMS originates primarily from DMSP, a major secondary metabolite in some marine algae.[5] DMS is the most abundant biological sulfur compound emitted to the atmosphere.[6][7] Emission occurs over the oceans by phytoplankton. DMS is also produced naturally by bacterial transformation of dimethyl sulfoxide (DMSO) waste that is disposed of into sewers, where it can cause environmental odor problems.[8]

DMS is oxidized in the marine atmosphere to various sulfur-containing compounds, such as sulfur dioxide, dimethyl sulfoxide (DMSO), dimethyl sulfone, methanesulfonic acid and sulfuric acid.[9] Among these compounds, sulfuric acid has the potential to create new aerosols which act as cloud condensation nuclei. It usually results in the formation of sulfate particles in the troposphere. Through this interaction with cloud formation, the massive production of atmospheric DMS over the oceans may have a significant impact on the Earth's climate.[10][11] The CLAW hypothesis suggests that in this manner DMS may play a role in planetary homeostasis.[12]

Marine phytoplankton also produce dimethyl sulfide,[13] and DMS is also produced by bacterial cleavage of extracellular DMSP.[14] DMS has been characterized as the "smell of the sea",[15] though it would be more accurate to say that DMS is a component of the smell of the sea, others being chemical derivatives of DMS, such as oxides, and yet others being algal pheromones such as dictyopterenes.[16]

Dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide have been found among the volatiles given off by the fly-attracting plant known as dead-horse arum (Helicodiceros muscivorus). Those compounds are components of an odor like rotting meat, which attracts various pollinators that feed on carrion, such as many species of flies.[17]

On September 12, 2023, NASA announced that their investigation into exoplanet K2-18b revealed the possible presence of dimethyl sulfide, noting "On Earth, this is only produced by life."[18]

Industrial processes

In industry dimethyl sulfide is produced by treating hydrogen sulfide with excess methanol over an aluminium oxide catalyst:[19]

2 CH3OH + H2S → (CH3)2S + 2 H2O

Dimethyl sulfide is emitted by kraft pulping mills as a side product from delignification.

Physiology of dimethyl sulfide

Dimethyl sulfide is normally present at very low levels in healthy people, namely less than 7 nM in blood, less than 3 nM in urine and 0.13 to 0.65 nM on expired breath.[20][21]

At pathologically dangerous concentrations, this is known as dimethylsulfidemia. This condition is associated with blood borne halitosis and dimethylsulfiduria.[22][23][24]

In people with chronic liver disease (cirrhosis), high levels of dimethyl sulfide may be present in the breath, leading to an unpleasant smell (fetor hepaticus).

Odor

Dimethyl sulfide has a characteristic odor commonly described as cabbage-like. It becomes highly disagreeable at even quite low concentrations. Some reports claim that DMS has a low olfactory threshold that varies from 0.02 to 0.1 ppm[clarification needed] between different persons, but it has been suggested that the odor attributed to dimethyl sulfide may in fact be due to disulfides, polysulfides and thiol impurities, since the odor of dimethyl sulfide is much less disagreeable after it is freshly washed with saturated aqueous mercuric chloride.[25] Dimethyl sulfide is also available as a food additive to impart a savory flavor; in such use, its concentration is low. Beetroot,[26] asparagus,[27] cabbage, maize and seafoods produce dimethyl sulfide when cooked.

Dimethyl sulfide is also produced by marine planktonic microorganisms such as the coccolithophores and so is one of the main components responsible for the characteristic odor of sea water aerosols, which make up a part of sea air. In the Victorian era, before DMS was discovered, the origin of sea air's 'bracing' aroma was attributed to ozone.[28]

Dimethyl sulfide is the main volatile chemical produced by various species of truffle, and is the compound that animals trained to uncover the fungus (such as pigs and detection dogs) sniff out when searching for them.[29]

Industrial uses

Dimethyl sulfide is considered the most important thioether produced industrially. One major use is for the production of borane dimethyl sulfide from diborane:[19]

B2H6 + 2 (CH3)2S → 2 BH3·S(CH3)2

Oxidation of dimethyl sulfide gives the solvent dimethyl sulfoxide. Further oxidation affords dimethyl sulfone.

Chemical reactions

As illustrated above by the formation of its adduct with borane, dimethyl sulfide is a Lewis base. It is classified as a soft ligand (see also ECW model). It forms complexes with many transition metals but such adducts are often labile. For example, it serves a displaceable ligand in chloro(dimethyl sulfide)gold(I).

Dimethyl sulfide is used in the workup of the ozonolysis of alkenes. It reduces the intermediate trioxolane. The Swern oxidation produces dimethyl sulfide by reduction of dimethylsulfoxide.

With chlorinating agents such as sulfuryl chloride, dimethyl sulfide converts to chloromethyl methyl sulfide:

SO2Cl2 + (CH3)2S → SO2 + HCl + ClCH2SCH3

Like other methylthio compounds, DMS is deprotonated by butyl lithium:[30]

CH3CH2CH2CH2Li + (CH3)2S → CH3CH2CH2CH3 + LiCH2SCH3

Safety

Dimethyl sulfide is highly flammable and an eye and skin irritant. It is harmful if swallowed. It has an unpleasant odor at even extremely low concentrations. Its ignition temperature is 205 °C.

See also

References

External links