Біополімери

Біополіме́ри — загальна назва макромолекулярних сполук, що існують у живій природі;[1] полімери біологічного походження.

Біополімери
Зображення
CMNS: Біополімери у Вікісховищі

Ці біологічні макромолекули характеризуються своєю складною структурою, яка часто складається з повторюваних мономерних одиниць, і вони відіграють фундаментальну роль в архітектурі та функціональності біологічних організмів. Біополімери охоплюють кілька ключових категорій, включаючи нуклеїнові кислоти (такі як ДНК і РНК), пептиди й білки, вуглеводи й полісахариди, кожна з яких унікально впливає на складність живих систем. Більшість біополімерів є кополімерами, тобто складаються із мономерних ланок різного типу.

Біополімери мають надзвичайне біологічне значення, вони становлять основу структури і життєдіяльності живих організмів нашої планети. Крім того, уся історія цивілізації людини пов’язана з використанням біополімерів: їжа, волокна для виготовлення одягу і різноманітних предметів ужитку, будування й опалення житла.

Історія

Історія біополімерів є свідченням людської цікавості та невпинного прагнення зрозуміти фундаментальні будівельні блоки життя. Ранні дослідження біополімерів відносяться до 19 століття, коли дослідники почали вивчати хімічний склад біологічних матеріалів.

Сучасні досягнення

У XXI столітті відбувся значний прогрес у дослідженні біополімерів із передовими методами, такими як оміксні технології (епігеноміка, геноміка, протеоміка, мультиоміка та інші) та структурна біологія, які дають безпрецедентне розуміння функцій і структур цих молекул.

Історія біополімерів підкреслює їхню центральну важливість у біології та хімії, і кожне відкриття робить внесок у наші знання про фундаментальні процеси життя.

Типи біополімерів

Біополімери являють собою різноманітний клас природних макромолекул, кожна з яких має відмінні структурні та функціональні властивості. Розуміння цих біополімерів має ключове значення для розуміння складності життя та їх широкого застосування в різних наукових і промислових областях.

Нуклеїнові кислоти

  • ДНК (дезоксирибонуклеїнова кислота): ДНК є генетичним планом життя, який містить інструкції для розвитку, функціонування та відтворення живих організмів [Watson and Crick, 1953].
  • РНК (рибонуклеїнова кислота): РНК відіграє вирішальну роль у синтезі білка та експресії генів, транслюючи генетичну інформацію з ДНК у функціональні білки.

Білки та пептиди

Рівні структурної організації білкової молекули

Білки та пептиди — це універсальні біополімери, що складаються з мономерів амінокислот, з’єднаних пептидними зв’язками. Пептиди містять від 2 до 50 амінокислот (2-20 – олігопептиди, 20-50+ – поліпептиди), а білками вважають пептиди з більш ніж 50 амінокислотами. Вони виконують функції ферментів (каталаза, ацетилтрансфераза та ін.), структурних компонентів (колаген, еластин та ін.), транспортерів (гемоглобін, міоглобін та ін.) та сигнальних молекул (інсулін, гормон росту та ін.).

Вуглеводи

Вуглеводи охоплюють широкий спектр біополімерів, включаючи:

  • Моносахариди: прості цукри, такі як глюкоза та фруктоза — не є біополімерами, але є складовими блоками біополімерів, таких як дисахариди та полісахариди.
  • Дисахариди: пари моносахаридів, такі як сахароза і лактоза.
  • Полісахариди: складні вуглеводи, такі як целюлоза, крохмаль і глікоген, які служать накопичувачами енергії та структурними матеріалами.
    • Целюлоза: необхідна для клітинних стінок рослин, забезпечуючи структурну підтримку.
    • Крохмаль: накопичення енергії в рослинах.
    • Глікоген: накопичення енергії у тварин.
    • Хітин: складова екзоскелетів членистоногих і клітинних стінок грибів.

Синтетичні біополімери

До синтетичних біополімерів[en] належать біорозкладані полімери, розроблені для різних застосувань, включаючи біорозкладні пластики й біопластик, медичні імплантати[7] та системи доставки ліків[8] (див. Наномедицина). Синтетичні біополімери представляють динамічну та інноваційну галузь науки про полімери, де дослідники розробляють і синтезують полімери зі специфічними властивостями для вирішення широкого спектру сучасних завдань. Ці сконструйовані біополімери набули популярності завдяки здатності до біологічного розкладання, універсальності та потенціалу пом’якшення екологічних проблем, таких як забруднення пластиком, пов’язаних із традиційними синтетичними полімерами.[9]

Функції

Основні функції біополімер:

  • будівельна
  • енергетична
  • регуляторна
  • захисна
  • інформаційна
  • запаслива.

Властивості

Основна властивість мономерів: вони утворюють певну структуру (конформацію), яка й визначає їхні властивості і функції.

Біополімери мають велику масу – близько від 10000 до 1 млн а.о.м.

Застосування

Застосування біополімерів[10]

Біополімери з їхніми унікальними властивостями та здатністю до біологічного розкладання знайшли різноманітне та інноваційне застосування в широкому діапазоні наукових, промислових та екологічних галузей. Від охорони здоров’я до сільського господарства та сталого пакування біополімери використовуються завдяки своїй універсальності та екологічності.

Біомедицина

Харчова промисловість

  • Їстівні плівки та покриття: такі біополімери, як крохмаль і хітозан[19], використовуються для створення їстівних плівок і покриттів для харчових продуктів. Ці покриття можуть подовжити термін зберігання швидкопсувних продуктів і зменшити харчові відходи.[20][21][22]
  • Біорозкладна упаковка: такі біополімери, як полілактид (PLA) і полігідроксіалканоати (PHA), використовуються у виробництві біорозкладаних пакувальних матеріалів для харчових продуктів, пропонуючи екологічну альтернативу звичайним пластикам.[23]

Сільське господарство та родючість ґрунту

  • Біорозкладні мульчі: біополімери, такі як біорозкладні плівки мульчі, виготовлені з крохмалю або PLA, допомагають контролювати бур’яни та покращувати якість та родючість ґрунту в сільському господарстві. Ці плівки руйнуються природним шляхом, зменшуючи забруднення пластиком.[24][25][26]
  • Біодобрива: біополімери використовуються для інкапсуляції та доставки біодобрив та добрив, покращуючи виділення поживних речовин і ріст рослин, одночасно зменшуючи вплив на навколишнє середовище.[27][28][29]

Текстиль та одяг

  • Виробництво волокна: біополімери, такі як хітозан[30] і альгінат[31], були досліджені для використання у виробництві текстилю, одягу та медичних матеріалів. Вони пропонують антимікробні властивості[32][33], комфорт і біорозкладаність.[34]

Біорозкладні пакувальні матеріали

  • Біорозкладані пластики: біополімери займають перше місце в екологічних пакувальних рішеннях. Біорозкладані пластики, отримані з крохмалю, PLA та PHA, набули популярності завдяки зниженому впливу на навколишнє середовище.[35]

Пом'якшення впливу на навколишнє середовище

Виклики та перспективи на майбутнє

У той час як біополімери пропонують значні переваги, проблеми залишаються, включаючи економічну ефективність, масштабованість і адаптаційні властивості для конкретних застосувань. Поточні дослідження вивчають розробку нових біополімерів і вдосконалених методів обробки, прокладаючи шлях для ще більш широкого використання цих екологічно чистих матеріалів у різних галузях промисловості.[38][39]

Перспективні технології

В останні кілька десятиліть попит на біополімери та їх композити постійно зростав через широке використання та зменшення запасів викопних ресурсів. Екологічно чисті біоматеріали на основі біополімерів є надзвичайно важливими для підтримки стійкості навколишнього середовища.[39] (див. Сталий розвиток)

Зараз біоматеріали вважаються дуже перспективними матеріалами, які можна використовувати як відповідні замінники синтетичних полімерів на основі викопних речовин та їх композитів шляхом відповідної модифікації біополімерів. Дослідники по всьому світу розробляють покращені біокомпозитні матеріали, додаючи різні наповнювачі в діапазоні нанорозмірів, які демонструють адекватні механічні властивості та можуть бути розроблені як майбутні біоматеріали, які можуть замінити традиційні пластики. Біополімери та біонанокомпозити помітно використовуються в багатьох країнах світу для пакування харчових продуктів, косметики, автомобільної промисловості, очищення води, тканинної інженерії, текстильної промисловості, електронної промисловості тощо. Для індустріалізації полімерних матеріалів на біооснові та біонанокомпозитних матеріалів вони повинні бути синтезовано складним способом за допомогою екологічної технології з покращеною геометрією, хорошим контролем внутрішньої архітектури, механічних властивостей і пористості. Вважається, що хітин, альгінат, пектин, зеїн, хітозан, поліглутамінова кислота (PGA) та інші природні біополімери є матеріалами майбутнього для різних виробництв біопластику.[39]

  • Біополімерні суміші та композити: дослідження та розробки у створенні біополімерних сумішей та композитів набирають обертів. Комбінуючи різні біополімери або змішуючи біополімери з традиційними пластиками, можливо досягти покращення механічних, термічних і бар’єрних властивостей, що робить такі суміші та композити придатними для більш широкого спектру застосувань.[48][49][50][51][52][53]

Див. також

Джерела

Додаткова література

Книги

Журнали

Статті

Курси

Примітки