Aktinij

hemijski element s atomskim brojem 89

Aktinij je hemijski element sa simbolom Ac i atomskim brojem 89. Po njemu je serija hemijskih elemenata dobila ime aktinoidi, gdje spada grupa od petnaest vrlo sličnih elemenata u periodnom sistemu, počev od njega do lorensija. Aktinij se također ponekad smatra i prvim prelaznim metalom 7. periode, mada se mnogo rjeđe lorensiju dodjeljuje ta pozicija. Aktinij je otkriven 1899. godine, a bio je prvi neprimordijalni radioaktivni element koji je izdvojen. Iako su polonij, radij i radon otkriveni prije aktinija, oni nisu bili dobijeni u čistom obliku sve do 1902. godine.

Aktinij,  89Ac
Aktinij u periodnom sistemu
Hemijski element, Simbol, Atomski brojAktinij, Ac, 89
SerijaPrelazni metali
Grupa, Perioda, Blok3, 7, d
Izgledsrebrenasti metal
emitira plavičastu svjetlost[1][2]
CAS registarski broj7440-34-8
Zastupljenost6 · 10-18[3] %
Atomske osobine
Atomska masa227,0278 u
Atomski radijus (izračunat)195 (-) pm
Kovalentni radijus215 pm
Van der Waalsov radijus- pm
Elektronska konfiguracija[Rn] 6d17s2
Broj elektrona u energetskom nivou2, 8, 18, 32, 18, 9, 2
1. energija ionizacije499 kJ/mol
2. energija ionizacije1170 kJ/mol
3. energija ionizacije1900 kJ/mol
Fizikalne osobine
Agregatno stanječvrsto
Kristalna strukturakubična plošno centrirana
Gustoća10070 kg/m3
Tačka topljenja1323 K (1050 °C)
Tačka ključanja3500±300[2] K (3200±300 °C)
Molarni volumen22,55 · 10-6 m3/mol
Toplota isparavanja400 kJ/mol
Toplota topljenja14 kJ/mol
Brzina zvukam/s
Specifična toplota27,2 J/(kg · K) kod 293 K
Toplotna provodljivost12 W/(m · K)
Hemijske osobine
Oksidacioni broj3, 2
Elektrodni potencijal-2,13 V (Ac3+ + 3e- → Ac)
Elektronegativnost1,1 (Pauling-skala)
Izotopi
IzoRPt1/2RAER (MeV)PR
225Ac

sin

10 d α 5,935 221Fr
226Ac

sin

29,4 h β- 0,640 226Th
ε 1,116 226Ra
α 5,536 222Fr
227Ac

100 %

21,773 god β- 0,045 227Th
α 5,536 223Fr
228Ac

u tragovima

6,15 h β- 2,127 228Th
Sigurnosno obavještenje
Oznake upozorenja
Oznaka upozorenja nepoznata[4]
Obavještenja o riziku i sigurnostiR: /
S: /
Ostala upozorenja
Radioaktivnost
Radioaktivni element
Radioaktivni element

Radioaktivni element
Ako je moguće i u upotrebi, koriste se osnovne SI jedinice.
Ako nije drugačije označeno, svi podaci dobijeni su mjerenjima u normalnim uvjetima.

Aktinij je vrlo mehak, srebrenasto-svijetli radioaktivni metal koji vrlo burno reagira sa kisikom i vlagom iz zraka, gradeći bijeli pokrivni aktinij-oksid koji sprječava daljnju oksidaciju. Kao i većina lantanoida i mnogih aktinoida, on zadržava oksidacijsko stanje +3 u gotovo svim svojim spojevima. Ovaj metal se nalazi samo u tragovima unutar ruda uranija i torija u vidu izotopa 227Ac, a koji se raspada tokom vremena poluraspada od 21,772 godine, pretežno emitirajući beta- a rjeđe i alfa-čestice. Također, postoji i izotop 228Ac, koji je beta aktivan, ali mu je vrijeme poluraspada samo 6,15 sati. U jednoj toni prirodnog uranija u rudama sadržano je oko 0,2 miligrama aktinija-227, dok jedna tona prirodnog torija sadrži približno 5 nanograma aktinija-228. Zbog velike sličnosti u fizičkim i hemijskim osobinama aktinija i lantana, odvajanje aktinija iz njegovih ruda nije praktično. Umjesto toga, ovaj element se u miligramskim količinama dobija zračenjem neutronima izotopa radija-226 u nuklearnim reaktorima. Zbog rijetkosti, visoke cijene dobijanja i radioaktivnosti, aktinij nema značajnijih primjena u industriji. Njegova upotreba svodi se na izvor neutrona te kao sredstvo u radioterapiji, kojim se zrače određene ćelije tumora u tijelu.

Historija

Francuski hemičar André-Louis Debierne objavio je 1899. otkriće novog elementa. Izdvojio ga je iz ostataka rude uraninita, iz koje su Marie i Pierre Curie prethodno izdvojili radij. Iste godine, Debierne je opisao novu tvar da je slična titaniju[5] a u studiji iz 1900. naveo je da je element sličan toriju.[6] Aktinij je, neznajući za Debierneovo otkriće, također otkrio i Friedrich Oskar Giesel 1902. godine[7] kada je novu supstancu opisao da je slična lantanu, te ga je 1904. godine nazvao emanium.[8] Nakon što su Harriet Brooks 1904. te Otto Hahn i Otto Sackur 1905. godine uporedili vremena poluraspada supstanci koje su otkrili Debierne i Giesel,[9] odabrali su da zadrže ime elementa koje je predložio Debierne jer je bio prvi koji ga je otkrio, iako je postojala nepodudarnost u hemijskim osobinama koje je on različito navodio u različitim radovima i periodima.[8][10]

Članci objavljeni tokom 1970tih[11] i kasnije[12] navode da Debierneovi rezultati objavljeni 1904. nisu saglasni sa onim objavljenim 1899. i 1900. godine. Osim toga, prema današnjem znanju iz oblasti hemije aktinija izvodi se zaključak da je ovaj element nije mogao biti ništa drugo osim vrlo mali sastojak u Debierneovim rezultatima iz 1899. i 1900. Zapravo, hemijske osobine tvari o kojoj je on pisao navode na pomisao da se u tom slučaju radilo o protaktiniju, elementu koji nije otkriven još narednih četrnaest godina, samo zbog toga što je "nestao" zbog svoje hidrolize i adsorpcije na Debierneovom laboratorijskom posuđu. To otkriće je navelo neke autore da Giesela "proglase" osobom koja je otkrila aktinij.[2] Nešto umjereniju viziju naučnog otkrića predložio je Adloff.[12] On je naveo bi se retrospektivne kritike ranih radova trebale ublažiti zbog tadašnjeg nivoa znanja iz radiohemije: naglašavajući opreznost Debierneovih tvrdnjih u prvobitnim radovima, on zapaža da niko ne može sa sigurnošću tvrditi da Debierneova supstanca nije sadržavala aktinij.[12] Debierne, koji prema mišljenjima većine historičara važi za pronalazača aktinija, izgubio je kasnije zanimanje za ovaj element i napustio istraživanje. S druge strane, Gieselu se s punim pravom može dati čast za prvo dobijanje radiohemijski čistog uzorka aktinija kao i za određivanje njegovog atomskog broja 89.[11] Ime aktinij potječe od starogrčkih riječi aktis, aktinos (starogrčki: ακτίς, ακτίνος) što znači zraka.[13] Njegov simbol Ac također se koristi i kao skraćenica za druge supstance ili organske spojeve koji nemaju nikakve veze sa aktinijem, poput acetila, acetata[14] i ponekad acetaldehida.[15]

Osobine

Aktinij je mehki, srebreno-sjajni,[16][17] radioaktivni metalni element. Njegov modul smicanja (Coulombov modul) vrlo je blizak onom kod olova.[18] Zbog vrlo snažne radioaktivnosti aktinija, on u mraku sjaji svijetloplavom svjetlošću, koja potječe jer se okolni zrak ionizira zbog emisije energetskih čestica.[19] Hemijske osobine su slične osobinama lantana i drugih lantanoida, pa je sve te elemente vrlo teško razdvojiti iz ruda uranija. Ekstrakcija otapalima i ionoizmjenjivačka hromatografija su najčešće metode korištene u izdvajanju aktinija.[20] Kao prvi element među aktinoidi, a po njemu je ova grupa i dobila ime, na isti način kao što je lantan za lantanoide. Međutim, aktinoidi su u mnogo većoj mjeri različiti između sebe u odnosu na lantanoide, tako da sve do 1928. i prijedloga Charlesa Janeta o najznačajnijoj izmjeni Mendeljejevog periodnog sistema još od formiranja grupe lantanoida, tako što je uveo aktinoide, a isti prijedlog imao je i Glenn T. Seaborg 1945. godine.[21]

Aktinij vrlo burno reagira sa kisikom i vlagom iz zraka gradeći bijeli pokrovni sloj aktinij-oksida koji onemogućava daljnju oksidaciju.[16] Kao i kod većine lantanoida i aktinoida, aktinij postoji u oksidacijskom stanju +3, a ioni Ac3+ su bezbojni u rastvorima.[22] Oksidacijsko stanje +3 se javlja zbog elektronske konfiguracije aktinija [Rn]6d17s2, sa tri valentna elektrona koji se vrlo lahko otpuštaju dajući stabilnu strukturu zatvorenih elektronskih ljusci plemenitog plina radona.[17] Rijetko oksidacijsko stanje +2 jedino je poznato kod aktinij-dihidrida (AcH2); mada se i tu možda radi o elektridnom spoju kao i kod njegovog lakšeg kongenera lantana u spoju LaH2.[23]

Izotopi

Aktinij koji se javlja u prirodi sastoji se iz dva radioaktivna izotopa: 227Ac (koji se nalazi u radioaktivnom nizu raspadanja izotopa 235U) i 228Ac, koji je treći po redu "kćerka" izotop od 232Th. 227Ac se pretežno raspada kao beta emiter s vrlo malom energijom, ali se pri 1,38% raspada emitira alfa čestica, pa se stoga vrlo lahko može identificirati pomoću alfa spektrometrije.[2] Ukupno je do danas poznato 36 radioizotopa ovog elementa, a među njima je najstabilniji 227Ac čije vrijeme poluraspada iznosi 21,772 godina. Nakon njega slijede 225Ac sa vremenom poluraspada od 10 dana i 226Ac sa vremenom poluraspada od 29,37 sati. Svi ostali poznati radioaktivni izotopi imaju vremena poluraspada kraća od 10 sati, a većina od njih vremena kraća od jedne minute. Najkraće vrijeme poluraspada ima izotop aktinija 217Ac sa 69 nanosekundi, a koji se raspada alfa raspadom i elektronskim zahvatom. Aktinij ima i dva poznata metastabilna izotopa.[24] U hemiji su najznačajniji izotopi 225Ac, 227Ac i 228Ac.[2]

Obogaćeni 227Ac se nalazi u ravnoteži sa svojim proizvodima raspada nakon otprilike pola godine. On se raspada tokom svog vremena poluraspada od 21,772 godine emitirajući uglavnom beta (98,62%) i neznatno alfa čestice (1,38%),[24] a "kćerke" izotopi su dio lanca raspada poznatog kao aktinijev niz. Iz razloga svoje rijetkosti i slabe rasprostranjenosti, niske energije beta čestica koje emitira (najviše 44,8 keV) i niskog intenziteta alfa zračenja, 227Ac je vrlo teško direktno detektirati putem njegove emisije pa se stoga prati samo preko proizvoda raspada.[22] Izotopi aktinija po atomskoj težini imaju raspon od 206 u (206Ac) do 236 u (236Ac).[24]

IzotopProizvodnjaRaspadVrijeme
poluraspada
221Ac232Th(d,9n)→225Pa(α)→221Acα52 ms
222Ac232Th(d,8n)→226Pa(α)→222Acα5,0 s
223Ac232Th(d,7n)→227Pa(α)→223Acα2,1 min
224Ac232Th(d,6n)→228Pa(α)→224Acα2,78 h
225Ac232Th(n,γ)→233Th(β)→233Pa(β)→233U(α)→229Th(α)→225Ra(β)→225Acα10 dana
226Ac226Ra(d,2n)→226Acα, β
elektronski
zahvat
29,37 h
227Ac235U(α)→231Th(β)→231Pa(α)→227Acα, β21,77 god.
228Ac232Th(α)→228Ra(β)→228Acβ6,15 h
229Ac228Ra(n,γ)→229Ra(β)→229Acβ62,7 min
230Ac232Th(d,α)→230Acβ122 s
231Ac232Th(γ,p)→231Acβ7,5 min
232Ac232Th(n,p)→232Acβ119 s

Rasprostrenjenost

Može se naći samo u tragovima u rudama uranija. Jedna tona rude uranija sadrži oko 0,2 miligrama izotopa 227Ac[25][26] dok jedna tona rude torija sadrži oko 5 nanograma izotopa 228Ac. Izotop 227Ac je prelazni član raspadnog lanca uranij-aktinijevog niza koji počinje sa "roditeljskim" izotopom uranija-235 (ili plutonija 239Pu) a završava sa stabilnim izotopom olova 207Pb. Izotop 228Ac je prelazni član torijevog niza raspada, koji započinje "roditeljskim" izotopom 232Th a završava stabilnim izotopom olova 208Pb. Još jedan izotop aktinija (225Ac) je prelazni član u neptunijevom nizu raspada, a koji počinje sa 237Np (ili 233U) a završava sa talijem (205Tl) i (gotovo) stabilnim bizmutom (209Bi), mada je ovaj lanac raspada postojao samo u ranoj fazi nastanka Sunčevog sistema zbog vrlo kratkog vremena poluraspada izotopa neptunija-237.

Dobijanje

Ruda uraninita ima povišenu koncentraciju aktinija.

Mala prirodna koncentracija i fizičke i hemijske osobine koje su vrlo bliske onima kod lantana i drugih lantanoida, a koje su vrlo bogate u rudama koje u svom sastavu imaju tragove aktinija, čine izdvajanje ovog elementa iz ruda vrlo nepraktičnim, a povrh toga potpuno izdvajanje nikad nije postignuto.[27] Iz tih razloga, aktinij u miligramskim količinama dobija se zračenjem neutronima izotopa radija 226Ra u nuklearnom reaktoru.[26][28]

Ova reakcija ima prinos od oko 2% od težine upotrebljenog radija. 227Ac može kasnije i dalje "hvatati" neutrone što rezultira nastankom malih količina 228Ac. Nakon sinteze, aktinij se odvaja od radija kao i od proizvoda raspada i nuklearne fuzije, poput torija, polonija, olova i bizmuta. Ekstrakcija se vrši pomoću vodenog rastvora tenoiltrifluoroaceton-benzena iz rastvora proizvoda zračenja, a selektivnost prema određenom elementu postiže se podešavanjem pH vrijednosti rastvora (oko 6,0 za aktinij).[25] Alternativni način jeste izmjena aniona sa odgovarajućom smolom u dušičnoj kiselini, čime se može postići faktor razdvajanja od 1.000.000 za radij i aktinij u odnosu na torij u dvostepenom procesu. Nakon toga aktinij se razdvaja od radija odnosom od približno 100, koristeći smolu sa slabom kationskom izmjenom niskog poprečnog vezivanja te dušičnu kiselinu kao eluant.[29]

Spojevi

Poznat je vrlo ograničen broj spojeva aktinija uključujući AcF3, AcCl3, AcBr3, AcOF, AcOCl, AcOBr, Ac2S3, Ac2O3 i AcPO4. Osim spoja AcPO4, svi drugi spojevi vrlo su slični odgovarajućim spojevima lantana. U svim navedenim spojevima, aktinij se nalazi u oksidacijskom stanju +3.[22][27] Tačnije, konstante rešetke analognih spojeva aktinija i lantana razlikuju se za samo nekoliko postotaka.[27]

FormulaBojaSimetrijaProstorna
grupa
BrPearsona (pm)b (pm)c (pm)ZGustoća,
g/cm3
Acsrebrenastfcc[23]Fm3m225cF4531,1531,1531,1410,07
AcH2nepoznatokubična[23]Fm3m225cF1256756756748,35
Ac2O3bijel[16]trigonalna[30]P3m1164hP540840863019,18
Ac2S3crnkubična[31]I43d220cI28778,56778,56778,5646,71
AcF3bijel[32]heksagonalna[27]P3c1165hP2474174175567,88
AcCl3bijelheksagonalna[33]P63/m165hP876476445624,8
AcBr3bijel[27]heksagonalna[33]P63/m165hP876476445625,85
AcOFbijel[34]kubična[27]Fm3m593,18,28
AcOClbijeltetragonalna[27]4244247077.23
AcOBrbijeltetragonalna[27]4274277407,89
AcPO4·0.5H2Onepoznatoheksagonalna[27]7217216645,48

Ovdje su a, b i c konstante rešetke, br. je broj prostorne grupe a Z je član formulske jedinice po ćelijskoj jedinici. Gustoća spojeva nije mjerena direktnim putem već izračunata preko parametara rešetke.

Oksidi

Aktinij-oksid (Ac2O3) može se dobiti zagrijavanjem hidroksida na 500 °C ili zagrijavanjem oksalata pri 1100 °C u vakuumu. Njegova kristalna rešetka je izotipska sa oksidima većine trovalentnih rijetkih zemnih metala.[27]

Halidi

Aktinij-trifluorid se može dobiti bilo u rastvoru ili putem reakcije čvrstih tvari. Prva reakcija u rastvoru može se odvijati pri sobnoj temperaturi tako što se dodaje fluoridna kiselina u rastvor u kojem se nalaze ioni aktinija. Drugi metod pri čemu se metalni aktinij tretira fluorovodikom pri 700 °C sa platinom kao katalizatorom. Djelovanjem amonij-hidroksida na aktinij-trifluorid pri 900–1000 °C dobija se oksifluorid AcOF. Dok lantan-oksifluorid se vrlo lahko može dobiti sagorijevanjem lantan-trifluorida u prisustvu zraka pri 800 °C tokom jednog sata, slična procedura aktinij-trifluorida ne daje AcOF te se samo dobijaju istopljeni reaktanti.[27][35]

AcF3 + 2 NH3 + H2O → AcOF + 2 NH4F

Aktinij-trihlorid se dobija reakcijom aktinij-hidroksida ili oksalata sa parama ugljik-tetrahlorida pri temperaturama iznad 960 °C. Slično kao i kod oksifluorida, aktinij-oksihlorid se može dobiti hidroliziranjem aktinij-trihlorida sa amonij-hidroksidom pri 1000 °C. Međutim, za razliku od oksifluorida, oksihlorid se mnogo lakše može sintetizirati ako se u rastvor aktinij-trihlorida u hlorovodičnoj kiselini doda amonijak.[27]

Reakcija aluminij-bromida i aktinij-oksida daje aktinij-tribromid:

Ac2O3 + 2 AlBr3 → 2 AcBr3 + Al2O3

a zatim se dodavanjem amonij-hidroksida pri 500 °C dobija oksibromid AcOBr.[27]

Drugi

Aktinij-hidrid se može dobiti redukcijom aktinij-trihlorida sa kalijem pri 300 °C, a njegova struktura se proučava putem analogije sa odgovarajućim LaH2 hidridom. Izvor vodika u ovoj reakciji nije sasvim poznat.[36]

Miješajući mononatrij-fosfat (NaH2PO4) sa rastvorom aktinija u hlorovodičnoj kiselini dobija se bijeli spoj aktinij-fosfat poluhidrat (AcPO4·0.5H2O), dok se zagrijavanjem aktinij-oksalata sa parama vodik-sulfida pri 1400 °C tokom nekoliko minuta dobija crni aktinij-sulfid Ac2S3. Moguće je da se on također može dobiti djelovanjem mješavine vodik-sulfida i ugljik-disulfida na aktinij-oksid pri temperaturi od 1000 °C.[27]

Reference

Literatura