Itrijum

Sr - Y - Zr

Sc
Y
Lu


Opšti podaci
Ime, simbol,atomski brojItrijum, Y, 39
Pripadnost skupuprelaznih metala
grupa, periodaIIIB, 5
gustina, tvrdoća4472 kg/m3, bez podataka
Bojasrebrnosiva
Osobine atoma
atomska masa88,90585 u
atomski radijus180 (212) pm
kovalentni radijus162 pm
van der Valsov radijusbez podataka
elektronska konfiguracija[Kr]4d15s2
e- na energetskim nivoima2, 8, 18, 9, 2
oksidacioni broj3
Osobine oksidaslabo bazni
kristalna strukturaheksagonalna
fizičke osobine
agregatno stanječvrsto
temperatura topljenja1799 K
(1526 °C)
temperatura ključanja3609 K
(3336 °C)
molska zapremina19,88×10−3 m3/mol
toplota isparavanja363 kJ/mol
toplota topljenja11,4 kJ/mol
pritisak zasićene pare5,31 Pa (1799 K)
brzina zvuka3300 m/s (293,15 K)
Ostale osobine
Elektronegativnost1,22 (Pauling)
1,11 (Alred)</
specifična toplota300 J/(kg*K)
specifična provodljivost1,66×106 S/m
toplotna provodljivost17,2 W/(m*K)
I energija jonizacije600 kJ/mol
II energija jonizacije1180 kJ/mol
III energija jonizacije1980 kJ/mol
IV energija jonizacije5847 kJ/mol
V energija jonizacije7430 kJ/mol
VI energija jonizacije8970 kJ/mol
VII energija jonizacije11190 kJ/mol
VIII energija jonizacije12450 kJ/mol
IX energija jonizacije14110 kJ/mol
X energija jonizacije18400 kJ/mol
Najstabilniji izotopi
izotopzast.v.p.r.n.r.e.r. MeVp.r.
87Y(veš.)80,3 satiz.e.87Sr
88Y(veš.)106,6 danaβ+88Sr
89Y100%stabilni izotor sa 50 neutrona
91Y(veš.)58,5 danaβ-91Zr
tamo gde drugačije nije naznačeno,
upotrebljene su SI jedinice i normalni uslovi.

Objašnjenja skraćenica:

zast.=zastupljenost u prirodi,
v.p.r.=vreme polu raspada,
n.r.=način raspada,
e.r.=energija raspada,
p.r.=proizvod raspada,
z.e=zarobljavanje elektrona

Itrijum ili itrij (Y, latinski ytrium) je metal IIIB i atomskog broja 39. To je srebrno-metalan prelazni metal kemijski sličan lantanoidima te je često klasificiran kao "rijetki zemni metal".[1] Itrij se gotovo uvijek nalazi u spoju sa lantanoidima u rijetkim zemnim mineralima te se nikada ne nalazi u prirodi kao slobodan element. Njegov jedini stabilni izotop, 89Y, je također njegov jedini prirodni popratni izotop.

Godine 1787. Carl Axel Arrhenius pronašao je novi mineral kraj Ytterbya u Švedskoj te ga nazvao ytterbite, prema nazivu sela. Johan Gadolin otkrio je itrijev oksid u uzorku Arrheniusa 1789.,[2] a Anders Gustaf Ekeberg je nazvao novi oksid yttria. Elementarni itrij je prvi izolirao Friedrich Wöhler 1828.[3]

Najvažnija upotreba itrija je u stvaranju svjetlećeg materijala, poput crvenih koje se koriste u televizijskim aparatima u displejima katodnih monitora (CRT) i u svjetlećim diodima.[4] Također se koristi i za proizvodnju elektrodama, elektrolitima, električnim filtrima, laserima i superkonduktorima; raznim medicinskim primjenama i za traganje raznih materijala kako bi se povećala njihova svojstva. Itrij nema nijednu poznatu biološku ulogu, a izlaganje dijelovima itrija može dovesti do bolesti dišnog sustava u ljudi.[5]

Karakteristike

Svojstva

Itrij je mekan, srebrno-metalni, sjajan i vrlo kristalan prijelazni metal 3. grupe kemijskih elemenata. Ima manju elektronegativnost nego njegov prethodnik prema tablici elemenata, skandij, te manju elektronegativnost nego sljedeći element 5. periode kemijskih elemenata, cirkonijum; osim toga, po elektonegativnosti je usporediv sa slijedećim u 3. grupi, lutecijumom, zbog kontrakcije lantanoida.[6][7] Itrij je prvi element d-bloka u petom periodu.

Ovaj čisti element je relativno stabilan u zraku u rasutom stanju, uslijed pasivnosti koja nastaje zbog sloja zaštitnog oksida (Y2O3) na njegovoj površini. Ovaj sloj doseže debljinu od 10 µm kada se itrij zagrije na 750 °C u vodenoj pari.[8] Kada je pak fino podijeljen, itrij je vrlo nestabilan u zraku; dijelići ovog metala mogu se zagrijati u zraku do temperature koja prelazi 400 °C.[3] Itrijev dušik (YN) se stvara kada se metal zagrije do 1000 °C u dušiku.[8]

Sličnosti sa lantanoidima

Sličnosti itrija sa lantanoidima su tako snažne da je ovaj element kroz povijest često bio svrstan u skupinu rijetkih zemnih elemenata,[1] te se u prirodi uvijek nalazi zajedno s njima u rijetkim zemnim mineralima.[9]

Kemijski, itrij je sličniji tim elementima nego njegov susjed u periodnom sustavu elemenata, skandij,[10] a ako bi se njegove fizičke osobine stavile u atomski broj onda bi imale broj od 64.5 do 67.5, stavljajući ga između lantanoida gadolinij i erbijum.[11]

Također često pada u isti raspon reakcijskog reda,[8] koji je sličan terbiju i disproziju po svojoj kemijskoj reakciji.[4] Itrij je tako blizu po veličini tzv. 'itrijskoj skupini' teških iona lantanoida da se u otopini ponaša kao da je jedan od njih.[8][12] Iako su lantanoidi jedan red niže u tablici periodnog sustava nego itrij, sličnosti u atomskom radijusu se mogu pripisati kontrakciji lantanoida.[13]

Jedan od rijetkih značajnih razlika između kemije itrija i lantanoida je taj da je itrij gotvo isključivo trovalentan, dok oko polovica lantanoida može imati i drugačiju valentnost od tri.[8]

Spojevi i reakcije

Kao trovalentan prijelazni metal, tvori razne neorganske spojeve, uglavnom u oksidacijskom stanju od +3, predajući svoja sva tri valentna elektrona.[14] Dobar primjer je Itrijev(III) oksid (Y2O3), poznat i kao itrija, šestero-koordinatna bijela krutina.[15]

Itrij tvori itrijum fluorid koji nije topiv u vodi, hidroksid i oksalat, ali njegov bromid, hlorid, jodid, nitrat i sulfat su topljivi u vodi.[8] Ion Y3+ je bezbojan kada se topi zbog odsutnosti elektrona u elektronskoj ljusci d i f.[8]

Voda izaziva reakciju sa itrijom i njegovim spojevima kako bi tvorili Y2O3.[9] Koncentrirana azotna i Fluorovodonička kiselina ne napadaju snažno itrij, za razliku od drugih snažnih kiselina.[8]

Sa halogenima itrij tvori halide kao što su itrijum(III) fluorid (YF3), itrijum(III) hlorid (YCl3) i itrijum(III) bromid (YBr3) pri temperaturama iznad 200 °C.[5] Isto tako, ugljik, fosfor, selen, silicij i sumpor svi tvore binarne spojeve sa itrijom prilikom povišenih temperatura.[8]

Organoitrijska kemija proučava spojeve koje sadrže veze ugljika i itrija. Za nekolicinu njih se zna da sadrže itrij pri oksidacijskom stanju 0.[16][17] (+2 stanje je promatrano u topljivosti klorida,[18] a +1 u oksidacijskim skupinama u plinovitom stanju[19]) Neke trimerizacijske reakcije su promatrane upotrebljavajući organoitrijske spojeve kao katalizatore.[17] Ovi spojevi koriste YCl3 kao početni materijal, koji se pak dobivaju od Y2O3 i koncentrirane klorovodonične kiseline i amonijevog klorida.[20][21]

Haptičnost je kako se skupina graničnih atoma liganda koordiniraju prema središnjem atomu; na to ukazuje grčka riječ eta, η. Itrijevi spojevi bili su prvi spojevi gdje su karborani ligandi vezani za d0-metalni centar uz pomoć η7-haptičnosti.[17] Isparavanje grafitno umetnutog spoja grafita–Y ili grafita–Y2O3 vodi do stvaranja endohedralnih fulerena kao što su Y@C82.[4] Proučavanja elektronske spinske rezonance ukazuju na stvaranje parova Y3+ i (C82)3− iona.[4] Karbidi Y3C, Y2C i YC2 mogu se hidrolizirati kako bi tvorili ugljikovodike.[8]

Nukleosinteza i izotopi

Itrij je u sunčevom sustavu stvoren zahvaljujući zvjezdane nukleosinteze, većinom putem s-procesa (≈72%), ali također i putem r-procesa (≈28%).[22] R-proces se sastoji od brzog hvatanja neutrona lakših elemenata tijekom eksplozija supernova. S-proces je sporo hvatanje neutrona lakših elemenata unutar pulsirajućih crvenih divova.[23]

Mira je primjer tipa crvenog diva u kojem je stvoreno većina itrija sunčeva sustava.

Izotopi itrija su među najčešćim proizvodima nuklearne fisije uranija koje se odigrava u nuklearnim eksplozijama i nuklearnim reaktorima. Što se tiče upravljanja nuklearnog otpada, najvažniji izotopi itrija su 91Y i 90Y, čije je vreme poluraspada 58,51 dan za prvi i 64 sati za drugi.[24] Iako 90Y ima kratko vrijeme poluraspada, postoji u sekularnoj ravnoteži sa svojim dugoročnim roditeljskim izotopom, stroncij-90 (90Sr) čije je vrijeme poluraspada 29 godina.[3]

Svi elementi 3. grupa imaju neparan atomski broj, te stoga imaju malo stabilnih izotopa.[6] Skandij ima jedan stabilni izotop, a sam itrij ima samo jedan stabilan izotop, 89Y, koji je također njegov jedini prirodni. Ipak, rijetki zemni elementi sadrže elemente parnih atomskih brojeva i puno stabilnih izotopa. Smatra se da je itrij-89 obilniji nego što bi inače bio, dijelom i zbog s-procesa, koji dozvoljava dovoljno vremena za izotope - stvorene od drugih procesa - da se raspadnu putem emisije elektrona (neutron → proton).[23][note 1] Takav polagan proces favorizira izotope sa atomskim masenim brojem (A = protoni + neutroni) od oko 90, 138 i 208, koji imaju neobično stabilne atomske jezge sa 50, 82 i 126 neutrona.[23][note 2][3] 89Y ima maseni broj blizu 90 te ima 50 neutrona u svojoj jezgri.

Najmanje 32 sintetička izotopa itrija su proučavana, a isti imaju raspon atomskog masenog broja od 76 do 108.[24] Najmanje stabilni od njih je 106Y sa vremenom poluraspada od >150 ns (76Y ima poluraspad od >200 ns) a najstabilniji je 88Y sa poluraspadom od 106.626 dana.[24] Uz izotope 91Y, 87Y i 90Y, sa vremenom poluraspada od 58,51 dana, 79.8 sati i 64 sati, a svi ostali izotopi imaju vrijeme poluraspada manje od jednog dana a većina ovih imaju vrijeme poluraspada manje od jednog sata.[24]

Itrijevi izotopi sa masenim brojem istim ili manjim od 88 se raspadaju većinom od izbacivanja pozitrona (proton → neutron) kako stvorili stroncijeve (Z = 38) izotope.[24] Itrijevi izotopi sa masenim brojem od 90 ili manje se raspadju većinom od izbacivanja elektrona (neutron → proton) kako bi stvorili cirkonijeve (Z = 40) izotope.[24] Izotopi sa masenim brojem od 97 ili iznad također imaju manji put raspada od β kašnjenje izbacivanja neutrona.[25]

Itrij ima najmanje 20 nuklearnih izomera u rasponu masenog broja od 78 do 102.[24] Većina pobuđenih stanja su uočena za 80Y i 97Y.[24] Dok se za većinu itrijevih izomera očekuje da su manje stabilni nego njegovo osnovno stanje, 78mY, 84mY, 85mY, 96mY, 98m1Y, 100mY i 102mY imaju duže vrijeme poluraspada nego njihova osnovna stanja, jer se ti izomeri raspadaju beta raspadom, a ne izomernim prijelazom.[25]

Povijest

1787., vojni pukovnik i kemičar iz hobija Carl Axel Arrhenius pronašao je težak crni kamen u starom kamenolomu kraj švedskog sela Ytterby.[2] Pošto je smatrao da se radi o nepoznatom mineralu koji sadrži novo otkriveni element volfram,[26] nazvao ga je ytterbite[note 3] poslao je uzorke raznim kemičarima radi analize.[2]

Johan Gadolin otkrio je itrijev oksid.

Johan Gadolin sa sveučilišta Åbo je identificirao novi oksid Arrheniusovom uzorku 1789., te je objavio svoju potpunu analizu 1794.[27][note 4] Anders Gustaf Ekeberg potvrdio je ovo otkriće 1797. te je nazvao novi oksid yttria.[28] Antoine Lavoisier je kasnije razvio prvu modernu definiciju kemijskih elemenata, te mu dao naziv yttrium [itrij].

1843., Carl Gustaf Mosander je otkrio da uzorci yttria sadrže tri oksida: bijeli itrijev oksid (yttria), žuti terbijum(III,IV) oksid i ružićasti Erbijum(III) oksid (tada zvan terbija).[29] Četvrti oksid, iterbijum(III) oksid, izolirao je 1878. Jean Charles Galissard de Marignac.[30] Novi elementi će kasnije biti izolirani od svakog od ovih oksida, a svaki element će dobiti naziv po Ytterbyu, selu u čijoj su blizini nađeni u kamenolomu (vidi iterbijum, terbijum i erbijum).[31] Narednih desetljeća, nekoliko novih metala je otkriveno u "Gadolinovom itriju".[2] Pošto je itrija ipak bio mineral a ne oksid, Martin Heinrich Klaproth ga je preimenovao u gadolinit u čast gospodinu Gadolinu.[2]

Itrijev metal prvi je izolirao Friedrich Wöhler 1828. kada je zagrijao itrijum(III) hlorid sa kalijom:[32][33]

YCl3 + 3 K → 3 KCl + Y

Do ranih 1920-ih, kemijski simbol Yt se koristio za taj element, nakon čega je dobio pojednostavljenu oznaku Y.[34]

1987., otkrilo se da itrijum barij bakar oksid postiže visokotemperaturnu supraprovodnost.[35] Bio je to tek drugi poznati materijal koji je pokazivao to svojstvo,[35] te je bio prvi poznati materijal koji je ostvario supraprovodnost iznad (ekonomsko značajne) točke vrenja dušika.[note 5]

Pojava

Primjeri gromada koje se sastoje od 99% itrija.

Učestalost

Itrij se nalazi u većini rijetkih zemnih minerala,[7] kao i u nekoliko ruda uranija, ali ga nikada ne nalazimo i prirodi kao slobodan element.[36] Oko 31 ppm zemljine kore je itrij,[4] čime je 28. najučestaliji element tamo, te je 400 puta učestaliji od srebra.[37] Itrij se nalazi u tlu u koncentracijama između 10 i 150 ppm dok se u morskoj vodi nalazi u koncentraciji od oko 9 ppt.[37] Uzorci stijena sa mjeseca tijekom programa Apollo otkrili su relativno visoku koncentraciju itrija.[31]

Itrij nema nijednu poznatu biološku ulogu, iako se nalazi u većini organizama, ponajviše u jetri, bubregu, slezeni, plućima i kostima ljudi.[38] U normalnim okolnostima, nalazimo ga u količini od 0,5 miligrama unutar cijelog ljudskog tijela; ljudsko mlijeko za dojenje sadrži 4 ppm.[39] Itrij se nalazi u jestivim biljkama u koncetracijama između 20 ppm i 100 ppm, a najviše ga ima kupus.[39]

Proizvodnja

Kemijska sličnost itrija sa lantanoidima dovodi do toga da ga obogaćuju i isti procesi te završava u rudama koja sadrže lantanoide. Malena razlika otkriva se između svjetla (LREE) i teških rijetkih zemnih elemenata (HREE) ali to odvajanje nikada nije potpuno. Itrij je koncentiran u skupinu HREE zbog svoje ionske veličine iako ima manju atomsku masu.[40][41]

Komadić itrija. Itrij se teško odvaja od drugih rijetkih zemnih elemenata

Postoje četiri glavna izvora za rijetke zemne elemente:[42]

  • karbonit i fluorid koji sadrže rude kao što su LREE bastnäsit ([(Ce, La, etc.)(CO3)F]) sadrže prosječno 0,1%[3][40] itrija u usporedbi sa 99,9% ostalih rijetkih zemnih elemenata.[40] Glavni izvor za bastnäsit od 1960-ih do 1990-ih bio je rudnik u Mountain Passu u Kaliforniji, što je tada činilo SAD najvećim proizvođačem rijetkih zemnih elemenata.[40][42]
  • Monazit ([(Ce, La, itd.)PO4]), koji je uglavnom fosfat, je naslaga pijeska koji se stvara tijekom prijevozom i gravitacijskim razdvajanjem erodiranog granita. Monazit kso ruda rijetkog zemnog materijala sadrži 2%[40] (ili 3%)[43] itrija. Najveća nalazišta su bila u Indiji i Brazilu u 20. stoljeću, zbog čega su te dvije zemlje bile najveći proizvođači itrija tijekom ranog 20. stoljeća.[40][42]
  • Ksenotim je fosfat rijetkog zemnog elementa. Njegove rude sadrže 60% itrija i itrijevog fosfata (YPO4).[40] Najveći rudnik ovog minerala bilo je nalazište Bayan Obo u Kini, čime je Kina največi proizvođač rijetkih zemnih materijala od zatvaranja rudnika u Mountain Passu početkom 1990-ih.[40][42]
  • glina koja apsorbira iona, tzv. Loognanova glina, je proizvod granita i sadrži 1% rijetkih zemnih elemenata[40] Njene rude mogu sadržavati i do 8% itrija. Takva glina se većinom iskopava u Kini.[40][42][44] Itrij se nalazi i u samarskitu i fergusonitu.[37]

Jedna metoda dobivanja čistog itrija iz miješanih ruda oksida je otopiti oksid u sumpornoj kiselini i razdijeliti ga po hromatografiji ionske izmjene. Sa dodatkom oksalne kiseline, itrijev oksalat se taloži. Oksalat se pretvara u oksid zagrijavanjem pod kisikom. Reakcijom dobivenog itrijevog oksida sa fluorovodonikom, dobiva se itrijum(III) fluorid.[45]

Godišnja svjetska proizvodnja itrijeva oksida dosegnula je 600 tona do 2001., a zalihe se procjenjuju na 9 milijuna tona.[37] Samo par tona itrijeva metala se proizvode svake godine smanjivanjem itrijuma(III) fluorida do metalne spužve sa legurom kalcija magnezija. Temperatura u peći iznad 1.600 °C je dovoljna da potom otopi itrij.[37][45]

Primjene

Potrošači

Itrij je jedan od elemenata koji se koriste za izradu crvene boje u CRT televizora

Itrijum(III) oksid (Y2O3) može poslužiti kao rešetka za dodavanje primjesa sa Eu3+ kationima, a može poslužiti i kao reagens da bi se dobila primjesa itrijum ortovanadat YVO4:Eu3+ itrijum oksid sulfid Y2O2S:Eu3+ Svjetleći materijali koji daju crvenu boju lampama televizorima u boji,[3][4][note 6] iako se sama crvena boja zapravo emitira iz europijuma dok itrij skuplja energiju elektronskog topa te ga predaje svjetlećem materijalu.[46] Spojevi itrija mogu poslužiti i kao nositelj rešetke za dodavanje primjesa sa različitim kationima lantandoia. Izuzev Eu3+, i Tb3+ se može koristiti kao agens za dodavanje primjesa koji dovode do zelene luminiscencije. Itrij se koristi i kao aditiv sinteriranju prilikom proizvodnje poroznog silicijuma nitrida[47] i kao učestali početni materijal za znanost o materijalima kao i za proizvodnju ostalih spojeva itrija.

Spojevi itrija se koriste i kao katalizatori polimerizacije etena.[3] Kao metal, koristi se na elektrodama nekih svjećica za visoku učinkovitost.[48] itrij se također koristi i za proizvodnju Auerove mrežice za svjetiljke propana kao zamjenu za torijum, koji je radioaktivan.[49]

Cirkonijum koji je stabiliziran itrijom se koristi kao solidan elektrolit i kao senzor kisika kod automobilskog ispušnog sustava.[4]

Granati

Nd:YAG laserska šipka promjera 0,5 cm

Itrij se koristi za proizvodnju sintetičkih granata,[50] dok se itrija koristi za stvaranje itrijum željeznih granata (Y3Fe5O12 ili YIG), koji su vrlo učinkoviti filteri mikro valova.[3] Granati od itrija, željeza, aluminija i gadolinijuma (npr. Y3(Fe,Al)5O12 i Y3(Fe,Ga)5O12) imaju važna magnetska svojstva.[3] YIG je isto tako vrlo učinkovit zvučni energetski predajnik i pretvornik.[51] Itrij aluminijum granat (Y3Al5O12 ili YAG) ima Mosovu skalu od 8,5 te se koristi kao dragulj u draguljarnicama (umjetni dijamanti).[3] Kristali itrija alumijuma granata sa dodanom primjesom cerijuma (YAG:Ce) se koriste kao svjetleći materijali kako bi se tvorili bijelu svjetleću diodu.[52][53][54]

YAG, itrija, itrijum litijum fluorid (LiYF4) i itrijum ortovanadat (YVO4) se koriste u kombinaciji sa primjesama kao što su neodijum, erbijum, iterbijum i blizu infracrvenim laserima.[55][56] Nd:YAG laseri imaju sposobnost djelovati prilikom jake snage te se koriste za bušenje i rezanje metala.[43] Pojedini kristali YAG-a sa primjesama se obično proizvode Czochralskijevom metodom.[57]

Pojačavač materijala

Manje količine itrija (0,1 do 0,2%) su se koristile kako bi smanjile veličina zrna hroma, molibdena, titanijuma i cirkonijuma.[58] Također se koristio za povećanje čvrstoće legura aluminija i magnezija.[3] Dodatak itrija legurama uglavnom povećava njegovovu obradivost, pojačava otpornost rekristalizacije visokih temperatura te značajno pojačava otpornost oksido-redukcije na visokim temperaturama.[46]

Itrij se koristi i kao deoksidator vanadijuma i drugih neobojanih metala.[3] Itrija se koristi radi stabilizacije kubnog oblika cirkonija radi upotrebe u draguljarnicama.[59]

Itrij je proučavan i za moguću upotrebu u stvaranju žilavog lijeva, koji ima pojačanu duktilnost (grafit tvori kompaktne čvoriće umjesto pahuljica kako bi stvorio žilavi lijev).[3] Itrijum oksid se može koristiti i prilikom kermaičnih i staklenih formula, jer ima visoko talište i pruža otpor udaru i daje niska svojstva termičke dilatacije.[3] Stoga se koristi u objektivima.[37]

Medicina

Radiokativni izotop itrij-90 se koristi za lijekove, kao što su edotreotid i ibritumomab radi tretmana raka, uključujući limfoma, leukemije, te raka jajnika, crijeva, gušterače i kostiju.[39] Funkcionira tako da se veže za monoklonalna antitijela, koja se pak zauzvrat vežu za stanice raka te ih ubijaju putem intenzivnog β-zračenja od itrija-90.[60]

Igle napravljene od itrija-90, koje mogu rezati preciznije od skalpela, su se koristile za rezanje živaca koji prenose bol u kičmenoj moždini,[26] a itrij-90 se također koristi za radionuklidnu sinovektomiju prilikom liječenja upaljenih zglobova, osobito koljena, kod osoba koje pate od reumatoidnog artritisa.[61]

Laser granata itrijuma-aluminija sa primjesama neodimijuma se koristio u eksperimentalnoj prostatektomiji u pasa u pokušaju da se smanji kolateralna šteta živaca i tkiva,[62] dok se oni sa primjesama erbijuma počinju koristiti u kozmetici.[4]

Supravodiči

YBCO supravodič

Itrij se koristi kod supravodiča od itrijum barijum bakar oksida (YBa2Cu3O7, znanom kao 'YBCO' ili '1-2-3') koji su razvila sveučilišta Alabame i Houston 1987.[35] Ovaj supravodič radi na 93 K, što je značajno jer je iznad točke vrenja tekućeg dušika (77,1 K).[35] Pošto je cijena tekućeg dušika niža od tekućeg helija, koji se primjenjuje na metalne supravodiče, troškovi operiranja bi se smanjili.

Sam supraprovodni materijal se često piše kao YBa2Cu3O7–d, gdje d mora biti manje od 0,7 kako bi materijal bio supraprovodan.

Teorija o supraprovodnosti pri niskim temperaturama se dobro razumije od kada je BCS teorija predstavljena 1957. Temelji se na naročitosti međudjelovanja dvaju elektrona u kristalnoj rešetci. Ipak, BCS teorija ne objašnjava supraprovodnost pri visokim temperaturama, a njen točan mehanizam i dalje nepoznanica u modernom svijetu. Ono što se zna je da spoj materijala bakra oksida mora biti precizno kontroliran da bi se supraprovodnost dogodila.[63]

Dobiveni materijal bio je crno-zelen, višekristalni mineral. Istraživači proučavaju skupinu materijala poznatih kao perovskiti koji su alternativne mješavine ovih elemenata, u nadi da će s vremenom razviti praktični supravodič na visoku temperaturu.[43]

Mjere opreza

Spojevi itrija topljivi u vodi se smatraju blago otrovnima, dok njegovi spojevi netopljivi u vodi nisu otrovni.[39] U pokusima sa životinjama, itrij i njegovi spojevi su uzrokovali oštećenja pluća i jetre, iako razina toksičnosti varira ovisno o svakom itrijevom spoju. Kod štakora, udisanje itrijevog citrata uzrokovao je edem pluća i dispneju, dok je udisanje itrijum hlorida uzrokovao edem jetra, pleuralni izljev i plućnu hipermiju.[5]

Izlaganje spojevima itrija izaziva plućne bolesti kod ljudi.[5] Radnici koji su bili izloženi zračnom prašinom itrijeva spoja europium vanadate doživjeli su blagu iritaciju oka, kože i gorenjeg respiratornog sustava — iako je možda krivac takvoj reakciji možda i vanadij a ne itrij.[5] Kronično izlaganje spojevima itrija mogu uzrokovati manjak daha, kašljanje, bol u prsima i cijanozu.[5] Nacionalni institut za radnu sigurnost i zdravlje (NIOSH) preporuča dozvoljeno izlaganje od 1 mg/m3 te kritičnu opasnost po život od 500 mg/m3.[64] Itrijeva prašina je također zapaljiva.[5]

Bilješke

Reference

Bibliografija

  • Daane, A. H. (1968). „Yttrium”. u: Hampel, Clifford A.. The Encyclopedia of the Chemical Elements. New York: Reinhold Book Corporation. str. 810–821. LCCN 68-29938. 
  • Emsley, John (2001). „Yttrium”. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. str. 495–498. ISBN 0-19-850340-7. 
  • Gadolin, Johan (1794). „Undersökning af en svart tung Stenart ifrån Ytterby Stenbrott i Roslagen”. Kongl. Vetenskaps Academiens Nya Handlingar 15: 137–155. 
  • Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements (2nd izd.). Oxford: Butterworth-Heinemann. ISBN 0-7506-3365-4. 
  • Stwertka, Albert (1998). „Yttrium”. Guide to the Elements (Revised izd.). Oxford University Press. str. 115–116. ISBN 0-19-508083-1. 
  • van der Krogt, Peter (2005-05-05). „39 Yttrium”. Elementymology & Elements Multidict. Pristupljeno 2008-08-06. 

Daljnje čitanje

Vanjske veze