Númberu π

(Redirixío dende Pi)

En matemátiques y xeometría, π (pi) ye la rellación ente la llonxitú de la circunferencia y el so diámetru. Ye un númberu trescendental, lo que significa que nun ye la raíz de ningún polinomiu non nulu de coeficientes enteros.

Númberu π
número trascendente (es) Traducir, númberu real, constante matemática (es) Traducir y constante d'UCUM
Cambiar los datos en Wikidata

Alternativamente, π pue ser definíu como l'área d'un círculu de radiu 1, o como'l menor númberu x positivu tal que sen (x) = 0.

La notación cola lletra griega π foi popularizada pol matemáticu Leonhard Euler.

El valor de pi truncáu a 100 posiciones decimales ye:

π = 3,1415926535 8979323846 2643383279 5028841971 8939937510 5820974944 5923078164 0628620899 8628034825 3421170680

Llista de númberos – Númberos irracionales

ζ(3) – √2 – √3 – √5φ – α – eπ – δ

Binariu11.00100100001111110110…
Decimal2.718281828459045235360…
Hexadecimal2.B7E151628AED2A6B…
Fraición continuaNótese que la fracción continua nun ye periódica.

Fórmules que contienen a π

Representación del númberu π n'imáxenes. Ye'l perímetru d'una circunferencia de diámetru 1.
L'área del círculu ye π × r²

En Xeometría:

En Probabilidá:

  • La probabilidá de que dos enteros positivos escoyíos al azar seyan primos ente si ye: 6/π²
  • Si s'escueyen al azar dos númberos positivos menores que 1, la probabilidá de que xunto col númberu 1 puedan ser los llaos d'un triángulu obtusángulu ye: (π-2)/4
  • El númberu mediu de formes d'escribir un enteru positivu como suma de dos cuadraos perfeutos ye π/4 (l'orde ye relevante)
  • Aguya de Buffon: Si llanzamos, al azar, una aguya de llonxitú L sobre una superficie na qu'hai dibuxaes llinies paraleles separtaes una distancia D, la probabilidá de que l'aguya corte a una llinia ye: Lπ/2D

N'Analís matemáticu:

(fórmula de Leibniz)
(productu de Wallis)
(Euler)
(Identidá d'Euler, tamién conocida como "la fórmula más importante del mundu")
(Fórmula de Stirling)
(Euler)

Amás, π tien varies representaciones como fracciones continues:

(Hai otres doce representaciones de π en http://functions.wolfram.com/Constants/Pi/10/ )

Historia del cálculu de π

Por mor de la natura trescendental de π, los cálculos han facese con aproximaciones más o menos precises. Normalmente tómense los valores 3,14 y 22/7, que s'estremen del auténticu valor nun 0,05%. Los físicos ya inxenieros suelen tomar 3,1416 como aproximación (cinco cifres significatives) o inclusive 3,14159 (seis cifres significatives) pa obtener una mayor precisión de la circunferencia.

Esiste otra fracción qu'aproxima π: 355/113. Ye fácil de memorizar, porque tien dos unos, dos treses y dos cincos, y la precisión (7 cifres significatives) ye notable.

Nel sieglu XX e.C. los babilonios utilizaron l'aproximación 25/8 y los exipcianos (16/9)2(=3.16049...) que yera una aproximación abondo bona. Nun foi fasta'l sieglu III e.C. cuando s'utilizó una meyor aproximación: haza'l 250 e.C., gracies a un métodu consistente n'encuadrar un círculu por dos polígonos, Arquímedes obtuvo: 223/71 < π < 22/7 (3.1408... < π < 3.1428...), o seya, dos decimales exautos.

N'Oriente Mediu en 1429, Al-Kashi calcula 14 décimales de Pi. En 1596, siempre con métodos xeométricos, l'holandés Ludolph van Ceulen calcula 20 decimales, depués 34 en 1609. Taba tan arguyosu de la so fazaña (a la que-y consagra una bona parte de la so vida) que pidi que'l númberu seya escritu sobre la so tumba.

Darréu, gracies al desarrollu del Analís matemáticu nel sieglu XVII, particularmente les sumes y productos infinitos, el cálculu de decimales de Pi xorrez. Por exemplu, Isaac Newton calcula 16 decimales en 1665, John Machin 100 en 1706. Haza 1760, Euler calcula 20 decimales nuna hora (comparaos colos 14 decimales obteníos por Van Ceulen en más de 10 años de cálculos).

El matemáticu eslovenu Jurij Vega calcula en 1789 los 140 primeros decimales de π de los cuales 137 yeren correutos. Esi recor durará más de 50 años. Él ameyorará la fórmula que John Machin topara en 1706 y el so métodu ye mencionáu siempre a día de güei.

El matemáticu William Shank dedica 20 años de so vida a calcular los decimales de Pi. Llega a calcular 707, pero solo los 528 primeros yeren correutos. Anque'l so error nun foi detectáu hasta 1945.

El cálculu de decimales de Pi entusiasma nel sieglu XX, cola apaición de la informática: 2037 son calculaos en 1949 pola calculadora americana ENIAC, 10.000 decimales en 1958, 100.000 en 1961, 1.000.000 en 1973, 10.000.000 en 1982, 100.000.000 en 1989, y 1.000.000.000 el mesmu añu. El recor d'anguaño ye del añu 2004 nel que foron quien a sacar 1,3511 billones de cifres decimales per aciu el usu d'un supercomputador Hitachi que llegó a trabayar namái 500 horas pa facer el cálculu.

Delles aproximaciones hestóriques de π:

AñuMatemáticu o documentuAproximaciónError

(en partes por millón)

~1650 e.C.Papiru d'Ahmes (Exiptu)2⁸/3⁴ ~ 3,16056016 ppm
~1600 e.C.Tablina de Susa (Babilonia)3 1/8 = 3,1255282 ppm
~950 e.C.La Biblia (Reis I, 7,23)345070 ppm
~500 e.C.Bandhayana (India)3,0916422 ppm
~250 e.C.Arquímedes de Siracusaente 3 10/71 y 3 1/7

emplegó 211875/67441 ~ 3,14163

<402 ppm

13,45 ppm

~200Claudiu Ptoloméu377/120 = 3,141666...23,56 ppm
263Liu Hui (China)3,14162,34 ppm
263Wang Fan157/50 = 3,14507 ppm
~300Chang Hong (China)101/2 ~ 3,16236584 ppm
~500Zu Chongzhi (China)entre 3,1415926 y 3,1415929

emplegó 355/113 ~ 3,1415929

<0,078 ppm

0,085 ppm

~500Aryabhata3,14162,34 ppm
~600Brahmagupta101/2 ~ 3,16236584 ppm
~800Al Juarizmi3,14162,34 ppm
1220Fibonacci3,14181872,73 ppm
1400Madhava3,14159265359
1424Al-Kashi6.28318530717958650,1 ppm
AñuDescubridorOrdenador utilizáuNúmberu de cifres decimales
1949G.W. Reitwiesner y otrosENIAC2.037
1955 MORC3.089
1959GuilloudIBM 70416.167
1967 CDC 6600500.000
1973Guillord y BouyerCDC 76001.001.250
1981Miyoshi y KanadaFACOM M-2002.000.036
1982Guilloud 2.000.050
1986BaileyCRAY-229.360.111
1986Kanada y TamuraHITAC S-810/2067.108.839
1987Kanada, Tamura, Kobo y otrosNEC SX-2134.217.700
1988Kanada y TamuraHitachi S-820201.326.000
1989Hermanos ChudnovskyCRAY-2 y IBM-3090/VF480.000.000
1989Hermanos ChudnovskyIBM 30901.011.196.691
1991Hermanos Chudnovsky 2.260.000.000
1994Hermanos Chudnovsky 4.044.000.000
1995Kanada y Takahashi [1]HITAC S-3800/4806.442.450.000
1997Kanada y Takahashi [2]Hitachi SR220151.539.600.000
1999Kanada y Takahashi [3]Hitachi SR800068.719.470.000
1999Kanada y Takahashi [4]Hitachi SR8000206.158.430.000
2002Kanada y otros [5]Hitachi SR8000/MP1.241.100.000.000

Aproximaciones xeométriques a π

Ye posible obtener un averamientu al valor de π de forma xeométrica. De fechu, yá los griegos intentaron obtener ensin ésitu una solución exacta al problema del valor de π per aciu del emplegu de regla y compás. El problema griegu conocíu como cuadratura del círculu o, lo que ye lo mesmo, obtener un cuadráu d'área igual al área d'un círculu cualquiera, lleva implícitu'l cálculu del valor exactu de π.

Una vez demostrao que yera imposible la obtención de π per aciu del usu de regla y compás, desendolcáronse dellos métodos aproximaos. Dos de les soluciones aproximaes más fachendoses son les debíes a Kochanski (usando regla y compás) y la de Marcheroni (emplegando únicamente un compás).

Métodu de Kochanski

Dibúxase una circunferencia de radiu R. Dientro d'ella inscríbese un hexágonu y tómase'l triángulu OEG. Trázase una paralela al segmentu EG que pase por A, prolongándola hasta que se corte col segmentu OE, obteniendo D. Dende'l puntu D y sobre esi segmentu trespórtase 3 veces el radiu de la circunferencia y obtiense'l puntu C. El segmentu BC ye aproximadamente la mitá de la lonxitú de la circunferencia.

Demostración (suponiendo R = 1)

Sustituyendo na primera fórmula:

Métodu de Mascheroni

Desendolcáu por Lorenzo Mascheroni, dibúxase una circunferencia de radiu R y dientro d'ella inscríbese un hexágonu. El puntu D ye la interseición de los arcos de circunferencia A'B con centru en A' y l'arcu AC con centru n'A. El puntu E ye la interseición del arcu BD con centru en B cola circunferencia. El segmentu AE ye aproximao un cuartu de la lonxitú de la circunferencia

Demostración (suponiendo R = 1)

Pol teorema de Ptolomeo nel cuadriláteru ABEB'

Ver tamién

  • Borwein (algoritmu)

Referencies

Enllaces esternos