அயனிமம் (இயற்பியல்)

அயனிமம் (Plasma; πλάσμα:கிரேக்கம், "moldable substance" (அ) மின்மப் பொருள்/கலவை.[1] மின்மக் கலவை என்பது இயற்பியல், வேதியியல் ஆகிய துறைகளின்படி பொருளொன்றின், திண்மம், நீர்மம் (திரவம்), வளிமம்(வாயு) ஆகிய மூன்று இயல்பான தனி நிலைகளுக்குப் (phase) புறம்பாகவுள்ள நான்காவது ஒரு தனி நிலையாகும். இதனை புவியில் இயல்பான நிலைகளினின்று செயற்கை முறையில் பெறப்பட்ட நடுநிலையான வாயுக்கலவை மூலமே பெற இயலும்.[2] இதனை மின்மக்கூழ்மம் (ஜெல்லி) எனவும் அழைப்பர்.[3] வேதியியலறிஞர் இர்விங் லாங்முயர் என்பவரே 1928 ஆம் ஆண்டு பிளாஸ்மா என்ற பதத்தை அறிமுகப்படுத்தினார்.[4]

அயனிமம்
மேல்: உருவாக்கும் பொதுத்தளங்கள்: மின்னல், நியான் குழல். கீழ் இடது: ஒரு அயனிம கோளம், கீழ் வலது: விண்வெளி ஆய்வுக்கலத்திலிருந்து எடுக்கப்பட்ட விண்வெளி ஓடையில் பிளாஸ்மா பரப்பு.

இதனை மின்மமாக்கப்பட்ட (அயனாக்கம்) அடைந்த வளிம நிலை எனலாம். மேலும் இதன் நிலைப்பாடு இன்னும் ஆராய்ந்தறியப்பட வேண்டியதாகும்.[5] பிளாஸ்மா என்னும் மின்மக் கலவை நிலை, சுதந்திரமாக இயங்கும் இலத்திரன்களையும், அயன்கள் எனப்படும் (எதிர்மின்னிகளை) இலத்திரன்களை இழந்த மின்னூட்டம் பெற்ற அணுக்களையும் கொண்டன. அதாவது நேர்மின்மப்(+) பொருட்களும், எதிர்மின்மப்(-) பொருட்களும் ஈடான (சமமான) எண்ணிக்கையில் கலந்து ஒரு வளிமம் போன்ற நிலையில் உள்ளது இம் மின்மக்கலவை என்னும் பிளாஸ்மா. அணுக்களிலிருந்து இலத்திரன்களை (எதிர்மின்னிகளை) வெளியேற்றிப் பிளாஸ்மா நிலையை உருவாக்குவதற்கும், எதிர்மின்னிகளும் (இலத்திரன்களும்), அயன்களும் தனித்தனியாக இருக்கும் நிலையைத் தக்கவைப்பதற்கும், சக்தி தேவைப்படுகின்றது. இவ்வாறு தேவைப்படும் சக்தி வெப்பம், மின்சாரம், கட்புலனாகாத புற ஊதாக்கதிர்கள், கட்புலனாகும் செறிவாக்கப்பட்ட லேசர் கதிர்கள் போன்ற பல மூலங்களிலிருந்து கிடைக்கக் கூடும். பிளாஸ்மா நிலையைத் தக்கவைப்பதற்குரிய சக்தியில் குறைவு ஏற்படும்போது அது மீண்டும் மின்னேற்றம் இல்லாத (வளிம) வாயு நிலையை அடைகின்றது. தனியாக இயங்கக்கூடிய மின்னேற்றம் கொண்ட துணிக்கைகள் (துகள்கள்) இருப்பதன் காரணமாகப் பிளாஸ்மா மின்கடத்துதிறன் கொண்டது. அத்துடன் மின்காந்தப் புலங்களினால் தூண்டப்படக்கூடியது.

சுற்றுப்புறச்சூழலின் வாயுமண்டலத்தின் வெப்பம், அடர்த்தியைக் கொண்டு பகுதியளவாகவோ (அ) முற்றிலுமாகவோ மின்னூட்டம் பெற்ற பிளாஸ்மாக்கள் உற்பத்தி செய்யப்படுகின்றன. சான்றாக, பகுதியளவு அயனியாக்கமடைந்த பிளாஸ்மாக்கள் வெளிர்ந்த நியான் குழல்களிலும், மின்னல்களிலும் காணப்படுகின்றன. மேலும் முற்றிலும் அயனியாக்கமடைந்த பிளாஸ்மாக்கள் சூரியனின் உட்புறாத்திலும்,[6] சூரிய ஒளிவட்டத்திலும்,[7] நட்சத்திரங்களிலும் [8] காணப்படுகின்றன.

அணு உட்கருவில் நேர்மின்மப்(+) பொருட்களிலிருந்து இலத்திரன்களை (எதிர்மின்னிகளை) நீக்குவதால் அயனியாக்கமடைகின்றன.[9] நீக்கப்ப்ட்ட இலத்திரன்களின் எண்ணிக்கை வெப்பம் உயர்வு, அடர்த்தியினைக் கொண்டு மாறுபடும். அணுமூலக்கூறு பிணைப்பை பிளக்க இவை உதவுகின்றன. இம்முறை வேதியிய நீர்ம அயனியாக்கம், உலோக அயனியாக்க முறைமைகளிலிருந்து முற்றிலும் மாறுபடுகின்றன. மின்னூட்டம் பெற்ற பிளாஸ்மா மின்துகள்கள் மின்கடத்துபவைகளாக ஒன்றிணைந்து மின்காந்தப்புலத்தில் நன்கு செயல்படுகின்றன. இம்முறைமை தற்காலத்திலுள்ள நவீனத்தொழில் நுட்பக் கருவிகளில் பயன்படுத்தப்படுகிறன்து. சான்றாக பிளாஸ்மா தொலைக்காட்சித் திரைகள் முதலியவற்றில் பயன்படுகின்றன.[9]

பிளாஸ்மாக்கள் பெரும்பாலும், விண்வெளி மண்டலங்கள், நட்சத்திரங்கள், பால்வழித்திரள் போன்றவற்றில் அளப்பரியதாக பரந்து காணப்படுகின்றன.[10]

வரலாறு

  • 1879 ஆம் ஆண்டில் வில்லியம் குறூக்ஸ் என்பார் மின் இறக்கக் குழாய் (discharge tube) ஆய்வுகளின்போது பொருளின் இந்த நான்காவது நிலையை அடையாளம் கண்டார்.[11]
  • மேலும், 1897 ஆம் ஆண்டு குறூக்ஸ் குழாயின் ஆய்வில் ஆங்கில இயற்பியலாளர் ஜெ. ஜெ. தாம்சன்.[12]
  • 1928 இல் இர்விங் லாங்மூயர் (Irving Langmuir) என்பவர் இதற்குப் பிளாஸ்மா என்று பெயரிட்டு அழைத்தார்.[13] இதற்குக் காரணம் சில மின்னும் துகள்கள் குறூக்ஸ் குழாய்களில் (கிரேக்கம் πλάσμα – அமைதல் / உருவாக்கம்) பொதிந்திருந்தன.[14]

பண்புக்கூறுகள்

புவியின் முனையங்களிலுள்ள ஆக்ஸிஜன், ஹீலியம், ஹைட்ரஜன் அயனிகள் பிளாஸ்மா ஊற்றாக உருவாகும் கற்பனைப் புனைவு

வரையறை

  • பிளாஸ்மாவின் மின்னூட்டமானது பிணைப்பற்ற நேர், எதிர் மின்னூட்ட ஊடகத்தில் நடுநிலையாக உள்ளது.
  • ஒட்டுமொத்த மின்னூட்ட அளவு '0' ஆகும்.
  • இவை பிணைப்பற்றதாக இருந்த போதிலும் மின்காந்தப்புலத்தில் மின்னோட்டத்தைக் கடத்துகின்றன.
  • இவ்வாறாக பிளாஸ்மா மின்னூட்டத்துகள்கள் மின்னோட்டத்தைக் கடத்தும் பொழுது புறவிசையாலும் அதன் அயனி நிலையில் மாற்றத்தைத் தருகின்றன. தொகுப்பாக இவை பல்வேறு மாறுதல் நிலைப்பாட்டைக் கொண்டுள்ளன.[15][16] பிளாஸ்மா ஓட்டத்தின் மூன்று முக்கிய காரணிகள் கீழே கொடுக்கப்பட்டுள்ளன.
    • பிளாஸ்மா தோராயமாக்கம்
    • தொகை இடையீடு
    • பிளாஸ்மா அதிர்வெண்

அயனியாதல் வீதம்

அயனியாதல் வீதமான, , என்பது சமன்பாட்டில் ,

இங்கு அயனிகளின் அடர்த்தி எண்ணிக்கை & நடுநிலை அயனிகளின் அடர்த்தி எண்ணிக்கை.

இலத்திரான் அடர்த்தி, சராசரி மின்னூட்ட அளவு வழி அயனிகளுடைய ,

இங்கு இலத்திரான் அடர்த்தி எண்ணிக்கை.

வெப்ப அளவீடு

பிளாஸ்மாவின் வெப்பநிலை கெல்வின் / இலத்திரான் வோல்ட்ஸ் என்ற அலகால் அளக்கப்படுகிறது. பிளாஸ்மாவின் அயனியாதல் வீதமனாது பிளாஸ்மாவின் அயனியாக்க வெப்பநிலையால் மாற்றமடைகிறது.

வாயு, பிளாஸ்மா வேறுபாடுகள்

திட, திரவ, வாயு நிலைகளுக்கு அப்பாற்பட்ட நான்காவது நிலைப்பாடாக அயனியாக்கப்பட்ட வாயுக்களாக இப்பிளாஸ்மாக்கள் கருதப்படுகின்றன.[17][18]

பண்புகள்வாயுபிளாஸ்மா
மின்கடத்து திறன்மிகவும் குறைவு (30கி.வோல்டிற்கும் குறைவாக)பொதுவாக மிக அதிகம்
திசைவேகப் பரவல்பொதுவாக மேக்ஸ்வெல்லியன் முறைமேக்ஸ்வெல்லியன் அல்லாத முறை
தொடர்புபைனரி - இருமின் துகள்களின் இணைப்புஒருங்கிணைந்த தொடர்பு

பிளாசுமா - பொதுவகைகள்

புவியில் நாம் பெருமளவுக்கு எதிர்கொள்ளும் பொருட்களின் நிலை திண்மம், நீர்மம் (திரவம்), வளிமம் (வாயு) ஆகிய மூன்று நிலைகளாகும். அண்டத்தைக் கருத்துக்கு எடுத்தால், இயற்கையில் அதி கூடிய அளவில் காணப்படும் பொருளின் நிலை பிளாஸ்மா நிலையாகும். சூரிய மண்டலத்துக்கு வெளியில் கண்ணால் காணக்கூடிய அண்டப் பகுதி முழுவதும் பிளாஸ்மா நிலையிலேயே காணப்படுகின்றது. புவியிலும் குறைந்த அளவுக்குப் பிளாஸ்மா காணப்படுகின்றது. இவற்றைவிட செயற்கையாகவும் பிளாஸ்மாக்கள் உருவாக்கப்படுகின்றன.

பிளாஸ்மாவின் பொதுவான வடிவங்கள்
செயற்கைப் பிளாஸ்மா
  • தொலைக்காட்சிப் பெட்டிகள், பிளாஸ்மாத் திரை போன்றவற்றில் உள்ளது.
  • வெள்ளொளிர் விளக்குகளில், நியான் விளக்கு
  • ராக்கெட் வெளிப்போக்குகள் (exhausts)
  • புவிக்குத் திரும்பும் விண்வெளிக் கலமொன்று வளிமண்டலத்துள் நுழையும்போது அதன் வெப்பக்காப்புகளின் முன்பகுதி.
  • அணு இணைவாற்றல் (Fusion energy) ஆய்வு
  • வில் விளக்கில் அல்லது உருக்கி இணைத்தலின்போது உண்டாகும் மின் வில்.
  • மின்கலவை (பிளாஸ்மா)ப் குமிழி
  • ஒருங்கிணைந்த நுண்மின் சுற்றுகளைச் செய்யப் பயன்படும் படிகளில் ஒன்றான அரித்து பொருளை நீக்கும் முறைக்குப் ப்யன் படும் மின்மக்கலவை (பிளாஸ்மா) இயந்திரங்கள்.
புவிசார் பிளாஸ்மாக்கள்
  • தீச்சுவாலை(தீப் பிழம்பு, தீ நாக்கு)
  • மின்னல்
  • வளிமண்டலத்தின் உயர் நிலைகளில் உள்ள மின்ம மண்டலம் (ionosphere)
  • நில உருண்டையின் முனைப் பகுதிகளில் காணப்படும் வானில் தெரியும் வண்ணக்கோலங்கள் (Aurora)
விண்வெளி மற்றும் விண்வெளி இயற்பியல்சார் பிளாஸ்மாக்கள்
  • சூரியன் மற்றும் ஏனைய நட்சத்திரங்கள் (நாள் மீன்களும் விண் மீன்களும்)
    (இவை எல்லாம் அணுக்கள் புணர்ந்து உருவாவதின் நிலையில் are plasmas heated by nuclear fusion)
  • சூரியக் காற்று
  • கோளிடை ஊடகம்
    (கோள்களுக்கு இடையிலான வெளி)
  • interstellar medium
    (நட்சத்திரங்களுக்கு இடையிலான வெளி)
  • கலக்சிகளிடை வெளி
    (விண்மீன்களின் பெருங்கூட்டங்களின் (கலக்சிகள்) இடையேயான வெளி)
  • Io-Jupitar flux-tube
  • Accretion disks
  • நட்சத்திரங்களிடை நெபுலாக்கள்

பிளாஸ்மா அளவுருக்கள்

இது 30,000 ஒளியாண்டுகள் நீளமுள்ள பிளாஸ்மா.

பிளாஸ்மாவின் அளவுருகள் அவற்றின் அளவைப்பொருத்து மாறுபடும்,ஆனால் அவற்றின் குணநலன்கள் ஏறத்தாழ ஒன்று போலவே இருக்கும்.பிளாஸ்மாக்கள் குவார்க்குகளைப் போல வித்தியாசமான குணநலன்களைக் கொண்டிருப்பதில்லை.

பிளாஸ்மா அளவுருக்கள் (OOM)
குணம்புவிசார் பிளாஸ்மாவிண்வெளிசார் பிளாஸ்மா
அளவு
மீட்டர்களில்
10−6 மீ (ஆய்வுக்கூட பிளாஸ்மா) முதல்
102 மீ (மின்னல்) வரை (~8 OOM)
10−6 மீ (விண்கல உறையில்) முதல்
1025 மீ (நெபுலா) வரை (~31 OOM)
வாழ்நாள்
நொடிகளில்
10−12 நொடி (லேசரால் உருவாக்கப்பட்ட பிளாஸ்மா) முதல்
107 நொடி (ஒளிரும் விளக்ககள்) வரை (~19 OOM)
101 நொடி (சூரிய கதிர்களில்) முதல்
1017 நொடி (உலகளாவிய பிளாஸ்மா) வரை (~16 OOM)
அடர்த்தி
ஒருகன மீட்டருக்குள் உள்ள துகள்கள்
107 மீ−3 முதல்
1032 மீ−3 வரை (நிலைம வரையறை பிளாஸ்மா)
1 மீ−3 (உலகளாவிய பிளாஸ்மா) முதல்
1030 மீ−3 வரை (நட்சத்திர அடுக்கு)
வெப்பம்
கெல்வினில்
~0 K (படிகத்திலுள்ள சமநிலை பிளாஸ்மா)[19]) முதல்
108 K (காந்த இணைவு உள்ள பிளாஸ்மா) வரை
102 K (aurora) முதல்
107 K (சூரிய அடுக்கில்) வரை
காந்த புலம்
டெஸ்லாவில்
10−4 T (ஆய்வுக்கூட பிளாஸ்மா) முதல்
103 T வரை
10−12 T (உலகளாவிய பிளாஸ்மா) முதல்
1011 T (நியூட்டரான் நட்சத்திரங்களில்) வரை

பிளாஸ்மா - மாதிரிகள்

  • திரவ மாதிரி
  • இயக்க மாதிரி

பொருளாதாரப் பயன்பாடு

பிளாஸ்மாவின் மிகையான வெப்பம், அடர்த்தி காரணமாக ஆராய்ச்சி, தொழில் நுட்பம் உள்ளிட்ட துறைகளில் பயன்படுத்தப்படுகிறது,

  • உலோகத்தொழில் (மெட்டலர்ஜி)[20]
  • புறப்பரப்பு செயற்பாடு - பிளாஸ்மா தெளிப்பான், மேற்பூச்சு, அரித்தெடுத்தல் [21] போன்ற நுண்மின்னணுவியலில் பயன்படுகின்றன.[21]
  • உலோக வெட்டல் [22]
  • உருக்கிப் பிணைத்தல்
  • வாகன புகை உமிழ்வைக் கட்டுப்படுத்தல்,
  • கிளர்வொளி வீசல் (ஃப்ளொரசன்ட்) விளக்குகளில் பயன்பாடு [23]
  • விண்வெளி பொறியியல் முறைகளில் உட்தகன பொறி இயந்திரங்களில் பயன்பாடு[24]

மேற்கோள்கள்

வெளியிணைப்புகள்

"https:https://www.search.com.vn/wiki/index.php?lang=ta&q=அயனிமம்_(இயற்பியல்)&oldid=3848672" இலிருந்து மீள்விக்கப்பட்டது
🔥 Top keywords: தீரன் சின்னமலைதமிழ்இராம நவமிஅண்ணாமலை குப்புசாமிமுதற் பக்கம்சிறப்பு:Search2024 இந்தியப் பொதுத் தேர்தல்நாம் தமிழர் கட்சிடெல்லி கேபிடல்ஸ்வினோஜ் பி. செல்வம்வானிலைதிருக்குறள்தமிழக மக்களவைத் தொகுதிகள்சுப்பிரமணிய பாரதிஇந்திய மக்களவைத் தொகுதிகள்சீமான் (அரசியல்வாதி)தமிழச்சி தங்கப்பாண்டியன்சுந்தர காண்டம்தமிழ்நாட்டில் இந்தியப் பொதுத் தேர்தல், 2024பாரதிதாசன்இந்திய நாடாளுமன்றம்பிரியாத வரம் வேண்டும்முருகன்தினகரன் (இந்தியா)தமிழ்த் திரைப்படங்களின் பட்டியல் (ஆண்டு வரிசை)தமிழ்நாட்டின் சட்டமன்றத் தொகுதிகள்மக்களவை (இந்தியா)தமிழ்நாட்டின் மாவட்டங்கள்தமிழ் தேசம் (திரைப்படம்)பதினெண் கீழ்க்கணக்குஇராமர்அம்பேத்கர்விக்ரம்நயினார் நாகேந்திரன்கம்பராமாயணம்பொன்னுக்கு வீங்கிதமிழ்நாடுவிநாயகர் அகவல்திருவண்ணாமலை