รูปหลายเหลี่ยม

ในทางเรขาคณิต รูปหลายเหลี่ยม (อังกฤษ: polygon) ตามความหมายดั้งเดิม หมายถึงรูปร่างอย่างหนึ่งที่เป็นรูปปิดหรือรูปครบวงจรบนระนาบ ซึ่งประกอบขึ้นจากลำดับของส่วนของเส้นตรงที่มีจำนวนจำกัด ส่วนของเส้นตรงเหล่านั้นเรียกว่า ขอบ หรือ ด้าน และจุดที่ขอบสองข้างบรรจบกันเรียกว่า จุดยอด หรือ เหลี่ยม (corner) ภายในรูปหลายเหลี่ยมบางครั้งก็เรียกว่า เนื้อที่ (body) รูปหลายเหลี่ยมเป็นวัตถุในสองมิติ ซึ่งเป็นตัวอย่างหนึ่งของพอลิโทป (polytope) ที่อยู่ใน n มิติ

ด้านสองด้านที่บรรจบกันเป็นเหลี่ยม เป็นสิ่งที่จำเป็นสำหรับการเกิดมุมที่ไม่เป็นมุมตรง (180°) ถ้าไม่เช่นนั้นแล้ว ส่วนของเส้นตรงทั้งสองจะถูกพิจารณาว่าเป็นด้านเดียวกันเชกเช่นวงกลม มีหลายเหลี่ยมไม่สิ้นสุดตามจำนวนองศา

ความคิดทางเรขาคณิตพื้นฐานได้ถูกดัดแปลงไปในหลากหลายทาง เพื่อที่จะทำให้เข้ากับจุดประสงค์เฉพาะ ตัวอย่างเช่นในสาขาวิชาคอมพิวเตอร์กราฟิกส์ คำว่า รูปหลายเหลี่ยม ถูกนำไปใช้และมีการเปลี่ยนแปลงความหมายไปโดยเล็กน้อย ซึ่งเกี่ยวข้องกับวิธีการบันทึกและจัดการรูปร่างภายในคอมพิวเตอร์มากขึ้น

รูปหลายเหลี่ยม หลายชนิด

การจัดแบ่งประเภท

แบ่งตามจำนวนด้าน

โดยหลักแล้วรูปหลายเหลี่ยมสามารถจัดแบ่งได้โดยจำนวนด้านที่มี ดูได้จากการตั้งชื่อรูปหลายเหลี่ยมด้านล่าง

ภาวะนูนเว้า

รูปหลายเหลี่ยมอาจแบ่งได้ตามองศาของภาวะนูนเว้า

  • รูปหลายเหลี่ยมนูน (convex) เส้นตรงที่ลากผ่านรูปหลายเหลี่ยมชนิดนี้ (โดยไม่สัมผัสกับขอบหรือจุดยอด) จะตัดผ่านเส้นรอบรูปแค่สองครั้ง
  • รูปหลายเหลี่ยมไม่นูน (non-convex) เส้นตรงที่ลากผ่านรูปหลายเหลี่ยมชนิดนี้ จะผ่านเส้นรอบรูปมากกว่าสองครั้ง
  • รูปหลายเหลี่ยมเชิงเดียว (simple) เส้นรอบรูปของรูปหลายเหลี่ยมชนิดนี้ จะไม่เดินทางตัดกันเอง รูปหลายเหลี่ยมนูนทุกรูปเป็นรูปหลายเหลี่ยมเชิงเดียว
  • รูปหลายเหลี่ยมเว้า (concave) เป็นทั้งรูปหลายเหลี่ยมไม่นูนและเป็นรูปหลายเหลี่ยมเชิงเดียว
  • รูปหลายเหลี่ยมคล้ายดาว (star-shaped) เนื้อที่ทั้งหมดสามารถมองเห็นได้จากจุดภายในจุดเดียว รูปนี้จะต้องเป็นรูปหลายเหลี่ยมเชิงเดียว อาจเป็นได้ทั้งรูปหลายเหลี่ยมนูนหรือเว้า
  • รูปหลายเหลี่ยมตัดตัวเอง (self-intersecting) เส้นรอบรูปของรูปหลายเหลี่ยมชนิดนี้ จะเดินทางตัดกันเอง Branko Grünbaum เรียกรูปนี้ว่า คอปติก (coptic) [1] ถึงแม้ว่าจะไม่ค่อยมีการใช้ชื่อนี้กันอย่างกว้างขวางนัก และบางครั้งคำว่า เชิงซ้อน (complex) ก็ถูกใช้แทนความหมายที่ตรงข้ามกับ เชิงเดียว แต่ก็อาจก่อให้เกิดความสับสนกับแนวความคิดของ รูปหลายเหลี่ยมเชิงซ้อน ที่มีอยู่แล้วในระนาบฮิลเบิร์ตเชิงซ้อน ซึ่งประกอบด้วยจำนวนเชิงซ้อนสองมิติ
  • รูปดาวหลายแฉก (star) เป็นรูปหลายเหลี่ยมตัดตัวเองด้วยวิธีการตัดอย่างสม่ำเสมอ

แบ่งตามความสมมาตร

  • รูปหลายเหลี่ยมมุมเท่า (equiangular) มุมทั้งหมดมีขนาดเท่ากัน
  • รูปหลายเหลี่ยมวงกลมล้อม (cyclic) จุดยอดทั้งหมดเรียงตัวอยู่บนรูปวงกลมรูปเดียว
  • isogonal หรือ vertex-transitive จุดยอดทั้งหมดเรียงตัวอยู่ภายในทางโคจรสมมาตร รูปนี้เป็นทั้งรูปหลายเหลี่ยมวงกลมล้อมและรูปหลายเหลี่ยมมุมเท่าด้วย
  • รูปหลายเหลี่ยมด้านเท่า (equilateral) ด้านทั้งหมดมีขนาดเท่ากัน (รูปหลายเหลี่ยมที่มีตั้งแต่ห้าด้านขึ้นไป สามารถเป็นรูปหลายเหลี่ยมด้านเท่าได้ โดยไม่ต้องเป็นรูปหลายเหลี่ยมนูน) [2]
  • isotoxal หรือ edge-transitive ด้านทั้งหมดเรียงตัวอยู่ภายในทางโคจรสมมาตร รูปนี้เป็นรูปหลายเหลี่ยมด้านเท่าด้วย
  • รูปหลายเหลี่ยมปรกติ (regular) เป็นทั้งรูปหลายเหลี่ยมวงกลมล้อมและรูปหลายเหลี่ยมด้านเท่า ส่วนรูปหลายเหลี่ยมปรกติที่ไม่นูน จะเรียกว่า รูปดาวหลายแฉกปรกติ (regular star polygon)

อื่น ๆ

  • รูปหลายเหลี่ยมเชิงเส้นตรง (rectilinear) ด้านสองด้านบรรจบกันเป็นมุมฉาก นั่นคือมุมภายในทุกมุมจะมีขนาดเป็น 90° หรือไม่ก็ 270°
  • รูปหลายเหลี่ยมทางเดียว (monotone) กำหนดเส้นตรง L ขึ้นมาเส้นหนึ่ง ทุกเส้นตรงที่ตั้งฉากกับ L จะตัดกับเส้นรอบรูปของรูปหลายเหลี่ยมชนิดนี้ไม่เกินสองครั้ง

สมบัติ

สมมติว่ารูปหลายเหลี่ยมที่กำลังจะกล่าวถึงต่อไปนี้ เป็นรูปในเรขาคณิตแบบยุคลิดโดยตลอด

มุม

รูปหลายเหลี่ยมใด ๆ ไม่ว่าจะปรกติหรือไม่ ตัดตัวเองหรือไม่ จะมีจำนวนเหลี่ยมเท่ากับจำนวนจุดยอด แต่ละเหลี่ยมก็มีมุมอยู่หลายมุม แต่มุมที่สำคัญที่สุดสองชนิดได้แก่

  • มุมภายใน - ผลบวกของมุมภายในของรูปเชิงเดียว n เหลี่ยม จะรวมเท่ากับ (n − 2) π เรเดียน หรือ (n − 2) 180 องศา ที่เป็นเช่นนี้เพราะรูปเชิงเดียว n เหลี่ยมจะถูกพิจารณาว่าสร้างขึ้นจากรูปสามเหลี่ยมจำนวน (n − 2) รูป ซึ่งแต่ละรูปมีผลรวมของมุมภายใน π เรเดียน หรือ 180 องศา ขนาดของมุมภายในแต่ละมุมของรูป n เหลี่ยมปรกติที่เป็นรูปนูน จะมีขนาดเท่ากับ (n − 2) π / n เรเดียน หรือ (n − 2) 180 / n องศา มุมภายในของรูปดาวหลายแฉกปรกติมีการศึกษาเป็นครั้งแรกโดยปัวโซ (Poinsot) ในงานเขียนเรื่องเดียวกันกับที่เขาอธิบายทรงหลายหน้าดาวปรกติ
  • มุมภายนอก - ลองจินตนาการว่ากำลังเดินอยู่รอบรูปเชิงเดียว n เหลี่ยมที่เขียนอยู่บนพื้น ปริมาณ "การเลี้ยว" ที่จุดยอดก็คือมุมภายนอกที่กวาดไป และเมื่อเดินครบรอบ ก็หมายความว่าได้เดินหมุนรอบตัวครบหนึ่งรอบ ดังนั้นผลรวมของมุมภายนอกจะต้องเป็น 360° แต่สำหรับการเดินรอบรูป n เหลี่ยมโดยทั่วไป ผลรวมของมุมภายนอกสามารถเป็นพหุคูณจำนวนเต็ม d ของ 360° เช่น 720° สำหรับรูปดาวห้าแฉก (pentagram) และ 0° สำหรับรูปวนคล้ายเลขแปด ซึ่ง d นี้เป็นความหนาแน่นหรือความเป็นแฉกของรูปหลายเหลี่ยม ดูเพิ่มที่ ทางโคจร (orbit)

มุมภายนอกเป็นมุมประกอบสองมุมฉาก (supplementary angles) ของมุมภายใน สิ่งนี้ก็ยังเป็นจริงถ้าหากมุมภายในมีขนาดมากกว่า 180° เพราะมุมภายนอกจะมีขนาดเป็นลบ นั่นคือ สมมติให้การเลี้ยวตามเข็มนาฬิกาเป็นบวก และอาจมีบางครั้งที่จะต้องเลี้ยวซ้ายแทนเลี้ยวขวา ซึ่งจะทำให้มุมของการเลี้ยวเป็นปริมาณติดลบ

พื้นที่และเซนทรอยด์

การตั้งชื่อจุดยอดของรูปหลายเหลี่ยมสองมิติ

พื้นที่ของรูปหลายเหลี่ยมคือเมเชอร์ในบริเวณสองมิติที่ปิดล้อมโดยเส้นขอบของรูปหลายเหลี่ยม สำหรับรูปหลายเหลี่ยมเชิงเดียว (ที่ไม่ตัดตัวเอง) ที่มีจุดยอด n จุด พื้นที่และเซนทรอยด์ของรูปนี้สามารถหาได้จาก [3]

เพื่อที่จะทำให้รูปหลายเหลี่ยมเป็นรูปปิด จุดยอดแรกและจุดยอดสุดท้ายจะต้องเป็นจุดเดียวกัน นั่นคือ จุดยอดจะต้องเรียงลำดับกันไปตามเข็มหรือทวนเข็มนาฬิกา ถ้าหากเรียงตามเข็มนาฬิกา พื้นที่จะเป็นจำนวนลบแต่ก็แก้ไขได้ด้วยค่าสัมบูรณ์ สูตรนี้มักจะเรียกกันว่า Surveyor's Formula

สูตรดังกล่าวได้อธิบายไว้โดยไมชเตอร์ (Meister) เมื่อ พ.ศ. 2312 และโดยเกาส์ (Guass) เมื่อ พ.ศ. 2338 ซึ่งสามารถพิสูจน์ได้โดยการแบ่งรูปหลายเหลี่ยมออกเป็นรูปสามเหลี่ยมหลาย ๆ รูป หรืออาจจะมองได้ว่าเป็นกรณีพิเศษของทฤษฎีบทของกรีน (Green's theorem)

เราสามารถคำนวณพื้นที่ A ของรูปหลายเหลี่ยมเชิงเดียว ถ้าเราทราบความยาวของด้าน และมุมภายนอก โดยใช้สูตรดังนี้ ซึ่งอธิบายไว้โดย Lopshits เมื่อ พ.ศ. 2506 [4]

ถ้าหากรูปหลายเหลี่ยมถูกวาดขึ้นบนกริดหรือช่องตารางที่มีระยะเท่ากัน ซึ่งในกรณีดังกล่าวจุดยอดจะอยู่บนจุดตัดของกริด ทฤษฎีบทของพิก (Pick's theorem) ได้ให้สูตรอย่างง่ายสำหรับคำนวณพื้นที่ของรูปหลายเหลี่ยม โดยคิดจากจำนวนจุดตัดของกริดที่อยู่ภายในและบนเส้นขอบของรูป

ถ้ารูปหลายเหลี่ยมเชิงเดียวสองรูปมีพื้นที่เท่ากันแล้ว รูปที่หนึ่งจะสามารถตัดแบ่งออกเป็นรูปหลายเหลี่ยมชิ้นเล็ก ๆ ซึ่งสามารถประกอบใหม่ให้เป็นรูปที่สองได้ ดังที่กล่าวไว้ในทฤษฎีบทโบลไย-แกร์วีน (Bolyai-Gerwien theorem)

รูปหลายเหลี่ยมตัดตัวเอง

พื้นที่ของรูปหลายเหลี่ยมตัดตัวเองสามารถนิยามด้วยสองแนวทางที่แตกต่างกัน ซึ่งแต่ละแนวทางก็ให้ผลลัพธ์ต่างกันด้วย

  • เมื่อใช้วิธีของรูปหลายเหลี่ยมเชิงเดียว เราจะพบว่ามีบริเวณบางส่วนภายในรูปหลายเหลี่ยมที่อาจมีการทับซ้อนมากกว่าหนึ่งครั้ง พื้นที่ของบริเวณนี้จะเพิ่มขึ้นเป็นเท่าตัวตามการทับซ้อน จำนวนการทับซ้อนนี้เรียกว่าความหนาแน่นของบริเวณ ตัวอย่างเช่น บริเวณตรงกลางของรูปดาวห้าแฉกเป็นรูปห้าเหลี่ยมและมีความหนาแน่นเท่ากับ 2 หรือบริเวณรูปสามเหลี่ยมสองรูปที่เกิดจากรูปสี่เหลี่ยมไขว้ (คล้ายเลข 8) จะมีความหนาแน่นเป็นเครื่องหมายตรงข้ามกัน ซึ่งอาจทำให้พื้นที่ของรูปสี่เหลี่ยมโดยรวมทั้งหมดเป็นศูนย์ก็ได้
  • เมื่อพิจารณาบริเวณที่ถูกปิดเป็นเซตของจุด เราสามารถหาพื้นที่ของบริเวณเหล่านี้ได้ ซึ่งจะสมนัยกับพื้นที่บนระนาบที่ถูกล้อมรอบโดยรูปหลายเหลี่ยม หรือสมนัยกับพื้นที่ของรูปหลายเหลี่ยมเชิงเดียวที่มีขอบเขตเดียวกันกับรูปหลายเหลี่ยมตัดตัวเอง ในกรณีเช่นนี้ รูปสี่เหลี่ยมไขว้ก็เป็นเพียงแค่รูปสามเหลี่ยมธรรมดาสองรูป

องศาเสรี

รูป n เหลี่ยมมีองศาเสรี (degree of freedom) เท่ากับ 2n ซึ่งรวมทั้ง 2 สำหรับตำแหน่ง 1 สำหรับแนวการหมุน และ 1 สำหรับขนาดทุกขนาด ดังนั้นรูปร่างทั่วไปจะมีองศาเสรีเท่ากับ 2n − 4 ในกรณีของสมมาตรการสะท้อน จำนวนหลังจะลดลงเหลือ n − 2

กำหนดให้ k ≥ 2 สำหรับรูป nk เหลี่ยมที่มีสมมาตรแบบหมุน k ทบ ( ) รูปนี้จะมีองศาเสรีเท่ากับ 2n − 2 ถ้ารวมสมมาตรการสะท้อน ( ) เข้าไปอีก จะเท่ากับ n − 1

การวางนัยทั่วไป

โดยความรู้สึกทั่วไป รูปหลายเหลี่ยมหมายถึงลำดับหรือวงจรที่สลับไปมาโดยไม่สิ้นสุดระหว่างส่วนของเส้นตรง (ด้าน) กับมุม (เหลี่ยม) เหตุผลที่ว่ารูปหลายเหลี่ยมไม่สิ้นสุดก็เพราะลำดับโครงสร้างนั้นวนรอบกลับมาหาจุดเดิมตลอดเวลา ในขณะที่รูปอนันต์เหลี่ยม (apeirogon) ไม่มีขอบเขต เพราะลำดับโครงสร้างของมันเดินทางต่อไปเรื่อย ๆ โดยไม่มีจุดปลาย การทำความเข้าใจในคณิตศาสตร์สมัยใหม่ ได้อธิบายลำดับโครงสร้างนี้ว่าเป็นรูปหลายเหลี่ยมแบบ "นามธรรม" ซึ่งเป็นเซตอันดับบางส่วนของสมาชิก เนื้อที่ภายในของรูปหลายเหลี่ยมก็คือสมาชิกอันหนึ่ง พอลิโทปว่าง (null polytope) ก็เป็นสมาชิกอันหนึ่งเช่นเดียวกัน (ด้วยเหตุผลทางเทคนิค)

รูปหลายเหลี่ยมทางเรขาคณิตจึงทำให้เข้าใจว่า เป็นการทำรูปหลายเหลี่ยมนามธรรมให้เป็น "รูปธรรม" ซึ่งสิ่งนี้เกี่ยวข้องกับการจับคู่ของสมาชิกจากนามธรรมไปยังเรขาคณิต รูปหลายเหลี่ยมเช่นนี้จึงไม่จำเป็นว่าจะต้องวางอยู่บนระนาบ หรือมีด้านที่ตรง หรือเป็นพื้นที่ที่ถูกล้อมรอบ และสมาชิกที่ต่างกันก็อาจซ้อนเกยกันหรือแม้แต่ทับกันจนสนิท ตัวอย่างเช่น รูปหลายเหลี่ยมที่ถูกวาดขึ้นบนพื้นผิวของทรงกลม ซึ่งด้านของมันเป็นส่วนโค้งของเส้นวงกลมใหญ่ ดังนั้นเมื่อเราพูดถึงเรื่องรูปหลายเหลี่ยม เราจะต้องอธิบายอย่างระมัดระวังว่าเรากำลังพูดถึงชนิดใดอยู่

รูปสองเหลี่ยม เป็นรูปหลายเหลี่ยมปิดที่มีสองด้านและสองมุม เราสามารถกำหนดจุดสองจุดที่อยู่ตรงข้ามกันบนทรงกลม (คล้ายขั้วเหนือกับขั้วใต้) เชื่อมถึงกันด้วยครึ่งหนึ่งของเส้นวงกลมใหญ่ และเพิ่มอีกเส้นหนึ่งด้วยมุมที่ต่างกันก็จะได้รูปสองเหลี่ยม การเติมเต็มพื้นผิวทรงกลมด้วยรูปสองเหลี่ยมจะทำให้เกิดทรงหลายหน้าที่เรียกว่า hosohedron แต่ถ้าหากเดินทางรอบเส้นวงกลมใหญ่จนครบรอบ ซึ่งจะเหลือจุดยอดเพียงจุดเดียวและมีด้านเดียว กลายเป็นรูปหนึ่งเหลี่ยม ถึงแม้ว่าผู้แต่งตำราหลายท่านจะไม่ถือว่ากรณีเช่นนี้เป็นรูปหลายเหลี่ยมที่สมบูรณ์

การวางนัยแบบอื่นของรูปหลายเหลี่ยมเหล่านี้สามารถเกิดขึ้นได้บนพื้นผิวอื่น ๆ แต่ในระนาบแบบยุคลิดที่ราบแบน เนื้อที่ของรูปหลายเหลี่ยมไม่สามารถเกิดขึ้นเป็นรูปธรรมได้โดยสามัญสำนึก เราจึงเรียกกรณีเช่นนี้ว่าเป็นภาวะลดรูป (degenerate)

เนื่องจากแนวความคิดที่ใช้ในการวางนัยทั่วไปของรูปหลายเหลี่ยมมีหลากหลายทาง ตัวอย่างต่อไปนี้จะเป็นกรณีลดรูป (หรือกรณีพิเศษ) บางส่วนของรูปหลายเหลี่ยม

  • รูปสองเหลี่ยม มีมุมภายใน 0° บนระนาบแบบยุคลิด ส่วนบนพื้นผิวทรงกลมก็ดังที่กล่าวไว้แล้วด้านบน
  • มุมภายใน 180° บนระนาบแบบยุคลิดคือรูปอนันต์เหลี่ยม ส่วนบนพื้นผิวทรงกลมคือทรงสองหน้า
  • รูปหลายเหลี่ยมเบ้ (skew) คือรูปหลายเหลี่ยมที่ไม่วางตัวอยู่ในระนาบแบน แต่ซิกแซกในปริภูมิสามมิติหรือสูงกว่า รูปหลายเหลี่ยมเพทรี (Petrie polygon) ของทรงหลายหน้าปรกติก็เป็นตัวอย่างดั้งเดิมอย่างหนึ่ง
  • รูปหลายเหลี่ยมบนทรงกลม (spherical) คือรูปหลายเหลี่ยมที่มีด้านและมุมอยู่บนพื้นผิวทรงกลม
  • รูปอนันต์เหลี่ยม ลำดับของด้านและมุมเป็นอนันต์ ซึ่งไม่เป็นรูปปิด แต่ก็ไม่มีจุดปลายเพราะว่ามันขยายตัวไปถึงอนันต์
  • รูปหลายเหลี่ยมเชิงซ้อน (complex) เป็นรูปร่างที่คล้ายกับรูปหลายเหลี่ยมธรรมดา แต่วางตัวอยู่บนระนาบฮิลเบิร์ตเชิงซ้อน

การตั้งชื่อรูปหลายเหลี่ยม

ปกติแล้วในภาษาไทย รูปหลายเหลี่ยมจะมีกี่ด้านกี่มุม ก็เรียกชื่อไปตามนั้นโดยตรงเช่น รูปที่มีห้าด้านห้ามุม ก็เรียกรูปห้าเหลี่ยม แต่ในภาษาอังกฤษซึ่งเป็นภาษาสากลจะมีหลักการตั้งชื่อที่ต่างออกไป คำว่า polygon ในภาษาอังกฤษมีที่มาภาษากรีก แล้วถ่ายทอดไปยังภาษาละตินดังนี้

  • πολύγωνον (polygōnon/polugōnon)polygōnumpolygon

ซึ่งแปลว่า หลายมุม ดังนั้นการตั้งชื่อจะใช้การประสมคำอุปสรรคเชิงตัวเลขในภาษากรีกเป็นหลัก แล้วตามด้วยคำปัจจัย "-gon" เช่น pentagon หมายถึงรูปห้าเหลี่ยม แต่สำหรับจำนวนขนาดใหญ่ นักคณิตศาสตร์ก็มักเขียนเป็นตัวเลขแทนเช่น 257-gon และในรูปของพจน์ทั่วไปก็เขียนเป็น n-gon ซึ่งมีประโยชน์ในการอ้างถึงตัวแปร n ที่อยู่ในสูตร

รูปหลายเหลี่ยมพิเศษบางรูปมีชื่อของมันเอง ตัวอย่างเช่น รูปห้าเหลี่ยมดาวปรกติ (regular star pentagon) มันก็คือ รูปดาวห้าแฉก (pentagram) เป็นต้น

ชื่อรูปหลายเหลี่ยม
ชื่อด้านหมายเหตุ
henagon (หรือ monogon)1ในระนาบแบบยุคลิด ลดรูปเหลือเส้นโค้งปิดที่มี 1 จุดยอด
digon2ในระนาบแบบยุคลิด ลดรูปเหลือเส้นโค้งปิดที่มี 2 จุดยอด
triangle (หรือ trigon)3รูปหลายเหลี่ยมแรกที่มีเนื้อที่ในระนาบแบบยุคลิด
quadrilateral (หรือ quadrangle หรือ tetragon)4รูปหลายเหลี่ยมแรกที่สามารถตัดตัวเองได้
pentagon5รูปหลายเหลี่ยมแรกที่สามารถทำเป็นรูปดาวได้
hexagon6
heptagon7หลีกเลี่ยง septagon เพราะ sept- เป็นภาษาละติน
octagon8
enneagon (หรือ nonagon)9
decagon10
hendecagon11หลีกเลี่ยง undecagon เพราะ un- เป็นภาษาละติน
dodecagon12หลีกเลี่ยง duodecagon เพราะ duo- เป็นภาษาละติน
tridecagon (หรือ triskaidecagon)13
tetradecagon (หรือ tetrakaidecagon)14
pentadecagon (หรือ quindecagon หรือ pentakaidecagon)15
hexadecagon (หรือ hexakaidecagon)16
heptadecagon (หรือ heptakaidecagon)17
octadecagon (หรือ octakaidecagon)18
enneadecagon (หรือ enneakaidecagon หรือ nonadecagon)19
icosagon20
ไม่มีชื่อในภาษาอังกฤษ100มุมภายในของรูปปรกติเท่ากับ 176.4°

hectogon เป็นชื่อในภาษากรีก ในขณะที่ centagon เป็นคำประสมระหว่างละตินกับกรีก ซึ่งก็ไม่มีชื่อไหนที่นิยมใช้

chiliagon1,000มุมภายในของรูปปรกติเท่ากับ 179.64°

René Descartes used the chiliagon and myriagon (see below) as examples in his Sixth meditation to demonstrate a distinction which he made between pure intellection and imagination. He cannot imagine all thousand sides [of the chiliagon], as he can for a triangle. However, he clearly understands what a chiliagon is, just as he understands what a triangle is, and he is able to distinguish it from a myriagon. Thus, he claims, the intellect is not dependent on imagination.[5]

myriagon10,000มุมภายในของรูปปรกติเท่ากับ 179.964° ดูหมายเหตุข้างบน
megagon [6]1,000,000มุมภายในของรูปปรกติเท่ากับ 179.99964°

สำหรับการตั้งชื่อรูปหลายเหลี่ยมที่มีด้านอยู่ระหว่าง 20-100 ด้าน จะใช้การประสมของคำอุปสรรคดังนี้

หลักสิบและหลักหน่วยคำปัจจัย
-kai-1-hena--gon
20icosi-2-di-
30triaconta-3-tri-
40tetraconta-4-tetra-
50pentaconta-5-penta-
60hexaconta-6-hexa-
70heptaconta-7-hepta-
80octaconta-8-octa-
90enneaconta-9-ennea-

อย่างไรก็ตาม คำว่า "-kai-" ก็ไม่ได้มีการใช้ทุกครั้ง (ดังเช่นในตารางข้างบน) ตัวอย่างเช่น รูป 42 เหลี่ยม เรียกว่า tetracontakaidigon หรือ tetracontadigon ในขณะที่รูป 50 เหลี่ยม เรียกว่า pentacontagon

ประวัติ

รูปหลายเหลี่ยมเป็นที่รู้จักมาตั้งแต่สมัยโบราณ ชาวกรีกโบราณรู้จักรูปหลายเหลี่ยมปรกติซึ่งอธิบายไว้โดยนักคณิตศาสตร์หลายท่าน รูปดาวห้าแฉก ซึ่งเป็นรูปหลายเหลี่ยมปรกติไม่นูน (รูปดาวหลายแฉก) ปรากฏเป็นครั้งแรกบนแจกันของ Aristophonus ในเมือง Caere ซึ่งระบุว่าสร้างขึ้นในศตวรรษที่ 7 ก่อนคริสตกาล สำหรับรูปหลายเหลี่ยมไม่นูน ยังไม่มีการศึกษาอย่างเป็นระบบจนกระทั่งคริสต์ศตวรรษที่ 14 โดย Thomas Bredwardine

ในปี ค.ศ. 1952 Shephard ได้ขยายแนวความคิดของรูปหลายเหลี่ยมไปบนระนาบจำนวนเชิงซ้อน ที่ซึ่งมิติส่วนจริงแต่ละส่วนประกอบกับมิติส่วนจินตภาพ เพื่อสร้างรูปหลายเหลี่ยมเชิงซ้อน

รูปหลายเหลี่ยมในธรรมชาติ

Giant's Causeway ในไอร์แลนด์

รูปหลายเหลี่ยมจำนวนมากสามารถพบได้ในธรรมชาติ ในโลกของธรณีวิทยา ผลึกของแร่ธาตุต่าง ๆ จะมีผิวหน้าหรือหน้าตัดที่เป็นรูปหลายเหลี่ยม โครงสร้างผลึกแบบ quasicrystal ก็สามารถมีหน้าเป็นรูปห้าเหลี่ยมปรกติได้ หรืออีกตัวอย่างหนึ่งคือ เมื่อหินหลอมเหลวเย็นตัวลงในพื้นที่ที่ถูกจำกัดอย่างแน่นหนา จะกลายเป็นหินบะซอลต์แท่งหกเหลี่ยม ดังเช่นที่ Giant's Causeway ในไอร์แลนด์ หรือที่ Devil's Postpile ที่รัฐแคลิฟอร์เนีย

รูปหลายเหลี่ยมก็พบได้ในอาณาจักรสัตว์ เช่นรังผึ้งแต่ละช่องเป็นรูปหกเหลี่ยม ใช้สำหรับการเก็บน้ำผึ้งและเกสรดอกไม้ และเป็นสถานที่เจริญเติบโตของตัวอ่อน นอกจากนี้ก็ยังมีสัตว์ที่มีลักษณะใกล้เคียงกับรูปหลายเหลี่ยมปรกติ หรืออย่างน้อยก็มีความสมมาตรเหมือน ๆ กัน สัตว์ในไฟลัมเอไคโนดอร์มาทา เช่นดาวทะเลจะมีลักษณะเป็นรูปห้าเหลี่ยมหรือรูปดาวห้าแฉก หรือพบได้ยากกว่าคือรูปเจ็ดเหลี่ยม ส่วนพวกเม่นทะเลบางครั้งก็ปรากฏความสมมาตรให้เห็น ถึงแม้ว่าสัตว์ในไฟลัมเอไคโนดอร์มาทาไม่ได้มีพฤติกรรมที่สมมาตรตามรัศมีเหมือนพวกแมงกะพรุน

มะเฟือง ผลไม้ในเอเชียตะวันออกเฉียงใต้

ความสมมาตรตามรัศมี (หรือความสมมาตรแบบอื่น) ก็สามารถสังเกตได้จากอาณาจักรพืช โดยเฉพาะดอกไม้ เมล็ด และผลไม้ รูปแบบทั่วไปมักจะสมมาตรแบบห้าเหลี่ยม ซึ่งเห็นได้ชัดจากมะเฟือง ผลไม้ที่มีรสเปรี้ยวน้อยในเอเชียตะวันออกเฉียงใต้ เมื่อผ่าตามขวางจะได้รูปดาวห้าแฉก

ชาวคณิตศาสตร์สมัยก่อนที่ทำการคำนวณโดยใช้กฎแรงโน้มถ่วงของนิวตัน ได้ค้นพบว่าถ้าหากเทหวัตถุสองชนิด (เช่นดวงอาทิตย์กับโลก) โคจรรอบกันแล้ว จะมีจุดจุดหนึ่งที่แน่นอนในอวกาศ ที่ซึ่งเทหวัตถุขนาดเล็ก (อย่างเช่นดาวเคราะห์น้อยหรือสถานีอวกาศ) สามารถคงอยู่ในแนวโคจรที่เสถียร จุดนี้เรียกว่าจุดลากรานจ์ (Lagrangian points) ระหว่างดวงอาทิตย์กับโลกนั้นมีจุดลากรานจ์จำนวน 5 จุด ซึ่งมี 2 จุดในแนวโคจรของโลกที่ทำมุม 60 องศากับดวงอาทิตย์และโลกพอดี นั่นคือเมื่อเชื่อมจุดศูนย์กลางของดวงอาทิตย์ โลก และจุดหนึ่งในสองจุดนั้น จะได้เป็นรูปสามเหลี่ยมด้านเท่า นักดาราศาสตร์ได้ค้นพบแล้วว่ามีดาวเคราะห์น้อยจำนวนหนึ่งอยู่ที่จุดเหล่านี้ แต่การทำให้สถานีอวกาศรักษาตำแหน่งอยู่ที่จุดลากรานจ์ในทางปฏิบัติยังเป็นข้อถกเถียงกันอยู่ ด้วยเหตุผลที่ว่า ถึงแม้ว่ามันจะไม่จำเป็นที่จะต้องปรับแต่งเส้นทาง มันก็อาจจะชนเข้ากับดาวเคราะห์น้อยที่มีอยู่ ณ ตำแหน่งนั้นโดยบ่อยครั้ง แต่ปัจจุบันนี้ก็มีดาวเทียมและเครื่องสังเกตการณ์อวกาศโคจรอยู่บนจุดลากรานจ์อื่นที่เสถียรน้อยกว่า

อ้างอิง

บรรณานุกรม

  • Coxeter, H.S.M.; Regular Polytopes, (Methuen and Co., 1948).
  • Cromwell, P.;Polyhedra, CUP hbk (1997), pbk. (1999).
  • Grünbaum, B.; Are your polyhedra the same as my polyhedra? Discrete and comput. geom: the Goodman-Pollack festschrift, ed. Aronov et al. Springer (2003) pp. 461-488. (pdf เก็บถาวร 2016-08-03 ที่ เวย์แบ็กแมชชีน)
🔥 Top keywords: วชิรวิชญ์ ไพศาลกุลวงศ์หน้าหลักองค์การกระจายเสียงและแพร่ภาพสาธารณะแห่งประเทศไทยยูฟ่าแชมเปียนส์ลีกชนกันต์ อาพรสุทธินันธ์สโมสรฟุตบอลแมนเชสเตอร์ซิตีพิเศษ:ค้นหาดวงใจเทวพรหม (ละครโทรทัศน์)กรงกรรมอสมทลิซ่า (แร็ปเปอร์)จีรนันท์ มะโนแจ่มสโมสรฟุตบอลอาร์เซนอลสโมสรฟุตบอลเรอัลมาดริดธี่หยดฟุตซอลชิงแชมป์เอเชีย 2024เฟซบุ๊กสโมสรฟุตบอลบาร์เซโลนาประเทศไทยเอเชียนคัพ รุ่นอายุไม่เกิน 23 ปี 2024วิทยุเสียงอเมริกาสโมสรฟุตบอลลิเวอร์พูลพระราชวัชรธรรมโสภณ (ศิลา สิริจนฺโท)พระบาทสมเด็จพระวชิรเกล้าเจ้าอยู่หัวรักวุ่น วัยรุ่นแสบวันไหลนริลญา กุลมงคลเพชรสโมสรฟุตบอลเชลซีสมเด็จพระกนิษฐาธิราชเจ้า กรมสมเด็จพระเทพรัตนราชสุดาฯ สยามบรมราชกุมารีหลานม่าสุภาพบุรุษจุฑาเทพ (ละครโทรทัศน์)สโมสรฟุตบอลไบเอิร์นมิวนิกกรุงเทพมหานครสโมสรฟุตบอลแมนเชสเตอร์ยูไนเต็ดคิม ซู-ฮย็อนภาวะโลกร้อนสาธุ (ละครโทรทัศน์)รายชื่ออักษรย่อของจังหวัดในประเทศไทยสโมสรฟุตบอลปารีแซ็ง-แฌร์แม็ง