Fluor

kémiai elem, rendszáma 9, vegyjele F

A fluor a periódusos rendszer kémiai elemeinek egyike. Vegyjele F, rendszáma 9. Régies magyar elnevezése folany.[3] Standard nyomáson és hőmérsékleten halvány sárga színű, erősen mérgező, kétatomos molekulájú gáz. A fluor a hetedik főcsoport eleme, azaz a halogének közé tartozik, közülük a legkönnyebb. Vegyértékelektron-szerkezete 2s2 2p5. Az összes elem közül a legelektronegatívabb és legreaktívabb, szinte az összes többi elemmel, köztük néhány nemesgázzal is alkot vegyületeket.

9 oxigénfluorneon
-

F

Cl
   
             
               
                                   
                                   
                                                               
                                                               
   
[He] 2s2 2p5
9
F
Általános
Név, vegyjel, rendszámfluor, F, 9
Latin megnevezésfluorum
Elemi sorozathalogének
Csoport, periódus, mező17, 2, p
Megjelenéscseppfolyós fluor
Megjelenésgáz: nagyon világos sárga;
folyadék: világos sárga;
szilárd: alfa fázis átlátszatlan, béta fázis átlátszó
Atomtömeg18,998403163(6) g/mol[1]
Elektronszerkezet[He] 2s2 2p5
Elektronok héjanként2, 7
Fizikai tulajdonságok
Halmazállapotgáz
Sűrűség(0 °C, 101,325 kPa)
1,696 g/l
Olvadáspont53,48 K
(-219,67 °C, -363,41 °F)
Forráspont85,03 K
(-188,11 °C, -306,60 °F)
Olvadáshő(F2) 0,510 kJ/mol
Párolgáshő (F2) 6,51 kJ/mol
Moláris hőkapacitás(25 °C) (F2)
31,304 J/(mol·K)
Gőznyomás
P/Pa1101001 k10 k100 k
T/K384450586985
Atomi tulajdonságok
Kristályszerkezetlap-középpontos monoklin
(alacsony hőmérsékleten)
Oxidációs szám−1 (oxidálja az oxigént)
Elektronegativitás3,98 (Pauling-skála)
Ionizációs energia1.: 1681,0 kJ/mol
2.: 3374,2 kJ/mol
3.: 6050,4 kJ/mol
Atomsugár50 pm
Atomsugár (számított)42 pm
Kovalens sugár64 pm
Van der Waals-sugár135 pm
Egyebek
Mágnességdiamágneses [2] (−1,2×10−4)
Hőmérséklet-vezetési tényező(300 K) 25,91 mW/(m·K)
CAS-szám7782-41-4
Fontosabb izotópok
Fő cikk: A fluor izotópjai
izotóptermészetes előfordulásfelezési időbomlás
módenergia (MeV)termék
18Fnyomokban109,77 percβ+
(96,9%)
0,63418O
ε
(3,1%)
1,65618O
19F100%F stabil 10 neutronnal
Hivatkozások

A fluor a 24. leggyakoribb elem az univerzumban és a 13. legnagyobb mennyiségben előforduló elem a földkéregben. A fluor elsődleges ásványi forrását, a fluoritot vagy folypátot először 1529-ben említik írásban: ércekhez adták, hogy csökkentsék azoknak az olvadáspontját. A fluor név a folypát latin elnevezéséből, a fluor lapisból ered (fluere = folyni).[4] 1810-ben vetették fel a fluort, mint addig ismeretlen elemet, de tiszta fluor előállítása nagy reaktivitása miatt csak 1886-ban sikerült Henri Moissannak, alacsony hőmérsékletű elektrolízissel; ezt az eljárást mindmáig alkalmazzák. A fluorgázt legnagyobb mennyiségben urándúsításra hasznosítják, ipari szintű előállítása a második világháborúban, a Manhattan terv idején kezdődött.

A tiszta fluor előállításának drágasága miatt inkább a vegyületeit alkalmazzák az iparban. A kibányászott fluoritnak körülbelül a felét az acélgyártás során alkalmazzák, a másik feléből pedig elsősorban hidrogén-fluoridot gyártanak, amely fontos előanyag különféle fluortartalmú szerves vegyületek, vagy az alumíniumgyártásnál kulcsszerepet betöltő kriolit előállításánál. A szerves fluoridok nagy kémiai és termikus stabilitással rendelkeznek, ezért hűtőközegként alkalmazzák őket. Különböző gyógyszerek, például az atorvasztatin vagy a fluoxetin is tartalmaznak fluort, emellett a fluoridoknak nagy szerepe van a fogszuvasodás kialakulásának megakadályozásában. A fluorkémiai termékek kereskedelme világszinten eléri az évi 15 milliárd dollárt.

A perfluorozott szénhidrogének (fluorokarbonok) általában üvegházhatású gázok, globális felmelegedési potenciáljuk 100–20 000-szerese a szén-dioxidnak. A hajtógázként használt klór- és fluortartalmú CFC-gázok bizonyíthatóan károsítják az ózonréteget, és az ózonlyuk kialakulásának egyik fő felelősei. A szerves fluorvegyületek a szén–fluor kötés ereje miatt megtalálhatóak a környezetben. A fluornak nincs ismert szerepe az emlősök anyagcseréjében, de néhány növény szintetizál szerves fluortartalmú mérgeket, hogy így védekezzen a növényevők ellen.

Tulajdonságok

Elektronszerkezet

A fluoratom egyszerűsített szerkezete

A fluoratomban összesen kilenc elektron van, eggyel kevesebb, mint a neonban. Elektronszerkezete 1s22s22p5: két elektron a belső 1s alhéjon, hét másik a körülötte lévő teljesen feltöltött 2s és a 2p alhéjon helyezkedik el, mely utóbbiból egy elektron hiányzik a nemesgázszerkezet eléréséhez. A külső héjon lévő elektronoknak nincs árnyékoló hatásuk ezért nagy – 9 − 2 = 7 – effektív magtöltés hat rájuk, ami befolyásolja az atom fizikai tulajdonságait is.[5]

A fluor első ionizációs energiája a harmadik legnagyobb az elemek közül a hélium és neon után,[6] ami megnehezíti az elektronok eltávolítását a semleges atomról. Elektronaffinitása is kiemelkedően magas, a klór után a második legmagasabb,[7] és hajlamos egy elektron felvételével a neonnal izoelektronos szerkezetet kialakítani.[5] A fluor elektronegativitása az összes elem közül a legmagasabb.[8] A fluor kovalens rádiusza 60 pikométer körüli, hasonlóan a periódusos rendszerben előtte lévő oxigénhez és az utána következő neonhoz.[9][10]

Molekulaszerkezet

A F2 molekulapályái

A fluor elemi állapotban a többi halogénhez hasonlóan kétatomos molekulákat alkot. A kötéshossz a fluormolekulában 144 pm, amely rövidebb, mint a többi elemmolekulában lévő egyszeres kötések (a gyémántban a szén–szén kötések 154 pm hosszúságúak). A rövid kötések ellenére a fluormolekula disszociációs energiája mindössze 158 kJ/mol, ami körülbelül megfelel a jódmolekulában lévő 266 pm hosszúságú kötés felszakításához szükséges energiának.[11] Ennek oka az, hogy a fluor nemkötő elektronpárjai nagyon közel vannak egymáshoz és erős taszító hatás lép fel köztük, így gyengítve a kötést.[12] A molekulában lévő gyenge kötés felelős a fluor szokatlanul nagy reaktivitásáért.

A molekulapálya-elmélet alapján meghatározható a F2 molekula kötése. Az egyedi atomok s- és p-pályái kombinálódnak és kötő, valamint lazító molekulapályákat alkotnak. A fluoratom 1s és 2s pályái mindig σs és σs* kötő- és lazító-molekulapályává alakulnak. Mivel ezek az orbitálok teljesen fel vannak töltve elektronokkal, nem járulnak hozzá a kötéshez. A 2p orbitálokból hat különböző energiájú molekulapálya alakul ki. Ezek a kötő σp-, πy- és πz-pályák, valamint a lazító p*-, πy*- és πz*-pályák. Az elektronok úgy oszlanak meg, hogy az összes kötő és a π* lazító orbitálok telítettek. A kötésrend ezért (6-4)/2 = 1, azaz egyszeres kötésről beszélünk.[13] A fluornál megfigyelhető diamágneses tulajdonság is.

Reaktivitás

A fluormolekula kötési energiája jóval alacsonyabb a klórénál vagy a bróménál, és hasonló a könnyen felszakítható peroxidok kötési energiájához. Ez, valamint az atom magas elektronegativitása felelős a fluormolekula könnyű felszakíthatóságáért és nagy reaktivitásáért.[14][15]A más atomokkal létesített kötései ezzel ellentétben nagyon erősek, ugyancsak a nagy elektronegativitás értékének köszönhetően. Reakcióiban szinte mindig az oxidálószer szerepét tölti be. Kevésbé reaktív anyagok, mint például az acélpor, üvegcserepek vagy azbesztszálak hevesen reagálnak a hideg fluorgázzal. A fa és a víz fluor áramban spontán meggyulladnak.[16][17] Nedvesség jelenlétében megtámadja a szilícium-dioxidot is (hidrogén-fluorid képződése miatt, lásd a lenti reakcióegyenletet), ezért nem lehet üvegedényben előállítani és tárolni, csak speciális védőréteggel (fluorozott szénhidrogénnel) ellátott kvarcpalackban.

SiO2 + 6 HF → H2SiF6 + 2 H2O
 A fluor reakciói (angolul). YouTube

Az elemi fluor fémekkel való reakciói különböző körülményeket igényelnek. Az alkálifémek robbanást okoznak és az alkáliföldfémek is zömmel hevesen reagálnak. Ezeket leszámítva a legtöbb fém passziválódik a felületén képződő fém-fluorid réteg miatt, ezért porítva kell őket reagáltatni.[14] A nemesfémek reakciójához tiszta fluorgáz szükséges 300–450 °C-os hőmérsékleten.[18] Néhány szilárd nemfémes elem (például a kén vagy a foszfor) is hevesen reagál fluorban a cseppfolyós levegő hőmérsékletén.[19] A hidrogén-szulfid[19] és a kén-dioxid[20] készségesen egyesül a fluorral, a kén-dioxid esetenként robbanással. A kénsav jóval kisebb aktivitást mutat, reakciója csak magasabb hőmérsékleten megy végbe.[21]

A hidrogénnel hidegen, sötétben is robbanásszerűen egyesül.[22] Reakcióba lép a nedves levegőben lévő vízzel is; a vízgőz fluor áramban fényes lánggal ég, és a veszélyes hidrogén-fluorid (más néven folysav, HF), valamint hidrogén-peroxid keletkezik:

F2 + 2 H2O → H2O2 + 2 HF

A szén szobahőmérsékleten fluorral reagálva fluormetánt ad, 400 °C fölött szén-monofluorid, magasabb hőmérsékleten pedig többféle fluorokarbon képződik, néha robbanással.[23] Amíg a szén-dioxid és a szén-monoxid szobahőmérsékletnél valamivel magasabb hőmérsékleten reagálnak,[24] addig a paraffinok és más szerves vegyületek heves reakciókat idéznek elő:[25] míg a teljesen szubsztituált halogénezett szénhidrogének – mint a normálisan éghetetlen szén-tetraklorid – is robbanásszerűen reagálhatnak.[26] Bár a nitrogén-trifluorid stabil, a fluor nitrogénnel való reakciójához elektromos kisülés és megemelt hőmérséklet szükséges a nitrogén erős hármas kötése miatt.[27] Más nitrogénvegyületek, például az ammónia vagy a hidrazin erősen exoterm reakcióba lépnek a fluorral.[28][29] Az oxigén standard körülmények között nem reagál a fluorral, de alacsony nyomáson és hőmérsékleten elektromos kisülések használatával reakcióra bírható. Az így keletkező termékek melegítés hatására visszaalakulnak elemeikre.[30][31][32] Nehezebb halogének[33] valamint a radon[34] készségesen reagálnak a fluorral, a xenon és a kripton reakciójához viszont speciális körülmények szükségesek.[35]

Fázisai

A β-fluor kristályszerkezete. A gömbök olyan F2 molekulákat jelképeznek, melyek akármilyen szögben állhatnak. A többi molekula síkhoz kötött

Szobahőmérsékleten a fluor kétatomos molekulákat alkot,[16] gáz halmazállapotú, színe halványsárga (egyes források szerint zöldessárga), erősen maró tulajdonságú.[36] Jellegzetes szúrós szaga van, amit már 20 ppb koncentrációban is érezni lehet.[37] −188 °C-on – az oxigénhez és a nitrogénhez hasonló hőmérsékleten – lecsapódik, folyadékállapotban élénk sárga színű.[38]

A fluornak két szilárd formája létezik, az α- és β-fluor. Az utóbbi −220 °C-on kristályosodik rendezetlen köbös kristályrendszerbe – ellentétben a többi halogén rombos szerkezetével. A β-fluor átlátszó és lágy.[38][39][40] További hűtés hatására −228 °C-on fázisváltáson megy keresztül, átalakul kemény, átlátszatlan α-fluorrá, melynek monoklin kristályrendszere van sűrűn álló, döntött molekularétegekkel. Az átalakulás β-ból α-fázisba nagyobb energiafelszabadulással jár, mint a fluor kondenzációja, és igen heves lehet.[39][40]

Izotópok

A fluornak mindössze egy stabil izotópja, a tíz neutront tartalmazó 19F létezik, és egyedül ez fordul elő számottevő mennyiségben a természetben.[41] Giromágneses aránya nagy és kivételesen érzékeny a mágneses mezőre. Mivel ez az egyetlen stabil izotóp, felhasználják a mágnesesrezonancia-képalkotásban.[42] A fluornak eddig tizenhét radioaktív izotópját sikerült előállítani, 14-től 31-ig terjedő tömegszámokkal. Ezek közül a leghosszabb életű a 18F, felezési ideje 109,77 perc. A többi izotópnak 70 másodpercnél rövidebb felezési ideje van, legtöbbjük kevesebb mint fél másodperc alatt elbomlik.[43] A 17F és a 18F pozitív béta-bomláson, a könnyebb izotópok elektronbefogáson, a 19F-nél nehezebb izotópok pedig negatív béta-bomláson vagy neutronkibocsátáson keresztül bomlanak el.[43] A fluornak egy metastabil izomerje ismert, a 18mF, melynek felezési ideje 234 nanoszekundum.[44]

Előfordulása

Univerzum

Elemek naprendszerbeli előfordulása[45]
RendszámElemRelatív
mennyiség
6Szén4 800
7Nitrogén1 500
8Oxigén8 800
9Fluor1
10Neon1 400
11Nátrium24
12Magnézium430

A fluor aránya az univerzumban 400 ppb, kivételesen alacsony a könnyebb elemek között: mindössze a huszonnegyedik leggyakoribb elem, és a széntől a magnéziumig az összes elem legalább hússzor akkora mennyiségben található meg, mint a fluor.[46] Ennek oka az, hogy a csillagokban zajló nukleoszintézis folyamata elkerüli a fluort, mert a reakciókban keletkező fluoratomok nagy nukleáris hatáskeresztmetszettel rendelkeznek, így hidrogénnel vagy héliummal történő további fúziós reakciók során továbbalakulnak oxigénné vagy neonná.[46][47]

Ezen átmeneti létezésen túl három értelmezés született a fluor jelenlétére vonatkozóan:[46][48]

  • II típusú szupernóvákban neonatomok neutrínókkal való ütközés hatására átalakulhatnak fluorrá,
  • a Wolf–Rayet-csillagokban a nagy sebességű napszél elsodorhatja a képződő fluort a hidrogén- és héliumatomoktól,
  • az aszimptotikus óriáscsillagokban a fluor kiemelkedik a fúziós zónából a konvekciós áramlatokkal.

Föld

A fluor a tizenharmadik leggyakoribb elem a földkéregben, tömegének körülbelül 600–700 milliomod részét teszi ki.[49] Az elemi fluor könnyedén reagálna a Föld légkörében lévő vízgőzzel, ez eleve kizárja az elemi fluor természetben való előfordulását.[50][51] A természetben csak vegyületei formájában található meg, legfontosabb ásványai a fluorit (CaF2), a kriolit (Na3AlF6) és a fluorapatit (Ca5(PO4)3F).[49][52] A fluorit vagy folypát, egy világszerte bőséggel megtalálható színes ásvány a fluor elsődleges forrása. Legnagyobb termelői Kína és Mexikó. Korábban az Egyesült Államok volt a vezető kitermelő, de 1995-ben beszüntették a bányászatát.[52][53][54][55] Bár a fluorapatit tartalmazza a világ összes fluorjának jó részét, de alacsony fluortartalma miatt (3,5 tömegszázalék) mint foszfátot használják fel. A kriolitot korábban alumínium kinyerésére használták, ma nagy tömegben alkalmazzák az alumíniumgyártásban. Mióta a Grönland nyugati partján lévő legfőbb lelőhelye 1987-ben kimerült, a kriolit legnagyobb részét mesterségesen szintetizálják.[52]

Fontosabb fluortartalmú ásványok
FluoritFluorapatitKriolit

Egyéb ásványok, mint például a topáz, is tartalmaznak fluort. Az alkáliföldfém- és más fluoridok rossz oldhatósága miatt a tengervízben csak kis koncentrációban (1,2 ppm) van jelen, ez a forrás kitermelésre nem hasznosítható.[52] Nyomnyi mennyiségű fluororganikus vegyületeket kimutattak vulkánkitörésekben és hőforrásokban, ezek eredete egyelőre tisztázatlan.[56] Sokáig vita tárgyát képezte, hogy az antazonit nevű ásványban elemi fluor található-e meg, melyet az összetört kristály szaga sugallt.[57][58] Egy 2012-es tanulmány 0,04 tömegszázaléknyi elemi fluorról számol be, amit az ásványban mágnesesrezonancia-spektroszkópiával mutattak ki. A fluor jelenlétét az okozhatja, hogy a kristályon belül apró uránzárványok ionizáló sugárzása hatására a kalcium-fluorid elemeire bomlik, és a képződő fluorgáz kicsi, elszigetelt zárványokat alkotva megmaradhat.[58]

Története

Korai felfedezések

Az acélgyártás illusztrációja a De re metallica-ból

Georgius Agricola 1529-ben említi meg a fluoritot, mint az ércek és a salak olvadáspontjának csökkentésére használt adalékot.[59][60][m 1] Az ő tollából származik a latin fluorés (fluo - folyás, áramlás) szó a fluorit kőzetre. Innen ered a fluorit mint folypát elnevezése, amelyet még ma is gyakran használnak.[64][65][66] A fluoritról később bebizonyosodott, hogy összetételét tekintve valójában kalcium-difluorid.[67]

Egyes források szerint egy nürnbergi üvegműves, Heinrich Schwanhard már 1670-ben használt hidrogén-fluoridot az üveg díszítésére,[68] más források szerint a hidrogén-fluorid vizes oldatát csak 1720-tól kezdődően használták fel üveg maratásra.[67][69] Ezt a jelenséget Andreas Sigismund Marggraf 1764-ben jegyezte fel, amikor fluoritot tömény kénsav jelenlétében hevítette, és az így kapott oldat korrodálta az üvegtartályt.[70][71] A svéd kémikus Carl Wilhelm Scheele 1771-ben megismételte a kísérletet, és a keletkezett savas terméket fluss-spats-syran-nak (folysav, vagy másképpen hidrogén-fluorsav) nevezte el.[71][72] 1810-ben a francia fizikus, André-Marie Ampère vetette fel, hogy a folysavat hidrogén és egy klórhoz hasonló elem alkotja.[73] Sir Humphry Davy javaslatára, az akkor még ismeretlen anyagot a folysav (fluoric acid) és a halogének -ine szuffixumából összetéve fluorine-nak nevezték el. A legtöbb európai nyelven azóta is ezt a szót vagy módosulatait használják az elem megnevezésére. A görög, orosz és más nyelvekben viszont Ampère javaslatára a ftor szó, és annak változatai terjedtek el, amely a görög φθόριος (phthoriosz – romboló) szóból ered.[74][75] Az új latin név, a fluorum után az elem vegyjele F; a régebben használatos Fl szimbólum 2012 óta a fleróviumot jelöli.[76]

Izolációja

A fluorral végzett kezdeti kísérletek annyira veszélyesek voltak, hogy a folysavval történt szerencsétlenség után több 19. századi kísérletező is „fluor-mártírrá” vált. Az akkori kutatók ugyanis nem voltak tudatában a folysav veszélyességének, ezért sokan egészségüket (vakság) vagy életüket adták a tudományért.[m 2] Az elemi fluor izolációja különösen nehéz volt, mert egyrészt mind a fluor, mind a folysav rendkívül korrozív, maró anyag, másrészt nem állt rendelkezésre egyszerű és alkalmas elektrolit.[67][77] Edmond Frémy posztulálta, hogy a tiszta folysavból elektrolízissel előállítható az elemi fluor, ezért kidolgozott egy módszert, amellyel savított kálium-bifluoridból vízmentes mintákat állított elő. Ehelyett felfedezte, hogy az így keletkezett tiszta hidrogén-fluorid nem vezeti az elektromosságot, azaz elektromos szigetelő.[67][77][78] Frémy egykori diákja, Henri Moissan kitartott, és sok próbálgatás után felfedezte, hogy a kálium-bifluorid és a száraz hidrogén-fluorid keveréke vezető, így megvalósítható az elektrolízis. Annak érdekében, hogy az elektrokémiai cellában található platina gyors korrózióját elkerülje, egy speciális fürdő segítségével rendkívül alacsony hőmérsékletre hűtötte a reakciót; ellenállóbb, kovácsolt platina-irídium cellát, valamint fluoritdugókat alkalmazott.[77][79] 1886-ban, sok vegyész 74 évnyi erőfeszítése után Moissan sikeresen izolálta az elemi fluort.[78][80] 1906-ban, két hónappal a halála előtt Moissan megkapta a kémiai Nobel-díjat.[81][m 3] Nem tisztázott, hogy viszonylag rövid életéért (54 év) nem a fluorral való kísérletezések-e a felelősek.

Későbbi felhasználása

Egy ampulla urán-hexafluorid

A General Motors az 1920-as évek végén kísérleteket folytatott a CFC-k hűtőközegként való alkalmazásával kapcsolatban, majd 1930-ban a GM és a DuPont közösen megalapította a Kinetic Chemichalst a Freon-12 (CCl2F2) értékesítésére. A Freon-12 felváltotta a korábbi, mérgezőbb vegyületeket, megnövelte az igényt a háztartási hűtőszekrényekre, gyártása pedig jövedelmezővé vált: 1949-ben a DuPont felvásárolta a Kinetic Chemicalst, és számos más freonvegyület forgalmazásába kezdett.[82][83][84] A poli(tetrafluoretilén)t vagy teflont 1938-ban véletlenül fedezte fel Roy J. Plunkett, miközben hűtőanyagokon dolgozott a Kineticnél. A teflon páratlan kémiai és termális ellenállásának köszönhetően 1941-ben megkezdődött a tömegtermelése.[82][83]

Az elemi fluor nagyipari előállítása a második világháború alatt kezdődött meg. Németországban magas hőmérsékletű elektrolízissel állítottak elő tonnaszám klór-trifluoridot, amit gyújtóbombákban terveztek felhasználni,[85] a Manhattan tervben pedig hatalmas mennyiségű urán-hexafluoridot használtak fel urándúsításra. Mivel az urán-hexafluorid ugyanolyan korrozív, mint maga a fluor, ezért a gázdiffúziós eljárásban alkalmazott berendezéseknek különleges anyagokból kellett lenniük: a membránok nikkelből, a tömítések fluorpolimerekből készültek, hűtő- és kenőanyagoknak pedig folyékony fluorokarbonokat használtak. Ez a virágzó atomipar elősegítette a háború utáni fluorkémiai fejlesztéseket.[86]

Vegyületei

A fluor kémiai vegyületek hatalmas választékát alkotja, amely magába foglal mind szerves, mind szervetlen vegyületeket. A fluor egyesül fémekkel, nemfémekkel, félfémekkel és a legtöbb nemesgázzal is.[87] Vegyületeiben az oxidációs száma majdnem mindig −1. Nagy elektronaffinitása miatt elsődlegesen ionos kötéseket létesít; ha kovalens kötéssel kapcsolódik, akkor ezek a kötések polárisak, és szinte kivétel nélkül egyszeresek.[88][89]

Fémekkel

Az alkálifémek jól oldódó, ionos monofluoridokat képeznek vele, melyeknek a nátrium-kloriddal és a többi analóg kloriddal megegyező köbös kristályrendszerük van.[90][91] Alkáliföldfémekkel erős ionos kötésekkel rendelkező, rosszul oldódó difluoridokat alkot,[92] kivéve a berillium-fluoridot, amely kovalens tulajdonságokat is mutat, és a kvarchoz hasonló szerkezetű.[93] Ritkaföldfémekkel és még sok másik fémmel ionos trifluoridokat alkot.[94][95][96]

Kovalens tulajdonságok a tetrafluoridoknál tűnnek először szembe: a cirkónium, hafnium[97][98] és számos aktinoida[99] magas olvadáspontú ionos vegyületeket alkot a fluorral,[100][m 4] míg a titán,[103] a vanádium,[104] és a nióbium vegyületei polimer jellegűek,[105] melyek olvadáspontja, vagy bomlási hőmérséklete nem több 350 °C-nál.[106] A pentafluoridok folytatják ezt a tendenciát a lineáris polimereikkel és az oligomer komplexeikkel.[107][108][109] Tizenhárom fém hexafluoridja ismert,[m 5] mind oktaéderes szerkezetű és többnyire illékony, szilárd anyagok, de például molibdén-hexafluorid és a rénium-hexafluorid folyékony, a volfrám-hexafluorid pedig gáz halmazállapotú.[110][111][112] A rénium-heptafluorid az egyetlen ismert heptafluorid, amely egy alacsony olvadáspontú, szilárd anyag, pentagonális bipiramisos molekulaalakkal.[113] Az ennél több fluoratommal rendelkező fémfluoridok kiváltképp reaktívak.[114]

Fém-fluoridok szerkezete
Nátrium-fluorid, ionosBizmut-pentafluorid, polimeresRénium-heptafluorid, molekuláris

Hidrogénnel

Halogének és kalkogének hidrogénnel alkotott vegyületeinek forráspontjai. Jól látható a hidrogén-fluorid és víz kiemelkedően magas forráspontja, amiért a molekulák közt fellépő erős hidrogénkötések felelősek

A fluor hidrogénnel egyesülve hidrogén-fluoridot alkot. A hidrogén-fluorid molekulái hidrogénkötéssel kapcsolódva egymáshoz halmazokat alkotnak, emiatt a tulajdonságai közelebb állnak a vízéhez, mint a hidrogén-kloridéhoz.[115][116][117] Forráspontja jóval magasabb a nála nehezebb hidrogén-halogenidek forráspontjánál, és velük ellentétben korlátlanul elegyedik vízzel.[118] A hidrogén-fluorid vízzel érintkezve könnyedén hidratálódik, oldata – a többi hidrogén-halogenid oldatával ellentétben, melyek erős savként viselkednek – gyenge sav.[119] Velük ellentétben viszont képes megtámadni az üveget.[120]

Nemfémekkel és félfémekkel

A klór-trifluorid erősen roncsoló hatású, képes meggyújtani az azbesztet, a betont, a homokot és más tűzálló anyagokat is[121]

A félfémek és a p-mező nemfémeinek kettős fluoridjai általában kovalensek, változó reaktivitással. A harmadik periódusban lévő, valamint az annál nehezebb nemfémek hipervalens vegyületeket képezhetnek a fluorral.[122]

A bór-trifluorid molekula sík alakú, és egy be nem töltött elektronoktettel rendelkezik. Ez a vegyület Lewis-savként viselkedik, és egyesül különböző Lewis-bázisokkal, adduktumokat hozva létre.[123] A szén-tetrafluorid közömbös, tetraéder alakú molekula, csoportbeli analógjai, a szilícium- és germánium-tetrafluorid szintén tetraéderes szerkezetűek,[124] de ők a szén-tetrafluoriddal ellentétben Lewis-savként viselkednek.[125][126] A nitrogéncsoport elemeinek trifluoridjai reaktivitása és bázicitása a molekulatömeggel növekszik, habár a nitrogén-trifluorid ellenáll a hidrolízisnek és nem mutat bázikus tulajdonságokat.[127] A fluor, arzén és antimon pentafluoridjai reaktívabbak, mint a megfelelő trifluoridjaik, az antimon-pentafluorid a legerősebb ismert természetes Lewis-sav.[107][128][129]

A kalkogéneknek sokféle fluoridja létezik: beszámoltak az oxigén, a kén és a szelén instabil difluoridjairól – az OF2 az egyetlen ismert vegyület, melyben az oxigén oxidációs állapota +2 –, valamint létezik a kén és a szelén tetrafluoridja, és ismert a kén, a szelén és a tellúr hexafluoridja is. Ez utóbbiak a sok kapcsolódó fluoratom miatt stabilak, a kén-hexafluorid a könnyű központi atom miatt különösen közömbös.[130][131] A klór, a bróm és a jód a fluorral alkothatnak mono-, tri- és pentafluoridokat, de egyedül a jód képes heptafluoridot létrehozni – ez egyben az egyetlen hétligandumos interhalogén.[132]

Nemesgázokkal

Xenon-tetrafluorid kristályok, 1962-ben fényképezve

A nemesgázokról, mivel lezárt elektronhéjjal rendelkeznek, sokáig úgy gondolták, hogy nem lépnek reakcióba más elemekkel, egészen 1962-ig, amikor Neil Bartlett először szintetizált sikeresen xenon-hexafluorplatinátot.[133] Azóta sok más nemesgázvegyületet sikerült elkülöníteni, például xenon-difluoridot, -tetrafluoridot, -hexafluoridot és több oxifluoridot is.[134] A nemesgázok közül a kripton és a radon fluorral difluoridot alkot.[135][136][137] Argon hidrogén-fluoriddal extrém körülmények között reagál, argon-fluorohidrid keletkezése mellett.[35] A könnyebb nemesgázok fluoridjai kivételesen instabilak: a héliumnak és a neonnak egyáltalán nincsenek hosszabb élettartamú fluorvegyületeik,[138] neon-fluoridot még egyáltalán nem figyeltek meg.[139] Hélium-fluorohidridet nagy nyomáson és alacsony hőmérsékleten pár milliszekundumos időtartamra sikerült előállítani.[138]

Szerves vegyületek

Egymással nem elegyedő színezett víz és nála jóval sűrűbb perfluorpentán egy főzőpohárban. A rák és az aranyhal nem tudja átlépni a két folyadékréteg közti határt

A szén-fluor kötés a legerősebb kötés a szerves kémiában,[140] ez adja a fluororganikus vegyületek nagy stabilitását.[141] A természetben szinte egyáltalán nem fordul elő, de számos mesterségesen előállított vegyület tartalmazza. A szerves fluorvegyületek nagy változatosságot mutatnak, és a szerves kémia komplexitását tükrözik vissza.[82]

Egyedi molekulák

Az alkánok hidrogénatomjainak fokozatosan fluoratomokra való kicserélése a molekula számos tulajdonságát módosítja: az olvadás- és forráspont csökken, a sűrűség növekszik, a szénhidrogénekben való oldhatóság csökken, a molekula általános stabilitása pedig növekszik. A perfluorkarbonok, melyekben az összes hidrogént fluor helyettesít, a legtöbb szerves oldószerben oldhatatlanok és normális körülmények között egyedül folyékony ammóniában lévő nátriummal reagálnak.[142] Más, funkciós csoportokat tartalmazó szerves vegyületeknek is léteznek perfluorozott megfelelői, melyek a perfluorkarbonok sok tulajdonságát – például a nagy stabilitást és a hidrofóbiát – magukban hordozzák, közben a funkciós csoportjuk – leggyakrabban karboxilcsoport – megnöveli a reaktivitásukat, képessé téve őket arra, hogy különböző felületekhez hozzátapadjanak, vagy hogy felületaktív anyagként viselkedjenek.[143] A fluortartalmú felületaktív anyagok jobban képesek csökkenteni a víz felületi feszültségét, mint szénhidrogén-alapú megfelelőik.

Polimerek

Poli(tetrafluoretilén), (vagy Teflon) az egyik legszélesebb körben felhasznált fluorpolimer

A fluortartalmú polimerek nagyobb stabilitással és magasabb olvadásponttal rendelkeznek, melyet a szénhidrogén-molekulákban a hidrogének fluorra való cseréjének köszönhetnek.[144] A Poli(tetrafluoretilén) (vagy PTFE, teflon) a legegyszerűbb fluorpolimer, a polietilén perfluorozott analógja, -CF2- szerkezeti egységekből épül fel. A PTFE a várható stabilitásnövekedést mutatja, de nagyon magas olvadáspontja miatt nehezen formázható,[145] annak ellenére, hogy a PTFE magasabb hőmérsékleten hőre lágyuló polimer. Számos PTFE-származék létezik, amelyek könnyebben formázhatóak, viszont hőmérséklettűrésük alacsonyabb, például a fluorozott etilén-propilén, melyben néhány fluoratom trifluormetil-csoporttal van helyettesítve, vagy a nafion, ami szulfonsavcsoportban végződő perfluoréter oldalláncokat tartalmaz.[146][147] Néhány fluorpolimerben megmarad a hidrogénatomok egy része; a poli(vinilidén-fluorid)ban feleannyi, a poli(vinil-fluorid)ban negyedannyi fluor van, mint a PTFE-ben, de mindkettő a perfluorozott polimerekhez hasonlóan viselkedik.[148] A fluorpolimerek műszaki tulajdonságai nagyban függnek a feldolgozásuktól. A hőre lágyuló polimerek szokványos feldolgozási technikái – a kalanderezés, extrúzió, fröccsöntés – a fluorpolimerekre nem alkalmazhatók. Tipikus feldolgozási módjuk a nagy hőmérsékleten és nagy nyomáson elvégzett porzsugorítás (szinterezés), ami a fémek porkohászatához hasonlóan porózus termékhez, mikro-porozitáshoz vezethet. A szinterezés társítható egyéb módszerekkel, majd forgácsolással.[149]

Előállítása

Ipari

Ipari elektrolizáló cellák

Az egyetlen iparilag is alkalmazott módszer a kálium-fluorid (KF) száraz hidrogén-fluoridos (HF) oldatának elektrolízise. Az oldatban a fluor mint difluoridion van jelen (KHF2). Az elektrolizáló cellák katódjaként az elektrolitot tartalmazó lágyacél kádak szolgálnak, anódként pedig összepréselt, nem kristályos grafitszénből készült rudat alkalmaznak.[53][150] A folyamathoz megemelt hőmérséklet szükséges, a KF•2HF 70 Celsius-fokon olvad meg, az elektrolízis pedig 80–100 fokon zajlik. A kálium-fluorid mint katalizátor nélkülözhetetlen szerepet tölt be a reakcióban, mivel a tiszta HF nem elektrolizálható.[151][152] A fluorgáz az anódon, a hidrogéngáz pedig a katódon fejlődik.[153]

Az elektrolit erősen korrozív természete és a fluor erős oxidáló képessége miatt számos probléma merül fel az elektrolízis során, ráadásul a fluor a keletkező hidrogénnel robbanásszerűen reagál, ezért létfontosságú a gázok keveredésének megakadályozása. Ezt általában egy fallal vagy diafragmával oldják meg, ami az elektrolitba merül. Fontos még, hogy ne kerüljön a berendezésbe kenőolaj, vagy más éghető szennyeződés.[154]

Az ipari termelés elektrolizáló cellasor alkalmazásával, 4000–6000 A áramerősséggel és 8–12 V feszültséggel folyik. Egy ilyen cellasorban egy cella mérete 3x0,8x0,6 méter, és egy tonna elektrolitot tartalmaz. Ezekhez 12 anódsorozat tartozhat, közülük mindegyik két anódból áll, és 3–4 tonna fluort termel óránként.[154]

Az előállított fluor 200 °C alatt belül passzivált falú acéltartályokban tárolható, más esetben nikkelt használnak.[155] A szabályozószelepek és csövek nikkelből készülnek, az utóbbi készülhet monelből – egyfajta nikkelötvözetből.[156] Laboratóriumban üvegcső rendszerben is szállítható fluor, alacsony nyomás és teljesen vízmentes környezet mellett,[156] más források nikkel-monel-PTFE rendszereket javasolnak.[157]

Vegyi

1986-ban, a fluor felfedezésének századik évfordulóján rendezett konferencián Karl O. Christe bemutatott egy vegyi eljárást a fluor elektrolízis nélküli előállítására. Azzal érvelt, hogy a termodinamikailag instabil, magas oxidációs számú átmenetifém-fluoridok anion képződésével stabilizálódhatnak. Így például az instabil NiF4, CuF4 vagy MnF4 stabilizálódhat a MeF62- szerkezetű anionjuk formájában. A MeF4 vegyületek Lewis-savak, ezért náluk erősebb Lewis-sav (például SbF5) képes őket sóikból felszabadítani. Az így felszabaduló MeF4 termodinamikai instabilitása miatt spontán elbomlik alacsonyabb oxidációs állapotú fluoridra, elemi fluor képződése közben. Christe a reakcióhoz K2MnF6-ot használt, amit hidrogén-fluorid oldatból nyert elemi fluor felhasználása nélkül. A reakció passzivált teflonbevonatos rozsdamentes acéltartályban, 150 °C-on, atmoszferikus nyomáson, egy óra alatt ment végbe, és a kitermelés nagyobb volt, mint 40%.[158]

2 KMnO4 + 2 KF + 10 HF + 3 H2O2 → 2 K2MnF6 + 8 H2O + 3 O2
2 K2MnF6 + 4 SbF5 → 4 KSbF6 + 2 MnF3 + F2

Christe később megjegyezte, hogy a reagensek már több mint száz éve ismertek voltak, és akár Moissan is előállhatott volna ezzel a módszerrel.[158]

Felhasználása

Ipari

A fluoritbányászat, ami a világ összes fluortermelésének legnagyobb hányadát szolgáltatja, 1989-ben érte el a csúcsát, ebben az évben 5,6 millió tonna kőzetet termeltek ki. Ez a mennyiség 1994-re a CFC-gázok használatának korlátozása miatt 3,6 millió tonnára csökkent. A termelés azóta növekszik: 2003-ban 4,5 millió tonna fluoritot bányásztak ki 550 millió dollár értékben. 2011-ben a fluorkémiai termékek kereskedelme elérte a 15 milliárd dollárt, az előrejelzések a 2016–18-as időszakra 3,5–5,9 millió tonnás termelést jósolnak legalább 20 milliárd dollár értékben.[159][160][161][162][163] A kibányászott fluoritot lebegtetéssel két különböző tisztaságú csoportra választják: a 60–85% tisztaságú fluoritot elsősorban a vaskohászatban használják fel, míg a 97% feletti tisztaságúból hidrogén-fluoridot gyártanak.[53][159][164]

A fluor és fluorvegyületek ipari felhasználása
SF6 transzformátorok egy oroszországi vasútnál

Legalább 17 000 tonna elemi fluort állítanak elő minden évben. Ára urán- vagy kén-hexafluorid formában mindössze 5–8 dollár (körülbelül 2000 forint) kilogrammonként, az elemi fluor árát viszont szállítási is kezelési nehézségei megtöbbszörözik, ezért többnyire a felhasználás helyén állítják elő.[165]

A fluorgáz legfőbb alkalmazója az atomipar, évente mintegy 7000 tonnát használnak fel belőle urándúsításra. A természetes urán kis mennyiségben tartalmaz láncreakcióra képes 235U izotópot és nagy mennyiségben 238U izotópot. Az izotópok szétválasztása elég nehéz művelet, mivel legtöbb tulajdonságuk megegyezik. Az urán-dioxidból és hidrogén-fluoridból először urán-tetrafluoridot gyártanak, majd ezt fluorgázzal alakítják urán-hexafluoriddá.[165] A fluor monoizotópos elem, tehát az UF6-molekulák közti bármilyen tömegkülönbséget a nehezebb uránizotópok jelenléte okozza. A tömegkülönbség lehetővé teszi, hogy a különböző uránizotópokat tartalmazó molekulákat fizikai módszerekkel, például gázdiffúziós eljárással, vagy centrifugálással szétválasszák.[16][53] Évente hozzávetőlegesen 6000 tonna fluort használnak fel a dielektrikum kén-hexafluorid gyártásához, melyet magasfeszültségű transzformátorokban és biztosítékokban használnak a veszélyes poliklórozott bifenilek helyett.[166] Számos fluorvegyületet alkalmaznak az elektrotechnikában: rénium- és volfrám-hexafluoridot a kémiai gázfázisú rétegleválasztásban, tetrafluormetánt a plazmavágásnál[167][168][169] és nitrogén-trifluoridot a felszerelések tisztításánál.[53] A fluort szerves szintézisekben is használják, de nagy reaktivitása miatt először többnyire ClF3-dá, BrF3-dá, vagy IF5-dá alakítják. Ezek együttes használata beállított fluorozást tesz lehetővé.

Szervetlen fluoridok

Az alumíniumgyártásban kulcsszerepet tölt be a kriolit

A fluoritot acélokhoz és vasötvözetekhez adják körülbelül 3 kg/tonna mennyiségben, hogy csökkentsék az olvadáspontját és viszkozitását.[53][170] Amellett, hogy adalékként alkalmazzák zománcokban vagy hegesztőpálca-borításban, a fluorit legnagyobb részét kénsavval reagáltatják, hogy hidrogén-fluoridot kapjanak, amit fémek pácolásánál, üvegmaratásnál, vagy krakkolásnál használnak.[53] Az előállított hidrogén-fluorid egyharmadát kriolit és alumínium-trifluorid előállítására használják, mindkettőnek fontos szerepe van az alumíniumgyártásban. Minden tonna alumínium előállításához szükséges hozzávetőlegesen 23 kilogramm folyósítóanyag.[53][171] A második legtöbb HF-ot a fluoroszilikátok igénylik, például a nátrium-fluoroszilikát, melyet az ivóvíz fluorozására, vagy mosodai szennyvíz kezelésére valamint köztitermékként használják kriolit és szilícium tetrafluorid előállításánál.[172] Más iparilag fontos szervetlen fluoridok a kobalt, a nikkel és az ammónia fluoridjai.[53][91][173]

Szerves fluoridok

A szerves fluorvegyületek – leginkább hűtőgázok és fluorpolimerek – gyártása igényli a kibányászott fluorit 20, és az összes előállított folysav 40 százalékát.[53][174] Kevésbé fontos felhasználási terület a felületaktív anyagoké, de évi több mint egymilliárd dolláros bevételt hoz.[175] A közvetlen fluor-szénhidrogén reakciót elkerülendő, az ipari fluorokarbon gyártás többnyire halogéncserén keresztül történik, például a Swarts-fluorozás során a klórozott szénhidrogénben lévő klórt hidrogén-fluorid segítségével, katalizátor jelenlétében szubsztituálják fluorral. Egyéb közvetett módszereket is alkalmaznak, például az elektrokémiai fluorozás, melynek során a szénhidrogéneket hidrogén-fluoridban elektrolizálják, vagy a Fowler-eljárás, ahol szilárd fluor-hordozóval, többek között kobalt-trifluoriddal kezelik őket.[82][176]

Hűtőközegek

A halogénezett hűtőközegeket (nem hivatalosan Freonok vagy gyakran hibásan CFC-k) az R-számuk alapján azonosítják, ami a bennük jelenlévő fluor, klór, szén és hidrogén mennyiségét határozza meg.[53][177] A klórozott-fluorozott szénhidrogének (klorofluorokarbonok, CFC-k), mint a fluor-triklórmetán (Freon-11, R-11), a difluor-diklórmetán (Freon-12) és az 1,2-diklór-tetrafluoretán (Freon-114) egykor vezető szerepet töltöttek be a szerves fluorvegyületek közt, felhasználták őket légkondicionáló rendszerekben, hajtógázként és oldószerként. Termelésük az 1980-as években érte el a csúcsot, azóta a széles körű nemzetközi tiltás miatt termelésük nem éri el a maximum egytizedét sem.[53] A CFC-k helyettesítésére a részlegesen klórozott-fluorozott szénhidrogéneket (hidroklorofluorokarbonok, HCFC-k) és a részlegesen fluorozott szénhidrogéneket (hidrofluorokarbonok, HFC) szánták; szintézisük a szerves vegyiparban elhasznált fluor több mint 90%-át igényli. Fontosabb HCFC-k a difluor-klórmetán és az 1,1-diklór-1-fluoretán, a HFC-közül megemlíthető az 1,1,1,2-tetrafluoretán (HFC-134),[53] valamint a 2,3,3,3-tetrafluorpropán, amely annak köszönhetően került előtérbe, hogy globális felmelegedési potenciálja kevesebb mint 1%-a a HFC-134-nek.[178]

Polimerek
A poli(tetrafluoretilén)t gyakran használják tapadásmentes edények készítéséhez

2006-ban és 2007-ben hozzávetőlegesen 180 000 tonna fluorpolimert állítottak elő, évente több mint 3,5 milliárd dollár bevételt hozva.[179] 2011-ben a globális piacot mintegy hatmilliárd dollárra becsülték, mely az előrejelzések szerint évi 6,5%-kal fog növekedni 2016-ig.[180] A termelés 60–80%-át a poli(tetrafluoretilén) teszi ki, melyet a DuPont márkaneve után teflonnak is neveznek.[179] Legfőbb felhasználási területe az elektromos szigetelés, mivel kitűnő dielektrikum. Felhasználják a vegyiparban is korrózióálló berendezések, például csővezetékek, tömítések gyártásánál, emellett üvegszálas szövetek borításánál és tapadásmentes edényeknél.[181] Más fluorpolimerek, például a fluorozott etilén-propilén (FEP) hasonló tulajdonságokkal bírnak, mint a PTFE, és helyettesíthetik azt; könnyebben formázhatóak, de drágábbak, és kisebb a termikus stabilitásuk. Fluorpolimereket használnak a napelemcellák borításánál is.[181][182]

A kémiailag ellenálló (ugyanakkor drága) fluorozott ionomereket elektrokémiai cellák membránjaként használják fel, melyek közül az egyik legjelentősebb a Nafion. Az 1960-as években kifejlesztett anyagot először űrhajókban alkalmazott tüzelőanyag-cellák alapanyagaként kezdték el használni, később pedig helyettesítette a higanyalapú klóralkáli-cellákat. A közelmúltban a tüzelőanyag-cellákban való alkalmazás ismét előtérbe került, köszönhetően az autókba protoncsere-membrános üzemanyag-cellák építésére irányuló törekvéseknek.[183][184][185]

A fluorkaucsukból (ilyenek például a Viton kaucsukok) olajoknak és más vegyszereknek hidegben és melegben egyaránt ellenálló gumik gyárthatók; főként tömítések készülnek ebből, pl. O-gyűrűk.[181]

Egészségügyi

Fogápolás

Helyi fluoridkezelés Panamában

A huszadik század közepétől kezdődően számos populációs vizsgálat született, melyek kimutatták, hogy a helyi alkalmazású fluorid csökkenti a fogszuvasodást. Ezt kezdetben a fogzománcot alkotó hidroxilapatit az ellenállóbb fluorapatittá való átalakulásának tulajdonították, de a fluorozás előtti fogakon végzett vizsgálatok cáfolták ezt a feltevést, és a jelenlegi elméletek szerint a fluor elősegíti a zománcképződést kezdeti stádiumban lévő fogszuvasodásnál.[186] Az 1940-es években kezdődött meg az ivóvíz mesterséges fluoridozása, miután kimutatták, hogy a magas természetes fluoridtartalmú vizet fogyasztó gyerekeknél jelentősen kisebb gyakorisággal fordul elő a fogszuvasodás.[187] Ma a világ népességének hat százaléka jut mesterségesen fluoridozott vízhez, köztük az amerikaiak kétharmada.[188][189] Magyarországon nem adnak fluoridot a vezetékes vízhez. Szakirodalmi értékelések 2000 és 2007 között az ivóvíz fluoridozásához kapcsolták a gyerekkori fogromlás jelentős csökkenését.[190] Ugyanakkor a nagy mennyiségben fogyasztott fluorid egyik okozója lehet a fluorózisnak, amiért 40%-ban, közvetlenül vagy közvetetten a vezetékes víz fluorozása felelős.[191] Egyes tanulmányok szerint továbbá a magas fluoridtartalmú víz fogyasztása káros hatással lehet a gyermekek szellemi fejlődésére. A tanulmány által vizsgált fluorban gazdag vizű területen élő gyerekek IQ-ja jelentősen alacsonyabb volt, mint az alacsonyabb fluoridtartalmú területen élőké.[192][193] A nátrium-fluorid és a nátrium-monofluorofoszfát gyakran megtalálható fogkrémekben. A fluoridtartalmú fogkrémek először 1955-ben jelentek meg az Egyesült Államokban, és manapság minden fejlett országban jelen vannak.[194][195]

(wd)

Gyógyászat

Fluoxetin tabletták

A modern gyógyszerek mintegy húsz százaléka tartalmaz fluort.[196] Ezek egyike a koleszterinszint-csökkentő atorvasztatin, ami több bevételt hozott, mint akármelyik másik gyógyszer, amíg 2011-ben generikussá vált.[197] Az asztma elleni Seretide két hatóanyaga közül az egyik – a flutikazon – fluortartalmú.[198] Sok gyógyszert azért fluoroznak, mert a szén-fluor kötés nagy stabilitása miatt ez késlelteti az inaktivációt és meghosszabbítja az adagolási periódust.[199] A fluorozás továbbá megnöveli a vegyület zsíroldékonyságát, mivel a szén-fluor kötés erősebben hidrofób a szén-hidrogén kötésnél, és ez segíti a sejtmembránon való átjutást.[198]

A triciklikus antidepresszánsoknak és más, az 1980-as évek előtt használt antidepresszánsoknak számos mellékhatásuk volt, a szerotoninon kívüli neurotranszmitterekre való nem-szelektív hatása miatt; a fluorozott fluoxetin volt az első, ami ezt a problémát kiküszöbölte. Számos jelenlegi antidepresszáns részesül még ebben az eljárásban, köztük a szelektív szerotonin visszavétel-gátló citalopram, ennek egy izomerje, az eszcitalopram, a fluvoxamin és a paroxetin.[200][201] A kinolonok mesterséges széles spektrumú antibiotikumok, melyeket gyakran fluoroznak, hogy fokozzák a hatásukat. Ezek közé tartozik a ciprofloxacin és a levofloxacin.[202][203][204][205] A fluort szteroidokban is felhasználják:[206] a fludrokortizon egy vérnyomásnövelő mineralokortikoid, a triamkinolon és a dexametanzon pedig erős glükokortikoid.[207] Az inhalációs altatószerek többsége erősen fluorozott, például a fluorozott éterek, mint a szevoflurán és a dezflurán, melyek alig oldódnak a vérben, gyorsabb ébredést téve lehetővé.[208][209]

PET vizsgálat

18F-ral jelölt fluordezoxiglükóz PET-képe, ami az egyes szövetek cukorfelvételének intenzitását mutatja

A fluor-18-at gyakran alkalmazzák mint radioaktív nyomjelzőt a pozitronemissziós tomográfiai vizsgálatokban, mivel kétórás felezési ideje elég hosszú, hogy lehetővé tegye a gyártási helyéről a képalkotó központba való szállítását.[210] A leggyakoribb nyomjelző a fluordezoxiglükóz,[210] amit intravénás injekcióval jutnak a szervezetbe, majd ott a glükózt igénylő szövetek veszik fel, mint az agy és a legtöbb rosszindulatú tumor.[211]

Oxigénszállítás

A folyékony fluorokarbonok nagy mennyiségű oxigént és szén-dioxidot képesek megkötni, jelentősen többet, mint a vér, ezért felmerült mesterséges vérként, vagy légfolyadékként való használatuk.[212] Mivel a fluorokarbonok normális esetben nem keverednek a vízzel, ezért emulzió formájában lehet őket vérként felhasználni.[213][214]

Biztonság

Az elemi fluor, a fluor-hidrogén és a vízben oldódó szervetlen fluoridok, nagyon mérgezőek és maró hatásúak, ezért nagy elővigyázattal kell kezelni és kerülni, hogy a bőrre vagy a szembe kerüljenek. Mivel a fluor nagyon reaktív, és szerves anyaggal érintkezve abból hidrogént von el, hidrogén-fluorid (HF) keletkezik, ez az első lépés a bőr roncsolásában. A HF, ellentétben más erős savakkal, a bőrfelületben egyre mélyebbre hatol, ez a második és veszélyesebb lépés a bőr roncsolásában. Ezt még fokozza az is, hogy az idegvégződések is károsodnak, és az első fázisokban az égés fájdalommentes. A hidrogén-fluorid reagálhat a csont kalciumjával, és idült csontkárosodást okoz. Ennél veszélyesebb a szervezetben lévő kalcium megkötése, ami szívritmuszavart okoz és szívmegállás következhet be. Ha a HF a bőrfelület 2,5%-át érinti (ez kb. 23 cm2), és nem mossák le azonnal bő vízzel, a sérült nyílt, nehezen gyógyuló sebeket szerez, ha még sikerül is túlélnie a balesetet.[215]

Biológiai szerep

A Dichapetalum cymosum (gifblaar) védekezésként nátrium-fluoracetátot termel

A fluor nem esszenciális elem sem az emberek, sem más emlősök számára. Nyomelemként fontos szerepet tölt be a csontképződésben, felelős a csontok és a fogzománc keménységéért. Mivel a fluor nyomnyi mennyiségben számos természetes forrásban megtalálható (például teában, kávéban, vagy tengeri halakban), a fluorhiány lehetősége csak mesterséges étrendeknél releváns.[216][217] Természetes eredetű szerves fluorvegyületek megtalálhatók mikroorganizmusokban és növényekben,[56] de állatokban nem.[218] Ezek közül leggyakoribb a nátrium-fluoracetát, melyet legalább 40 növényfaj használ kártevők elleni védekezésre Afrikában, Ausztráliában és Brazíliában.[219] Más ilyen vegyületek például a terminálisan fluorozott zsírsavak, a fluoraceton vagy a 2-fluorcitrát.[218] A fluoratomot a szénhez kapcsoló enzimet 2002-ben fedezték fel baktériumokban.[220]

Kapcsolódó szócikkek

Megjegyzések

Jegyzetek

Források

Fordítás

  • Ez a szócikk részben vagy egészben a fluorine című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.

További információk