ஏபிஓ குருதி குழு முறைமை

ஏபிஓ குருதி குழு முறைமை (ABO blood group system) என்பது, மனிதரில் குருதி மாற்றீட்டில் பயன்படும் மிகவும் முக்கியமான குருதிக் குழு முறைமை ஆகும். குருதி வகை களில் வேறுபட்டுக் காணப்படும் குருதிச் சிவப்பணுவில் உள்ள பிறபொருளெதிரியாக்கிகள், குருதித் தெளியத்தில் காணப்படும் பிறபொருளெதிரிகள் என்பவற்றை அடிப்படையாகக் கொண்டே இந்த குருதிக் குழு முறைமை இயங்குகின்றது.

ABO குருதி வகை பிறபொருளெதிரியாக்கிகள், குருதிச் சிவப்பணுக்களிலும், IgM பிறபொருளெதிரிகள் குருதித் தெளியத்திலும் காணப்படுகின்றன

இதனுடன் தொடர்புடைய எதிர்-A பிறபொருளெதிரி (Anti-A Antibody) மற்றும் எதிர்-B பிறபொருளெதிரி பொதுவாக IgM (Immunoglobulin M) வகை பிறபொருளெதிரிகள் ஆகும். இந்த IgM வகை பிறபொருளெதிரிகள் வாழ்வின் ஆரம்பகாலத்தில், சூழல் காரணங்களால், அதாவது உணவு, பாக்டீரியா மற்றும் வைரசு போன்ற காரணங்களால் உருவாகின்றன. ABO இரத்த வகைகள் மனிதக் குரங்கு, சிம்ப்பன்சி, பொனொபோ, கொரில்லா போன்ற சில விலங்குகளிலும் காணப்படுகிறது[1].

கண்டுபிடிப்புகளின் வரலாறு

ஆஸ்திரேலிய விஞ்ஞானி கார்ல் லேண்ட்ஸ்டெய்னர் என்பவர் ABO இரத்த பிரிவுகளைக் கண்டறிந்ததாக பொதுவாக ஏற்றுக்கொள்ளப்படுகிறது, அவர் 1900 -ஆம் ஆண்டில் மூன்று இரத்த வகைகளைக் கண்டறிந்தார்;[2] அவரது பணிக்காக 1930 -ஆம் ஆண்டில் அவருக்கு மருத்துவம் அல்லது மருந்து துறையில் நோபல் பரிசு வழங்கப்பட்டது. அந்த நேரத்தில் போதுமான தகவல் தொடர்பு முறைகள் இல்லாத காரணத்தினாலும், செக் சீராலஜிஸ்ட் ஜேன் ஜான்ஸ்கி என்பவர் தனியாக மனித இரத்தத்தை நான்கு வகைகளாக பிரித்துள்ளார்,[3] ஆனால் லேண்ட்ஸ்டெய்னரின் தனிப்பட்ட கண்டுபிடிப்பு, அறிவியல் உலகால் ஏற்றுக்கொள்ளப்பட்டது மற்றும் ஜான்ஸ்கியின் கண்டுபிடிப்பு தொடர்ந்து தெளிவற்றதாக இருந்து வந்தது. ஆனாலும், ஜான்ஸ்கியின் வகைப்பாடு, இன்றும் ரஷ்யா மற்றும் முன்னாள் சோவியத் ரஷ்யாவின் சில பகுதிகள் ஆகியவற்றில் பயன்படுத்தப்பட்டு வருகிறது (கீழே காண்க). அமெரிக்காவில், 1910 -ஆம் ஆண்டில் மோஸ் என்பவர் அவருடைய சொந்த (ஒரே போன்ற) பணியை சமர்பித்தார்.[4]

லேண்ட்ஸ்டெயினர் A, B மற்றும் O ஆகியவற்றை விவரித்தார்; டாகாஸ்ட்ரெல்லோ மற்றும் ஸ்ட்ரூலி ஆகியோர் நான்காவது வகையை AB 1902 -ஆம் ஆண்டில் கண்டறிந்தனர்.[5] லூட்விக் ஹிர்ஸ்ஃபெல்ட் மற்றும் ஈ. வோன் டங்கர்ன் ஆகியோர் ABO இரத்த வகைகளின் மரபு பண்புகளை 1910–11 -ல் கண்டறிந்தனர், 1924 -ஆம் ஆண்டில், வெவ்வேறு வகையான மாற்றுருக்களின் ஒருங்கிணைவால் மரபியல் ரீதியான வடிவமைப்புகளைக் கொண்டு ஃபிளிக்ஸ் பெர்ன்ஸ்டெய்ன் என்பவர் சரியான இரத்த வகையை விளக்கினார்.[6] இங்கிலாந்தைச் சேர்ந்த, வாட்கின்ஸ் மற்றும் மோர்கன் ஆகியோர் ABO எபிடோப்கள் சர்க்கரையினால் குறிப்பாக, N-அசிடைல்காலக்டோசாமைன் A-வகை மற்றும் காலக்டோஸ் B-வகை ஆகியவற்றால் உருவாகிறது என்று கூறினர்.[7][8][9] ABH பொருட்கள் எல்லாம் கிளைகோஸ்பிங்கோலிப்பிடுகளுடன் இணைந்துள்ளது என்பதை விவரிக்கும் பல கருத்துக்களுக்கு பின்னர், லைன்ஸ் குழுவானது (1988) பேண்ட் 3 புரதமே நீண்ட பாலிலாக்டோசாமின் சங்கிலியைத்[10] தோற்றுவிக்கிறது அதுவே இணைக்கப்பட்ட ABH பொருட்களில் பெரும்பகுதியைச் சார்ந்துள்ளது என்று கண்டறிந்தனர்.[11] பின்னர், யமமோட்டோ குழுவானது, A, B மற்றும் O எபிடோப்களை துல்லியமான கிளைகோசைல் மாற்றங்கள் அமைக்கின்றன என்று காண்பித்தது.[12]

ABO பிறபொருளெதிரியாக்கிகள்

ABO இரத்த வகையைத் தீர்மானிக்கும், காபோவைதரேட்டு சங்கிலிகளைக் காண்பிக்கும் படம்

ABO இரத்த வகை பிறபொருளெதிரியாக்கிகளுக்கு H பிறபொருளெதிரியாக்கி ஒரு முக்கியமான மூலப்பொருளாகும். H மரபணு இருக்கையானது (locus) 19 வது நிறப்புரியில் அமைந்துள்ளது. இது மரபு டி.என்.ஏ வில் 5 kb க்கும் அதிகமான நீளத்துக்கு உள்ள, 3 குறியீடு செய்யப்பட்ட மரபணுக் கோர்வைகளைக் (exon - coding regoins of a gene) கொண்டுள்ளது, பின்னர் இது ஒரு ஃப்யூகோசில்ட்ரான்ஸ்ஃபெராசே (fucosyltransferase) வை குறியாக்கம் செய்து, குருதிச் சிவப்பணுக்களில் H பிறபொருளெதிரியாக்கியைத் தோற்றுவிக்கிறது. H பிறபொருளெதிரியாக்கி என்பது ஒரு காபோவைதரேட்டு தொடராகும். அதில் காபோவைதரேட்டுக்கள் முக்கியமாக குருதிச் சிவப்பணுக்களிலுள்ள புரதங்களுடன் இணைந்துள்ளன (அதனுடைய சிறிய அளவிலான பிரிவு செராமைடு (ceramide) வேதி வினைக்குழு (Moiety) வுடன் இணைந்துள்ளது). இந்த H பிறபொருளெதிரியாக்கியில், β-D-N-அசிடைல்குளுகோஸாமைனுடன் இரு β-D-காலக்டோஸ், α-L-ஃப்யூகோஸ், ஆகியன இணைந்துள்ளன. இந்த சங்கிலி குருதிச் சிவப்பணுவிலுள்ள புரதம் அல்லது செராமைடுடன் இணைக்கப்பட்டுள்ளது.

ABO மரபணு இருக்கையானது 9வது நிறப்புரியில் காணப்படுகிறது . இதில் 7 குறியீடு செய்யப்பட்ட மரபணுக் கோர்வைகள் (exon) உள்ளன. அவை மரபு டி.என்.ஏ இல் 18 kb நீளத்தை எடுத்துக் கொண்டுள்ளன. இதில் 7 ஆவது குறியீடு செய்யப்பட்ட மரபணுக் கோர்வை மிகவும் பெரியதாகவும், பெரும்பாலான குறியாக்க வரிசை (coding sequence) களைக் கொண்டும் காணப்படுகின்றது. ABO மரபணு இருக்கையில் மூன்று முக்கிய மாற்றுரு வடிவங்கள் உள்ளன. அவையாவன: A, B மற்றும் O.

A மாற்றுரு ஒரு கிளைகோஸில்ட்ரான்ஸ்பெராசு (glycosyltransferase) ஐ குறியாக்கம் செய்து, அதன்மூலம் α-N-அசிடைல்காலக்டோசாமைனை, H பிறபொருளெதிரியாக்கியின் ஒரு D-காலக்டோஸ் முனையுடன் இணைக்கிறது. இதனால் A பிறபொருளெதிரியாக்கி உருவாகிறது. B மாற்றுருவானது, ஒரு கிளைகோஸில்ட்ரான்ஸ்ஃபெராசு -ஐ குறியாக்கம் (coding) செய்து, அதன் மூலம் α-D-காலக்டோசை, H பிறபொருளெதிரியாக்கியின் ஒரு D-காலக்டோஸ் முனையை இணைக்கிறது. இதனால் B பிறபொருளெதிரியாக்கி உருவாகிறது.

O மாற்றுருவை பொறுத்த வரை 6 ஆவது குறியீடு செய்யப்பட்ட மரபணுக் கோர்வை ஒற்றை நியூக்ளியோடைட்டு நீக்கம் (single nucleotide deletion) நடைபெற்ற ஒன்றாக உள்ளது. A மாற்றுருவிலிருக்கும் குறியீட்டு வரிசையில் 261 ஆவது இடத்திலிருக்கும் ஒரு குவானின் நீக்கத்திற்குள்ளாகி இழக்கப்படுவதனால் O மாற்றுரு தோன்றுகின்றது. இதனால் புரதத் தொகுப்புக்கு (protein synthesis) க்கு முன்னான டி.என்.ஏ படியெடுத்தலில் (transcription) சட்டக மாற்றம் (frame shift) நடைபெறுவதால், mRNA (செய்திகாவும் ஆர்.என்.ஏ) படியெடுத்தல் முழுமையானதாக இருப்பதில்லை. இதனால் இதிலிருந்து மொழிபெயர்ப்பு (translation) மூலம் பெறப்படும் புரதம் முழுமையாக அல்லாமல் குறையுடன் இருக்கும். அதனால் அந்த நொதியம் தொழிற்பாட்டை இழந்திருக்கும். இதனால் நொதியத் தன்மை இழந்த வெற்றுப் புரதம் ஒன்றே உருவாகும். O இரத்தவகையில், நொதியத் தொழிற்பாடு இன்மையால் H பிறபொருளெதிரியாக்கி மாற்றமடையாமல் காணப்படுகிறது.

பெரும்பாலான ABO பிறபொருளெதிரியாக்கிகள் நீண்ட பாலிலாக்டோஸமைன் (Polylactosamine) சங்கிலிகளின் முனைகளில் வெளிப்படுகின்றன, இவை முக்கியமாக பட்டை (band) 3 புரதத்துடன் இணைகின்றன. குருதிச் சிவப்பணு மென்சவ்வின் நேர் அயனி பரிமாற்ற புரதம் மற்றும் ஒருசில எபிடோப்கள் ஆகியவை நடுநிலை கிளைகோஸ்பிங்கோலிப்பிட்களில் (glycosphingolipids) வெளிப்படுத்தப்படுகின்றன.

தெளியவியல்

குருதித் தெளியம் தொடர்பாக தெளியவியல் சோதனைகளில் பெறப்பட்ட முடிவுகள் ஏபிஓ இரத்தக் குழு அமைப்புப் பற்றிய மேலதிக தகவல்களைத் தருகின்றன. எதிர்-A மற்றும் எதிர்-B பிறபொருளெதிரிகள் ஐசோஹீமோக்ளூட்டினின்ஸ் (isohaemagglutinins) என்றழைக்கப்படுகின்றன. இவை பிறந்த குழந்தைகளுக்கு இருப்பதில்லை. குழந்தைகள் பிறந்து முதல் ஆண்டு வளர்ச்சிக் காலத்திலேயே இவை தோன்றுகின்றன. இவற்றை ஓரின பிறபொருளெதிரிகள் (isoantibodies) எனலாம். அதாவது, அவை ஓரின பிறபொருளெதிரியாக்கிகளுக்கு எதிராக உருவாக்கப்படுபவையாகும். ஓரின பிறபொருளெதிரியாக்கிகள் எனப்படுபவை ஒரே இனத்திலுள்ள உள்ளினங்களில் (subspecies) மட்டுமே இருக்கும் பிறபொருளெதிரியாக்கிகள் ஆகும். எதிர்-A மற்றும் எதிர்-B பிறபொருளெதிரிகள் பொதுவாக IgM வகையைச் சேர்ந்தவை. இவை சூல்வித்தகத்தின் ஊடாக முதிர்கருவின் குருதிச் சுற்றோட்டத்தொகுதியினுள் செல்ல முடியாதவையாக இருக்கும். ஆனால் O வகை நபர்களில் IgG வகை AB பிறபொருளெதிரிகள் இருக்கும். அவை முதிர்கருவினுள்ளும் செல்லக்கூடியதாக இருக்கும்.

தோன்றும் விதம் தொடர்பான கொள்கைகள்

உணவு மற்றும் சூழலில் காணப்படும் பாக்டீரியா, வைரசு, மற்றும் சில தாவர பிறபொருளெதிரியாக்கிகள், A மற்றும் B கிளைக்கோ புரத பிறபொருளெதிரியாக்கிகளைப் போன்ற, எபிடோப்களைக் (Epitope) கொண்டுள்ளன. இந்த epitope களே பிறபொருளெதிரியாக்கிகளில் காணப்படும், பிறபொருளெதிரிகளால் அடையாளப்படுத்தக் கூடிய பகுதியாகும். பிறந்து முதல் வருட காலத்தில், இந்த சூழல் பிறபொருளெதிரியாக்கிகளுக்கு எதிராக உடலில் உருவாகும் பிறபொருளெதிரிகளே, வாழ்க்கையின் பின்னாளில், தான் தொடர்புகொள்ள நேரும் ABO-ஒவ்வாமை கொண்ட சிவப்பு இரத்த உயிரணுக்களுடன் குறுக்கு வினை புரிகின்றன. A கிளைக்கோ புரதத்திலுள்ள α-D-N-galactosamine ஐ ஒத்த epitope களையுடைய இன்ஃபுளுவென்சா வைரசுக்கு எதிரான நோய் எதிர்ப்பாற்றல் முறைமை செயல்முறையில் எதிர்-A பிறபொருளெதிரிகள் உருவாகின்றன எனக் கருதப்படுகின்றது. அதேபோல் B கிளைக்கோ புரதத்திலுள்ள α-D-galactose ஐ ஒத்த epitope களையுடைய கிராம்-நெகட்டிவ் பாக்டீரீயாக்களான, E.coli போன்றவற்றுக்கு எதிரான பிறபொருளெதிரிகளில் இருந்து எதிர்-B பிறபொருளெதிரி உருவாவதாக நம்பப்படுகிறது,[13]

"இருளில் ஒளி கோட்பாடு" (டெல்நக்ரோ, 1998) (Light in the Dark theory by DelNagro) பரிந்துரையின்படி, ஒரு மனித நோயாளியின் விருந்துவழங்கி உயிரணுவின் (Host cell) மென்சவ்வில் (குறிப்பாக, முளைவிடும் வைரசுக்கள் (budding viruses) அதிகளவில் காணப்படக்கூடிய பகுதிகளான நுரையீரல் மற்றும் சீத புறவணியிழையம்) வளரும் வைரசுக்கள், அங்கிருந்து ABO இரத்த பிறபொருளெதிரியாக்கிகளையும் பெறுகின்றன, பின்னர் வைரசுக்கள் தாம் பெற்றுக்கொண்ட பிறபொருளெதிரியாக்கிகளை, இரண்டாம் நிலை பெறுநருக்கு கொண்டு செல்கின்றன. புதிய பெறுநரில், இந்த தன்னுடல் சாராத இரத்த பிறபொருளெதிரியாக்கிகளுக்கு (Non-self foreign blood antigen) எதிரான நோய்த் தடுப்பாற்றல் முறைமை செயல்முறை நிகழும். அதன்மூலம் அங்கே ABO பிறபொருளெதிரிகள் உருவாகின்றன. குழந்தைகளில், வெளியிலிருந்து பெறப்படும் இரத்த பிறபொருளெதிரியாக்கிகளை நடுநிலைப்படுத்தும் பிறபொருளெதிரிகள் உருவாக, இவ்வாறு வைரசினால் கடத்தப்படும் மனித இரத்த பிறபொருளெதிரியாக்கிகளே காரணமாகும். எச்.ஐ.வி (HIV) தொடர்பான சமீபத்திய ஆய்வுகளில், இந்த கோட்டுப்பாட்டுக்கான ஆதரவு வெளிவந்தது. குறிப்பாக, எச்.ஐ.வி உருவாக்கும் உயிரணு வரிசைகளில் (HIV-producing cell lines) வெளிப்படுத்தப்படும் குருதிவகை பிறபொருளெதிரியாக்கிகளுக்கு (blood group antigens) எதிரான பிறபொருளெதிரிகளைப் பயன்படுத்தி, செயற்கைக் கல முறை சோதனைகளில், எச்.ஐ.வி யை நடுநிலைப்படுத்தலாம்[14][15]

"இருளில் ஒளி கோட்பாடு" புதிய கூர்ப்பு தொடர்பான கருத்தாக்கத்தை முன்வத்தது: அதாவது, ஒரு குறிப்பிட்ட மக்கள்தொகையில், வைரசுக்கள் ஒருவரிலிருந்து ஒருவருக்கு பரவாமல் தடுக்க, சமூக அளவில் ஒரு நோய்த்தடுப்பு செயல்முறை உருவாகின்றது. இதனால், ஒரு குறிப்பிட்ட மக்கள்தொகையில் உள்ள தனியன்கள் ஒவ்வொருவரும், தனித்துவமான பிறபொருளெதிரிகளை தோற்றுவித்து மக்கள்தொகைக்கு அளித்து, மரபியற் பல்வகைமை உருவாக்கத்தில் பங்கெடுத்து, ஒட்டுமொத்தமாக ஒரு மக்கள்தொகையின் நோய் எதிர்ப்பு இயல்புக்கு காரணமாகின்றனர்.

மாற்றுரு பல்வகைமை (allele diversity) யினால் ஏற்படக்கூடிய கூர்ப்பை உருவாக்கும் திறனானது, எதிர்மறை அதிர்வெண் சார்ந்த தேர்வாக (negative frequency-dependent selection) இருப்பதற்கான சாத்தியமே அதிகமாகும். அதாவது நோய் எதிர்ப்பாற்றல் முறைமையானது, வேறு விருந்துவழங்கிகளில் இருந்து நோய்க்காரணிகளால் காவப்படும் பிறபொருளெதிரியாக்கிகளை விட, உயிரணுக்களின் மென்சவ்விலிருக்கும் மரபியல் மாற்றத்துக்குட்பட்ட அரிதான பிறபொருளெதிரியாக்கிகளை இலகுவில் அடையாளப்படுத்தும். இதனால் அரிதான வகைகளைக் கொண்ட தனியன்கள் இலகுவில் நோய்க்காரணிகளை அடையாளப்படுத்தக் கூடியவையாக இருக்கும். மனிதர்களிடையே அதிகளவில் காணப்படும் மக்கள்தொகைக்குள்ளேயான பல்வகைமை, தனியன்களிடையேயான இயற்கை தேர்வினால் ஏற்படுகிறது [16]

குருதிப் பரிமாற்ற எதிர்வினைகள்

ஒவ்வொரு குருதி வகையிலும், தன்னுடல் சாராத குருதிப் பிறபொருளெதிரியாக்கிகளுக்கு எதிரான சம பிறபொருளெதிரிகள் (isoantibodies) காணப்படும். அதாவது ஒரு குறிப்பிட்ட குருதி வகையில் எந்த பிறபொருளெதிரியாக்கி இல்லையோ, அந்த பிறபொருளெதிரியாக்கி, குருதி மாற்றீடு மூலம் வழங்கப்படும்போது, அதற்கு எதிரான பிறபொருளெதிரி உடலில் தொழிற்பட ஆரம்பிக்கும்.

எடுத்துக் காட்டாக, A குருதி வகை கொண்ட உடலில், B பிறபொருளெதிரியாக்கி இருப்பதில்லை. எனவே அதற்கு எதிரான எதிர்-B பிறபொருளெதிரி காணப்படும். ஆனால் B குருதி வகை கொண்ட ஒருவரின் உடலில் B பிறபொருளெதிரியாக்கி இருக்கும். எனவே A குருதி வகையைக் கொண்ட நபர்களுக்கு B குருதி வகையைச் செலுத்தினால், B குருதி வகை குருதிச் சிவப்பணுக்களுக்கு எதிராக, A குருதி வகை நபர்களில் உடனடியாக எதிர்-B பிறபொருளெதிரிகள் தொழிற்படும். எதிர்-B பிறபொருளெதிரிகள், சிவப்பணுக்களில் உள்ள B பிறபொருளெதிரியாக்கிகளுடன் இணைகின்றன. அதன்மூலம் சிவப்பணுக்களில் "குறைநிரப்பு செயலூக்கி சிதைவினை" ஏற்படுத்தும். A குருதி வகைக்கு AB குருதி வகை செலுத்தப்பட்டால், AB யிலுள்ள B பிறபொருளெதிரியாக்கிக்கு எதிரான தாக்கம் இருக்கும். ஆனால் A குருதி வகை செலுத்தப்பட்டால், அங்கே B பிறபொருளெதிரியாக்கி இன்மையால், எதிர்-B யின் தொழிற்பாடு இருக்காது, குருதி வகை ஒத்துப் போகும். அதேபோல் O குருதி வகை செலுத்தப்பட்டால், அங்கே எந்தவொரு பிறபொருளெதிரியாக்கிகளும் இன்மையால், குருதி வகைகள் ஒத்துப் போகும்.

அதேபோல் B குருதிவகையில் A பிறபொருளெதிரியாக்கி இல்லையென்பதால், A குருதி வகையோ, அல்லது AB குருதி வகையோ செலுத்தப்படும்போது, அவற்றில் இருக்கும் A பிறபொருளெதிரியாக்கிக்கு எதிராக எதிர்-A பிறபொருளெதிரி தொழிற்பட்டு சிவப்பணுச் சிதைவு ஏற்படும். ஆனால் O வகைக் குருதியில் பிறபொருளெதிரியாக்கிகள் இன்மையால் ஒத்துப் போகும். அதேபோல் B குருதி வகையும் ஒத்துப் போகும்.

AB குருதி வகை நபரில் A பிறபொருளெதிரியாக்கியும், B பிறபொருளெதிரியாக்கியும் இருக்கின்றன. அதனால் அவை A, B, O யில் எந்தவொரு குருதி வகை செலுத்தப்பட்டாலும், அவற்றிற்கு எதிரான தொழிற்பாட்டைக் காட்டுவதில்லை. எனவே AB குருதி வகை பொது வாங்கி என அழைக்கப்படும்.

O குருதி வகையில் எந்தவொரு பிறபொருளெதிரியாக்கியும் இல்லை. எனவே A, B, AB வகைக் குருதிகள் செலுத்தப்பட்டால், அவற்றிலுள்ள பிறபொருளெதிரியாக்கிகளுக்கு எதிரான பிறபொருளெதிரிகள் தொழிற்பாடு இருக்கும். அதனால் O குருதி வகைக்கு A, B, AB குருதி வகையைச் செலுத்த முடியாது. ஆனால் O குருதி வகை செலுத்தப்பட்டால், அங்கே பிறபொருளெதிரியாக்கிகள் இன்மையால் ஒத்துப் போகும். எல்லா வகை குருதியுள்ளோரும் O குருதி வகையைப் பெறுவதில் இடரைச் சந்திக்காத படியினால், O வகையை பொது வழங்கி எனலாம்.

  • A வகை இரத்தம் கொண்டவர்கள், A வகை மற்றும் O வகை ரத்தத்தைப் பெறலாம்.
  • B வகை இரத்தம் கொண்டவர்கள், B வகை மற்றும் O வகை ரத்தத்தை பெற முடியும்.
  • AB வகை இரத்தக் கொண்டவர்கள், A வகை, B வகை, AB வகை, அல்லது O வகை இரத்தக் குழுவினரிடமிருந்து இரத்தம் பெறலாம்.
  • O வகை இரத்தம் கொண்டவர்கள், O வகை இரத்தம் கொண்டவர்களிடமிருந்து மட்டுமே இரத்தம் பெறலாம்.
பெறுபவர்வழங்குபவர்
AA அல்லது O
BB அல்லது O
ABA, B, AB, அல்லது O
OO

'பொது வழங்கி' என்ற இந்த பெயரானது, பிரித்தெடுக்கப்பட்ட குருதிச் சிவப்பணுக்களாலான குருதி மாற்றீட்டின்போது மட்டுமே பொருந்தும். சில சமயம் குருதி மாற்றீட்டில் சிவப்பணுக்கள் பிரித்தெடுக்கப்படாமல், மொத்த குருதியுமே தேவையான நபருக்குச் செலுத்தப்படும். அப்படியான நேரங்களில் O பொது வழங்கியாக இருப்பதில் பிரச்சனைகள் உண்டு. காரணம் O குருதி வகையின் குருதி தெளியத்தில் எதிர்-A, எதிர்-B பிறபொருளெதிரிகள் காணப்படுகின்றன. குருதி வகை A, B, அல்லது AB பெறுநருக்கு, O வகை முழு குருதியையும் செலுத்துவதால், அதிலுள்ள பிறபொருளெதிரிகள் காரணமாக, குருதியில் குருதி மாற்றீட்டு குருதிச் சிவப்பணு சிதைவு தாக்கம் (Hemolytic transfusion reaction) ஏற்படும்.

H பிறபொருளெதிரியாக்கிகளுக்கு எதிராக பிறபொருளெதிரிகள் எதுவும் உருவாக்கப்படுவதில்லை, பாம்பே தோற்றவமைப்பு (Bombay phenotype) நோய் கொண்டவர்கள் மட்டும் இதற்கு விதிவிலக்கு.

ABH சுரப்பிகளில், ABH பிறபொருளெதிரியாக்கிகள், சூழலுடன் நேரடித் தொடர்புகொண்டிருக்கும், உடலில் சீத-தயாரிப்பு உயிரணுக்களில் சுரக்கப்படும். இதில் நுரையீரல், தோல், கல்லீரல், கணையம், இரைப்பை, சிறுகுடல், சூலகம், விந்துப்பை ஆகியவையும் அடங்கும்.[17]

குருதி மாற்றீட்டு ஒவ்வாமை (blood transfusion incompatibility) பற்றிப் பார்க்கும்போது, தனியாக இந்த ஏபிஓ இரத்த குழு முறைமை பற்றி மட்டுமே கருத்தில் கொள்ள முடியாது. வேறு சில முக்கியமான காரணிகளும் அல்லது முறைமைகளும் உள்ளன. ஆர்எச் காரணி (rhesus factor) மிகவும் முக்கியமானதாகும். எனவே ஆர்எச் குருதி குழு முறைமையும் (Rh Blood group system), இந்த ஏபிஓ இரத்த குழு முறைமையுடன் சேர்த்து கவனிக்கப்பட வேண்டிய ஒன்றாகும். ஒரு A குருதி வகை, ஆர்எச் காரணியையும் கொண்டிருப்பின், அது A + வகைக் குருதி எனப்படும். ஆர்எச் காரணியைக் கொண்டவர்களின் குருதி, ஆர்எச் காரணி அற்றவர்களுக்கு வழங்கப்படக்கூடாது. அப்படி வழங்கப்படுமாயின் அங்கே ஆர்எச் காரணிக்கு எதிரான ஒரு பிறபொருளெதிரி உருவாகும். அது வேறு நிலைகளில் பிரச்சனைகளைக் கொண்டு வரலாம் (விளக்கத்திற்கு பார்க்க ஆர்எச் குருதி குழு முறைமை. ஆனால் ஆர்எச் காரணியற்றவர்களின் குருதிக்கு எதிராக எந்த பிறபொருளெதிரியும் உருவாகாது ஆதலினால், அவர்களின் குருதி ஆர்எச் காரணி உள்ளவர்களுக்கும், அற்றவர்களுக்கும் வழங்கப்படலாம்.

ஏ.பீ.ஓ (ABO), ஆர்எச் (Rh) குருதி வகை வழங்குபவருக்கும், பெறுநருக்கும் இடையிலா ஒவ்வாமை பற்றிய விபரம்
பெறுநர்வழங்கி
  O+ A+ B+AB+ O- ** A- B-AB-
O+
A+
B+
AB+ *
O-
A-
B-
AB-
* பொது வழக்கில் AB வகைக்குருதி ஒரு பொது வாங்கி என அழைக்கப்பட்டாலும், உண்மையில் AB+ மட்டுமே பொது வாங்கி. AB- பொது வாங்கி அல்ல.
** A-, A+, B-, B+, AB-, AB+, O-, O+ ஆகிய எவ்வகைக் குருதியுள்ளவருக்கும் O- குருதிவகை வழங்கப்பட முடியும் ஆதலினால் O- மட்டுமே பொது வழங்கியாக இருக்கலாம். பொது வழக்கில் O வகைக்குருதி பொது வழங்கி என அழைக்கப்படாலும், O+ பொது வழங்கி அல்ல.

பிறந்த குழந்தைகளில் குருதிச் சிவப்பணு சிதைவு நோய்

குழந்தைக்கும், தாய்க்கும் இடையேயான ABO குருதி வகை ஒவ்வாமை காரணமாக பொதுவாக பிறந்த குழந்தைகளில் குருதிச் சிவப்பணு சிதைவு நோய் (HDN - Hemolytic Disease of the Newborn) உருவாவதில்லை. தாயினதும், சேயினதும் குருதிகள் நேரடியாகக் கலப்பதில்லை. ஊட்டச்சத்துக்களும், ஆக்சிசனும் தாயிலிருந்து சேய்க்கும், காபனீரொக்சைட்டு, ஏனைய கழிவுப்பொருட்கள் சேயிலிருந்து தாய்க்கும் நஞ்சுக்கொடி ஊடாகவே கடத்தப்படுகின்றது. ABO இரத்த வகையின் பிறபொருளெதிரிகள் பொதுவாக IgM வகையைச் சேர்ந்தவையாக இருப்பதுடன், இவை நஞ்சுக்கொடியினூடாக செல்வதில்லை. எனவே தாயிலிருந்து சேய்க்கு பிறபொருளெதிரிகள் கொண்டு செல்லப்படுவதில்லை.

ஆனாலும் குறைந்த வீதத்தில் ABO HDN உருவாகலாம்[18]. சிலசமயம் தாயில் காணப்படும் O- குருதி வகை, IgG வகையான ABO பிறபொருளெதிரிகளை உருவாக்கும். அவை நஞ்சுக்கொடியூடாக கடத்தப்பட்டு, பிறந்த குழந்தைகளில் குருதிச் சிவப்பணு சிதைவு நோய் ஏற்படக் காரணமாகின்றன. அரிதாக இருப்பினும், சிலசமயம் A[19],[20] மற்றும் B[21] குருதி வகையுள்ள தாய்க்கு பிறக்கும் குழந்தைகளிலும் இந்த ABO HDN என்னும் குருதிச் சிவப்பணு சிதைவு நோய் ஏற்படுகின்றது.

பாரம்பரியம்

A மற்றும் B ஆகியவை இணை ஆட்சியுடைய தன்மை கொண்டவை, இதனால் AB என்ற தோற்றவமைப்பு கிடைக்கிறது.
இரத்த வகை பாரம்பரியம்
தாய்/தந்தைOABAB
OOO, AO, BA, B
AO, AO, AO, A, B, ABA, B, AB
BO, BO, A, B, ABO, BA, B, AB
ABA, BA, B, ABA, B, ABA, B, AB

தாய் தந்தை ஆகிய இருவரிடமிருந்தும் இரத்த வகை பாரம்பரியமாகப் பெறப்படுகின்றன. ABO இரத்த வகை ஒற்றை மரபணுவினால் கட்டுப்படுத்தப்படுகிறது. இந்த ABO மரபணு மூன்று மாற்றுருக்களைக் கொண்டுள்ளது: i , IA , மற்றும் IB . இந்த மரபணுவானது கிளைகோசைல்ட்ரான்ஸ்ஃபரேஸ் நொதியத்தைக் குறியாக்கம் செய்கிறது. இந் நொதியம் இரத்த சிவப்பணு பிறபொருளெதிரியாக்கிகளில் உள்ள கார்போவைதரேட்டு உள்ளடக்கத்தை மாற்றியமைக்கும் ஒரு நொதியமாகும். மனித உயிரணுவில் உள்ள ஒன்பதாவது நிறப்புரியின் நீண்ட கரத்தில் இந்த மரபணுவுக்குரிய மரபணு இருக்கை அமைந்துள்ளது.

IA மாற்றுரு A வகையைத் தருகிறது, IB மாற்றுரு B வகையைத் தருகிறது, மற்றும் i மாற்றுரு O வகையைத் தருகிறது. IA மற்றும் IB ஆகிய இரண்டுமே i க்கு ஆட்சியுடையவை என்பதனால், ii நபர்கள் மட்டுமே O வகை இரத்தத்தைக் கொண்டிருப்பர். IAIA அல்லது IAi ஐ கொண்ட நபர்கள் A வகை இரத்தமும், IBIB அல்லது IBi ஐ கொண்ட நபர்கள் B வகை இரத்தமும் பெற்றிருப்பர். IAIB நபர்கள் இருவகை தோற்றவமைப்புக்களையும் பெற்றிருப்பர், ஏனெனில் A மற்றும் B ஆகியவை சிறப்பு ஆட்சியுடைய தன்மையான இணை ஆட்சியுடைய தன்மையைக் (codominance) கொண்டிருக்கின்றன. இணை ஆட்சியுடைய தன்மை என்னும்போது, பெற்றோரில் ஒருவர் A வகையும், மற்றவர் B வகையாகவும் இருந்தால், அவர்கள் AB வகை குழந்தையைப் பெற்றுக் கொள்ள முடியும். பெற்றோர்களில் ஒருவர் A வகையாகவும், மற்றவர் B வகையாகவும் இருப்பதுடன், இருவரும் இதரநுக அமைப்பைக் (IBi ,IAi) கொண்டிருப்பின், அவர்களுக்கு O வகை குழந்தையும் கிடைக்க முடியும்.

ஒரு AB வகைப் பெற்றோராயின், பொதுவாக அவர்கள் உருவாக்கும் குழந்தைகள் A அல்லது B அல்லது AB யாகவே இருப்பர். காரணம் அங்கே O வகைக்குரிய பின்னடைவான மாற்றுரு இரு பெற்றோரிலும் இல்லை. ஆனால் சில சமயம் இந்த AB மாற்றுருக்கள் புணரிகளை உருவாக்கும்போது, ஒடுக்கற்பிரிவில், தனித்தனியாகப் பிரியாமல், மிக அண்மையாக இருக்கக்கூடிய இரு மாற்றுருக்கள் சேர்ந்தே ஒரு புணரிக்குள் பிரிந்து செல்வதுபோல் சென்றுவிடும். இதனால், சந்ததியில் ஒன்றாகச் செல்லும்-AB (Cis-AB) தோற்றவமைப்பு உருவாகும்.

"Cis AB versus regular (trans) AB"

ஒன்றாகச் செல்லும்-AB (Cis-AB) தோற்றவமைப்பு, A, B ஆகிய இரு பிறபொருளெதிரியாக்கிகளையும் உருவாக்கக்கூடிய ஒரு ஒற்றை நொதியைக் கொண்டுள்ளது. இதன் விளைவாக உருவாகும் இரத்த சிவப்பணுக்கள், A அல்லது B பிறபொருளெதிரியாக்கிகளை ஒரே அளவில் கொண்டிருப்பதில்லை. அவை வெவ்வேறான அளவில் இருப்பதனால் அவை A1 அல்லது B இரத்த வகை என அறியப்படும். இது மரபியல் ரீதியில் சாத்தியமே இல்லாத இரத்த வகை உருவாகும் சிக்கலைத் தவிர்த்து விடுகிறது.[22]

பரவல் மற்றும் பாரம்பரிய வரலாறு

A, B, O மற்றும் AB இரத்த வகைகளின் பரவலானது, மக்கள்தொகைக்கு ஏற்ப, உலகெங்கும் மாறுபட்டுக் காணப்படுகிறது. மனித மக்கள் தொகையின் உட்பிரிவுக்கு ஏற்பவும், இரத்த வகை பரவலில் வேறுபாடுகள் காணப்படுகின்றன.

இங்கிலாந்தில், மக்கள் தொகையில் காணப்படும் இரத்த வகை பரவலானது, இன்றும் இடப்பெயர்களின் பரவலுடன் இடைத்தொடர்பைக் காட்டுகின்றன. மக்கள்தொகைக்கு மரபணுக்களை வழங்குவதிலும், இடங்களுக்கு பெயரிடப்படுவதிலும் வைகிங்ஸ், டேன்னஸ், சாக்ஸோன்ஸ், செல்ட்ஸ், மற்றும் நார்மன்ஸ் ஆகியோரின் தொடர்ச்சியான படையெடுப்புகள் மற்றும் இடப்பெயர்வுகள் காரணமாக இருந்ததுடன், இரத்தவகைப் பரவலுடனும் ஒரு இடைத்தொடர்பைக் கொண்டிருந்தன.[23]

ஒரு வெள்ளையரில் இரத்த வகையைத் தீர்மானிக்கும் ABO மரபணுவில் பொதுவாக ஆறு மாற்றுருக்கள் காணப்படுகின்றன:[24][25]

A
  • A101 (A1)
  • A201 (A2)
B
  • B101 (B1)
  • O01 (O1)
  • O02 (O1v)
  • O03 (O2)

உலகெங்கும் உள்ள மக்களிடையே, இந்த மாற்றுருக்களில் பல அரிய மாறுபாட்ட நிலைகள் கண்டறியப்பட்டுள்ளன.

சில கூர்ப்பு தொடர்பான ஆய்வுகள் செய்யும் உயிரியல் வல்லுநர்கள் IA மாற்றுரு முதன்முதலில் உருவாகியதாகவும், அதன் பின்னர் IO மாற்றுரு உருவாகியதாகவும், அதற்கும் பின்னர் IB உருவாகியதாகவும் கூறுகின்றனர்[சான்று தேவை]. IA க்குரிய குறியீடு செய்யப்பட்ட மரபணுக்கோர்வையில் ஏற்படும் ஒரு ஒற்றை நியூக்ளியோடைட் நீக்கமும், அதனால் புரதத் தொகுப்பில் மரபணுக்கோர்வை படியெடுத்தலில் நடைபெறும் இடமாற்றமுமே (change in the reading frame) IO உருவாகக் காரணமெனக் கூறப்பட்டது. இந்த கால வரிசையானது, உலகெங்கும், ஒவ்வொரு இரத்தவகையுடனும் உள்ள மக்களின் சதவீதத்தைக் குறிப்பிடுகிறது. ஆரம்பநிலை மக்கள்தொகை நகர்தல் மற்றும் உலகின் வெவ்வேறு பகுதிகளில் முன்னாளில் இருந்த இரத்த வகைகள் ஆகியவற்றுடன் ஒத்துபோகிறது: எடுத்துக்காட்டாக, B என்பது ஆசிய மரபைச் சேர்ந்த மக்களிடையே மிகப் பொதுவான ஒரு இரத்த வகையாகும். ஆனால் அது மேற்கத்திய ஐரோப்பிய மரபில் மிகவும் அரிதாகவே காணப்படுகிறது. மற்றொரு கோட்பாடானது, ABO மரபணுவுக்கு நான்கு முதன்மை பரம்பரைகள் காணப்படுவதாகவும், அங்கு ஏற்பட்ட மரபணு திடீர்மாற்றம் மூன்று தடவைகளாவது மனிதரில் O வகையை உருவாக்கியதாகவும் கூறுகின்றது[26]. பழைமையானது முதல் புதியது வரை, இந்த பரம்பரைகள் A101/A201/O09, B101, O02, O01 ஆகிய மாற்றுருக்களைக் கொண்டுள்ளன. O மாற்றுருக்கள் தொடர்ந்து காணப்படுவது, சமநிலைத் தேர்வின் காரணமான நிகழ்வாக இருக்கலாம் எனக் கணிக்கப்படுகிறது[26]. இரண்டு கோட்பாடுகளுமே, O வகை முதலில் உருவாகிறது என்ற முன்பே இருந்த கோட்பாட்டுடன் முரண்படுகின்றன, இதற்கு எல்லா மனிதர்களும் (hh வகையினரைத் தவிர) இதை பெறலாம் என்ற உண்மை ஆதாரமாக இருந்தது.[சான்று தேவை] பிரித்தானிய நேஷனல் ட்ரான்ஸ்ஃப்யூஷன் சர்வீஸ் என்ற அமைப்பு இதுதான் உண்மை என்றும் (கீழே உள்ள புற இணைப்புகள் பகுதியில் வலை இணைப்பைக் காணவும்) உண்மையில் எல்லா மனிதர்களும் O வகையைச் சேர்ந்தவர்களே என்றும் கூறுகிறது.

நாட்டின் வாரியாக ABO மற்றும் Rh பரவல்

உலகத்தில் O குருதிவகைப் பரம்பல்
உலகத்தில் A குருதிவகைப் பரம்பல்
உலகத்தில் B குருதிவகைப் பரம்பல்
நாடுவாரியாக ABO மற்றும் Rh குருதி வகைகளின் பரவல் (சராசரி சனத்தொகை)
நாடுசனத்தொகை[27]O+A+B+AB+O-A-B-AB-
ஆஸ்திரேலியா[28]21,262,64140.0%31.0%8.0%2.0%9.0%7.0%2.0%1.0%
ஆஸ்திரியா[29]8,210,28130.0%33.0%12.0%6.0%7.0%8.0%3.0%1.0%
பெல்ஜியம்[30]10,414,33638.0%34.0%8.5%4.1%7.0%6.0%1.5%0.8%
பிரேசில்[31]198,739,26936.0%34.0%8.0%2.5%9.0%8.0%2.0%0.5%
கனடா[32]33,487,20839.0%36.0%7.6%2.5%7.0%6.0%1.4%0.5%
செக் குடியரசு[33]10,532,77027.0%36.0%15.0%7.0%5.0%6.0%3.0%1.0%
டென்மார்க்[34]5,500,51035.0%37.0%8.0%4.0%6.0%7.0%2.0%1.0%
எஸ்தோனியா[35]1,299,37130.0%31.0%20.0%6.0%4.5%4.5%3.0%1.0%
பின்லாந்து[36]5,250,27527.0%38.0%15.0%7.0%4.0%6.0%2.0%1.0%
பிரான்ஸ்[37]62,150,77536.0%37.0%9.0%3.0%6.0%7.0%1.0%1.0%
ஜேர்மனி[38]82,329,75835.0%37.0%9.0%4.0%6.0%6.0%2.0%1.0%
ஹங்காங்[39]7,055,07140.0%26.0%27.0%7.0%0.3%0.2%0.1%0.1%
ஐஸ்லாந்து[40]306,69447.6%26.4%9.3%1.6%8.4%4.6%1.7%0.4%
இந்தியா[41]1,166,079,21736.5%22.1%30.9%6.4%2.0%0.8%1.1%0.2%
அயர்லாந்து[42]4,203,20047.0%26.0%9.0%2.0%8.0%5.0%2.0%1.0%
இஸ்ரேல்[43]7,233,70132.0%34.0%17.0%7.0%3.0%4.0%2.0%1.0%
நெதர்லாந்து[44]16,715,99939.5%35.0%6.7%2.5%7.5%7.0%1.3%0.5%
நியூசிலாந்து[45]4,213,41838.0%32.0%9.0%3.0%9.0%6.0%2.0%1.0%
நோர்வே[46]4,660,53934.0%42.5%6.8%3.4%6.0%7.5%1.2%0.6%
போலந்து[47]38,482,91931.0%32.0%15.0%7.0%6.0%6.0%2.0%1.0%
போர்த்துக்கல்[48]10,707,92436.2%39.8%6.6%2.9%6.0%6.6%1.1%0.5%
சவூதி அரேபியா[49]28,686,63348.0%24.0%17.0%4.0%4.0%2.0%1.0%0.3%
தென் ஆப்பிரிக்கா[50]49,320,00039.0%32.0%12.0%3.0%7.0%5.0%2.0%1.0%
ஸ்பெயின்[51]40,525,00236.0%34.0%8.0%2.5%9.0%8.0%2.0%0.5%
சுவீடன்[52]9,059,65132.0%37.0%10.0%5.0%6.0%7.0%2.0%1.0%
துருக்கி[53]76,805,52429.8%37.8%14.2%7.2%3.9%4.7%1.6%0.8%
ஐக்கிய இராச்சியம்[54]61,113,20537.0%35.0%8.0%3.0%7.0%7.0%2.0%1.0%
ஐக்கிய அமெரிக்கா[55]307,212,12337.4%35.7%8.5%3.4%6.6%6.3%1.5%0.6%
எடையிடப்பட்ட சராசரி2,261,025,24436.4%28.3%20.6%5.1%4.3%3.5%1.4%0.5%

வட இந்தியா மற்றும் அதற்கு அருகிலுள்ள மத்திய ஆசியா ஆகிய பகுதிகளில் B இரத்த வகை அதிக அளவில் காணப்படுகிறது, மேலும் இதனுடைய பரவல் கிழக்கு மற்றும் மேற்காக செல்லசெல்ல குறைவடைகிறது, மெல்ல ஒற்றை இலக்க சதவீதங்களுடன் ஸ்பெயின் முடிவடைகிறது.[57][58] பூர்வீக அமெரிக்க மற்றும் ஆஸ்திரேலிய அபோரிஜினல் மக்கள்தொகையினரிடையே ஐரோப்பிய மக்கள் வந்து சேரும் வரை இது காணப்படவில்லை என்று நம்பப்படுகிறது.[58][59]

இரத்த வகை A ஆனது, ஐரோப்பாவில் அதிக அளவில் காணப்படுகிறது, குறிப்பாக, ஸ்காண்டிநேவியா மற்றும் மத்திய ஐரோப்பாவில் அதிகம் காணப்படுகிறது, ஆனாலும் இதனுடைய உச்ச அளவு சில ஆஸ்திரேலிய அபோரிஜின் மக்கள் மற்றும் ப்ளாக்ஃபூட் இந்தியன்ஸ் ஆஃப் மவுன்டானா ஆகியோரிடையேதான் காணப்படுகிறது.[60][61]

வோன் வில்லிப்ராண்ட் காரணியுடன் உள்ள தொடர்பு

ABO பிறபொருளெதிரியாக்கி வோன் வில்லிப்ராண்ட் காரணி (vWF) கிளைக்கோபுரதத்திலும் வெளிப்படுத்தப்படுகிறது[62]. இந்த காரணியானது குருதிப்பெருக்குக்கு எதிராக தொழிற்படும் தன்மை கொண்டது. உண்மையில், O வகை இரத்தமானது, இரத்த கசிவை முன்னதாகவே நிறுத்துகிறது என அறிய முடிகின்றது[63]. vWF நீர்மத்தில் ஏற்படும் ஒட்டுமொத்த மரபியல் வேறுபாடுகளில் 30% ABO இரத்த வகையினால் விளக்கப்படக்கூடியதாக இருப்பதுடன்[64], O வகை சாராத நபர்களை விட, O வகை இரத்தம் கொண்டவர்களில் பொதுவாக vWF கணிசமான அளவு குறைந்த நீர்மத்தைக் கொண்டுள்ளது (காரணி VIII).[65][66]. மேலும், O குருதிவகையில், மிக அதிகளவில் காணப்படும் vWF -இன் Cys1584 (ஒரு அமினோ அமில பல்லுருத்தோற்றம்) வேறுபாட்டினால் vWF அதிக வேகமாக சிதைவடைகிறது:[67] ADAMTS13 -க்கான மரபணுவானது (vWF-cleaving protease), ABO இரத்த வகை காணப்படும் அதே மரபணு இருக்கையில், ஒன்பதாவது குரோமோசோமில் (9q34) காணப்படுகிறது. குருதி உறைதலினால் பெறப்படும் ischemic stroke எனப்படும் பக்கவாதத்தை முதல் முறை பெறும் நபர்கள் இடையே vWF யானது அதிக அளவில் காணப்படுகின்றது.[68] இந்த ஆய்வின் முடிவுகள் தெரிவிப்பது என்னவெனில், நிகழ்வானது ADAMTS13 பல்லுருத்தோற்றத்தால் பாதிப்படையாமல் இருப்பதுடன், ஒரு நபரின் இரத்த வகையே குறிப்பிடத்தக்க மரபியல் காரணியாக இருக்கின்றது.

நோய்த் தொடர்பு

O வகையல்லாத குருதி வகைகளுடன் (A, B, AB) ஒப்பிடும்போது, O குருதி வகையானது squamous cell carcinoma வருவதற்கான சூழிடர் 14% குறைவாகவும், basal cell carcinoma வருவதற்கான சூழிடர் 4% குறைவாகவும் கொண்டிருக்கின்றது[69]. கணையப் புற்றுநோய் வருவதற்கான சூழிடரும் குறைவாக இருப்பதாக அறியப்படுகின்றது[70][71]. B பிறபொருளெதிரியாக்கியானது சூலகப் புற்றுநோய் வருவதற்கான சந்தர்ப்பத்தை அதிகரிப்பதாகவும் கருதப்படுகின்றது[72]. Gastric cancer has reported to be more common in blood group A and least in group O.[73]. இரைப்பை புற்றுநோயானது A குருதிவகை உடையவர்களில் அதிகமாகவும், O குருதிவகை கொண்டவர்களில் குறைவாகவும் இருப்பதாகவும் கூறப்படுகின்றது[73]. .

துணைக்குழுக்கள்

A1 மற்றும் A2

A இரத்த வகையில் கிட்டத்தட்ட இருபது துணைக்குழுக்கள் உள்ளன, அதில் A1 மற்றும் A2 ஆகியவை மிகவும் பொதுவானவை (99% க்கும் அதிகமானவை). A1 ஆனது எல்லாவகை A இரத்த வகையிலும் கிட்டத்தட்ட 80% -ஐ கொண்டிருக்கிறது, மீதமுள்ளவை A2 -ஐ சார்ந்துள்ளன.[74] இந்த இரண்டு துணைக்குழுக்களும், குருதி மாற்றீட்டைப் பொறுத்தவரை ஒன்றையொன்று பாதிக்காதவையாகும், ஆனாலும், அரிதான சூழல்களில் இரத்த பரிமாற்றத்தின்போது சிக்கல்கள் எழக்கூடும்.[74]

பாம்பே தோற்றவமைப்பு

அரிதானதாக காணப்படும் பாம்பே தோற்றவமைப்பு (hh ) என்ற குறைபாட்டைக் கொண்ட நபர்களில், அவர்களுடைய இரத்த சிவப்பணுக்களில் H பிறபொருளெதிரி வெளிப்படுத்தப்படுவதில்லை. H பிறபொருளெதிரியாக்கியே, A மற்றும் B பிறபொருளெதிரியாக்கிகளுக்கான முந்தைய நிலை என்பதால், H பிறபொருளெதிரியாக்கி இல்லாமல் இருப்பது, A அல்லது B பிறபொருளெதிரியாக்கிகள் இல்லாத நபர்கள் என்பதைக் குறிக்கிறது (அதாவது O ரத்த வகைக்கு சமமானது). ஆனாலும், O குருதி வகையில் H பிறபொருளெதிரியாக்கி இருப்பது போலன்றி, பாம்பே தோற்றவமைப்பானது H பிறபொருளெதிரியாக்கி அற்றதாக இருப்பதால், அவர்களில் H பிறபொருளெதிரியாக்கிக்கு எதிரானகவும், அதேபோல் A மற்றும் B பிறபொருளெதிரியாக்கிகளுக்கு எதிராகவும் சமபிறபொருளெதிரிகள் (isoantibodies) உருவாகலாம். எனவே பாம்பே தோற்றவமைப்பு உடையவர்களுக்கு O குருதிவகை வழங்கப்படுமாயின், அங்கே எதிர் - H பிறபொருளெதிரிகள் உருவாகி, அவை வழங்கியின் குருதிச் சிவப்பணுக்களில் உள்ள H பிறபொருளெதிரியுடன் பிணைப்பை ஏற்படுத்தி, நிரப்புதல்-இடைநிலை சிதைவு மூலமாக குருதிச் சிவப்பணுவை அழித்துவிடும். இதே காரணத்தால் இவர்கள் குருதிவகை A, B, AB யிடமிருந்தும் குருதியைப் பெற முடியாதவர்களாக இருப்பார்கள். எனவே இவர்களுக்கு வேறொரு hh தோற்றவமைப்பை உடைய ஒருவரிடம் இருந்தேன் குருதி பெறப்பட வேண்டும். ஆனால் குருதிவகை O வைப் போன்றே இவர்களால், ஏனைய குருதிவகை அனைவருக்கும் குருதியை வழங்க முடியும்.

ஐரோப்பா மற்றும் முன்னாள் சோவியத் ரஷ்யாவில் பயன்படும் சொற்களஞ்சியம்

Ukraine uniform imprint B+

ஐரோப்பாவின் சில பகுதிகளில் ABO ரத்த வகையில் உள்ள "O" என்பது "0" (பூச்சியம்) ஆல் மாற்றீடு செய்யப்படுகிறது, இதன் மூலம் A அல்லது B பிறபொருளெதிரிகள் இல்லை என்பது குறிப்பிடப்படுகிறது. முன்னாள் USSR -இல் இரத்த வகைகள் எண்கள் மற்றும் ரோமானிய எண்களைப் பயன்படுத்திக் குறிக்கப்பட்டன, எழுத்துக்கள் பயன்படுத்தப்படவில்லை. இதுவே ஜான்ஸ்கியின் மூலமான இரத்த வகைப் பிரிப்பு ஆகும். இதில் மனித இரத்த வகையானது I, II, III, மற்றும் IV ஆகியவையாக பிரிக்கப்பட்டது, இதுவே வேறு எல்லா இடங்களிலும் முறையே O, A, B, மற்றும் AB என்று குறிப்பிடப்படுகிறது.[75] A மற்றும் B ஆகியவற்றை இரத்த வகைகளுடன் குறிப்பிடுவது, லூட்விக் ஹிர்ஸ்ஃபெல்ட் என்பவரால் முன்மொழியப்பட்டது.

ABO மற்றும் Rh (Rhesus D) சோதனை முறைக்கான எடுத்துக்காட்டு

ஒரு A + (A, Rh+) வகைக் குருதியானது எதிர்-A, எதிர்-B, எதிர்-Rh பிறபொருளெதிரிகளுடன் சேர்க்கப்படும்போது நடைபெறக்கூடிய தாக்கங்களைப் படத்தில் காணலாம்.

ஒரு A + (அதாவது A, Rh+) வகைக் குருதியானது எதிர்-A, எதிர்-B, எதிர்-Rh பிறபொருளெதிரிகளுடன் சேர்க்கப்படும்போது,

  • எதிர்-A பிறபொருளெதிரியுடன் தாக்கமுற்று குருதித் திரட்சியைத் தோற்றுவிக்கின்றது. காரணம் A வகைக் குருதியில் இருக்கும் A பிறபொருளெதிரியாக்கியுடன், எதிர்-A பிறபொருளெதிரியானது ஒவ்வாமையைக் கொண்டிருப்பதனால் எதிர்வினை புரிவதாகும்.
  • எதிர்-B பிறபொருளெதிரியுடன் தாக்கமடையாமையால் குருதித் திரட்சியைத் தோன்றவில்லை. காரணம் A வகைக் குருதியில் இருக்கும் A பிறபொருளெதிரியாக்கியுடன், எதிர்-B பிறபொருளெதிரியானது ஒவ்வாமையைக் காட்டுவதில்லை.
  • எதிர்-Rh பிறபொருளெதிரியுடன் தாக்கமுற்று குருதித் திரட்சியைத் தோற்றுவிக்கின்றது. காரணம் Rh+ வகைக் குருதியில் இருக்கும் Rh பிறபொருளெதிரியாக்கியுடன், எதிர்-Rh பிறபொருளெதிரியானது ஒவ்வாமையைக் கொண்டிருப்பதனால் எதிர்வினை புரிவதாகும்.

இதன்மூலம், எதிர்-A பிறபொருளெதிரியைக் கொண்ட B வகைக் குருதிக்கு A அல்லது AB வகைக் குருதியை வழங்கமுடியாது என்பது தெரிகின்றது. அதேபோல் எதிர்-Rh பிறபொருளெதிரியைக் கொண்ட குருதிக்கு, Rh + வகைக் குருதியை வழங்க முடியாது என்பதும் தெளிவாகின்றது.

இதேபோன்றே குருதி மாற்றீட்டில் ஏனைய எதிர்வினைத் தாக்கங்களும் ஏற்படுவதனால், குருதி மாற்றீட்டில் ஏற்படக்கூடிய, ஒவ்வாமை நிலையைத் தவிர்ப்பதற்காக, குருதிச் சோதனை செய்யப்படுதல் அவசியமாகின்றது.

பிற வகைகளிலிருந்து உருவாக்கப்படும் முழுமையான பொது குருதியும், செயற்கைக் குருதியும்

ஏப்ரல் 2007 -இல் இயற்கை உயிரித் தொழில்நுட்பம் (Nature Biotechnology) என்ற இதழில் ஒரு ஆராய்ச்சியாளர் குழுவானது, மலிவான மற்றும் செயல்திறன் மிக்க வழிகளின் மூலம் A, B மற்றும் AB வகைக் குருதியை O வகைக்கு மாற்ற முடியும் என்று அறிவித்தது.[76]. குறிப்பிட்ட சில பாக்டீரியாக்களில் உள்ள கிளைகோஸிடேஸ் நொதிகளை குருதியில் சேர்ப்பதன்மூலம், குருதிச் சிவப்பணுக்களிலிருந்து குருதிக்குழு பிறபொருளெதிரியாக்கிகளை நீக்கி இவ்வாறான மாற்றத்தைக் கொண்டு வரலாம் எனக் கூறப்படுகின்றது. ஆனாலும் A மற்றும் B யின் பிறபொருளெதிரியாக்கிகள் அகற்றப்படுவது, Rh + நபர்களில் இருக்கும், Rh பிறபொருளெதிரியாக்கி பிரச்சனையைத் தீர்க்க முடியாது. எனவே ஒரு Rh- குருதி அவசியமாகும்.

இம்முறையை நேரடியாக பயன்படுத்தப்படுவதற்கு முன்பு நோயாளி சோதனைகள் நடத்தப்பட வேண்டும்.

இந்த சிக்கலை எதிர்கொள்வதற்கான மற்றொரு அணுகுமுறையாக, செயற்கை இரத்தத்தை உருவாக்குதல் கருதப்படுகின்றது. இது அவசர காலங்களில் ஒரு மாற்றீடாக பயன்படுத்தப்படலாம்[77].

கருத்தாக்கங்கள்

ABO இரத்த வகைகளைப் பற்றி ஏராளமான பிரபலமான கருத்தாக்கங்கள் உள்ளன. ABO இரத்தக்குழுக்கள் கண்டுபிடிக்கப்பட்டதில் இருந்தே இந்த நம்பிக்கைகள் இருந்து வருகின்றன, இது உலகெங்கும் உள்ள பல கலாச்சாரங்களிலும் காணப்படுகிறது. எடுத்துக்காட்டாக, 1930களில், இரத்தவகையை நபரின் நடத்தையுடன் இணைத்து பார்ப்பது ஜப்பானில் பிரபலமாக இருந்தது.[78]

பீட்டர் J. டி'அடாமோவின் பிரபல புத்தகம், Eat Right For Your Blood Type (உங்கள் இரத்த வகைக்கு சரியானதை உண்ணுங்கள்) என்பது இந்த கருத்தாக்கங்களை தொடர்ந்து ஆதரித்தது. இந்த புத்தகம் ABO இரத்த வகையே ஒருவருக்கு ஏற்ற உணவூட்டத்தைத் தீர்மானிக்கிறது என்று கூறுகிறது.[79]

பிற நம்பிக்கைகளாவன, வகை A தீவிரமான மது அருந்திய பின்னர் ஏற்படும் தலைவலி போன்ற அசெளகரியங்களை உருவாக்கும் என்றும், O வகை சரியான பல்வரிசையுடன் இணைந்தது என்றும், A2 வகையைச் சேர்ந்தவர்கள் அதிகபட்ச நுண்ணறிவு எண்ணைக் கொண்டிருப்பர் என்றும் கூறப்படுகின்றன. இந்த கருத்துக்களுக்கான அறிவியல் பூர்வ ஆதாரங்கள் எதுவுமில்லை.[80]

மேலும் பார்க்க

  • சிஸ் AB

குறிப்புதவிகள்

மேலும் படிக்க

வெளி இணைப்புகள்

🔥 Top keywords: தீரன் சின்னமலைதமிழ்இராம நவமிஅண்ணாமலை குப்புசாமிமுதற் பக்கம்சிறப்பு:Search2024 இந்தியப் பொதுத் தேர்தல்நாம் தமிழர் கட்சிடெல்லி கேபிடல்ஸ்வினோஜ் பி. செல்வம்வானிலைதிருக்குறள்தமிழக மக்களவைத் தொகுதிகள்சுப்பிரமணிய பாரதிஇந்திய மக்களவைத் தொகுதிகள்சீமான் (அரசியல்வாதி)தமிழச்சி தங்கப்பாண்டியன்சுந்தர காண்டம்தமிழ்நாட்டில் இந்தியப் பொதுத் தேர்தல், 2024பாரதிதாசன்இந்திய நாடாளுமன்றம்பிரியாத வரம் வேண்டும்முருகன்தினகரன் (இந்தியா)தமிழ்த் திரைப்படங்களின் பட்டியல் (ஆண்டு வரிசை)தமிழ்நாட்டின் சட்டமன்றத் தொகுதிகள்மக்களவை (இந்தியா)தமிழ்நாட்டின் மாவட்டங்கள்தமிழ் தேசம் (திரைப்படம்)பதினெண் கீழ்க்கணக்குஇராமர்அம்பேத்கர்விக்ரம்நயினார் நாகேந்திரன்கம்பராமாயணம்பொன்னுக்கு வீங்கிதமிழ்நாடுவிநாயகர் அகவல்திருவண்ணாமலை