மின்தடை

மின் தடை (electrical resistance) என்பது, ஒரு மின்கடத்தியின் ஒரு புள்ளியில் இருந்து அதன் மறு புள்ளியை மின்னோட்டம் அடையும் போது இடையில் ஏற்படும் மின் சேதாரம் ஆகும். இவை மின் கடத்தியின் நீளம் அதன் பருமன் மற்றும் இந்த இரு புள்ளிகளுக்கும் இடையில் ஏற்படும் பிற மின் தடையி போன்றவற்றினால் ஏற்படும் மின் சேதாரத்தை (Ω) ஓமின் விதிப்படி ஓம் என்ற அலகில் அளக்கபடுகின்றன. உதாரணம்: மின்னழுத்தத்தின் அளவு, மின் கடத்தியின் நீளம் மற்றும் பருமன், இரண்டு புள்ளிக்கும் இடையில் ஏற்படும் மின் கடத்த கூடிய கம்பிகள் இணைப்பு, ஒழுங்கற்ற இணைப்பு, வெப்பம், மற்றும் ஈரலிப்பான மரங்கள் மின் கடத்தியில் உராய்வு போன்றவற்றினால் மின் சேதாரம் ஏற்படுகின்றன. இது போன்ற தாக்கங்களின் மூலம் மின்தடை ஏற்படுகின்றன. இவை மாறுதிசை மின்னோட்டம் மற்றும் நேர் மின்னோட்டம் என்பவற்றில் மாறுபடும்.இதன் படி மின்தடை ஒரு குறுகிய பருமனான மின் கடத்தியை விட ஒரு மெல்லிய நீண்ட மின் கடத்தி மின்தடையை ஏற்படுத்துகின்றன.

பொதுவாக அனைத்து கடத்திகளுக்கும் மின்தடை உண்டு. ஆனால் குறைந்த வெப்பநிலையில் மீக்கடத்துத்திறனை வெளிபடுத்தும் கடத்திகளின் மின்தடை சுழி மதிப்பினை அடைந்து அத்திறனுடன் எவ்வித தடையும் இன்றி மின்னோட்டதை கடத்தும்.உலோகத்தின் மின்தடை Ω அளவிற்கு மிகக்குறைவு. இதனால் தான் அவை மின்கடத்திகளாக இருக்கின்றன.

ஒரு கடத்தியின் மின்தடை என்பது அதன் இருமுனைகளுக்கிடையே உள்ள மின்னழுத்ததிற்கும் (V) அக்கடத்தியின் வழியாகப் பாயும் மின்னோட்டத்திற்கும் (I) இடையேயான விகிதம் ஆகும்.

மின்தடையின் அலகு ஓம் (Ω) (Ohm) ஆகும் . இது வோல்ட்டு/ஆம்ப்பியர் (volt/ampere), அல்லது (வோல்ட்டு-நொடி/கூலாம்) (volt-second/coulomb)ஆகியவற்றுக்கு இணையானது.

மின்தடை
மின்னோட்டம்.
(V = R x I) மின்னழுத்தம்.[1]

இதில்:

I என்பது மின்னோட்டம்
V என்பது மின்னழுத்தம்
R என்பது மின்தடை

மின்தடையின் நேர்மாறு கடத்து திறன் ஆகும்.

கடத்து திறன்.

அறிமுகம்

நீரியல் அழுத்த ஒப்பீட்டு முறை குழாய்களில் நீர் பாயும் முறையுடன் மின்னோட்டம் சுற்றுக்களில் பாயும் விதத்தை விவரிக்கிறது. குழாயில் மயிர் நிரப்பப்படும் போது, குறிப்பிட்ட நீர்ப்பாய்ச்சல் அளவுக்கு அதிக அழுத்தம் தேவைப்படுகிறது. பாரிய தடையொன்றினூடே மின்னோட்டம் செலுத்தப்படுவதானது, மயிரினால் அடைக்கப்பட்ட குழாயினூடாக நீரை அனுப்புதல் போன்றதாகும். இச்செயற்பாட்டின்போது குறித்த பாய்ச்சல் அளவுக்கு (மின்னோட்டத்துக்கு) அதிக விசை (மின்னியக்க விசை) தேவைப்படும்.

நீரியல் அழுத்த ஒப்பீட்டு முறையில், கம்பியொன்றினூடாகக்ப் பாயும் மின்னோட்டமானது, குழாயொன்றில் நீர் பாய்வதைப் போன்றதாகும். கம்பி வழியே ஏற்படும் மின்னழுத்த வீழ்ச்சியானது, குழாயினூடாக நீரை அனுப்பும் அழுத்தத்தின் வீழ்ச்சியைப் போன்றதாகும். கடத்துதிறன் என்பது குறித்த அமுக்கத்துக்கு ஏற்படும் பாய்ச்சல் அளவு போன்றதாகும். தடை என்பது குறித்த பாய்ச்சல் அளவுக்குத் தேவைப்படும் அழுத்தத்தைப் போன்றதாகும். (கடத்துதிறனும், தடையும் நேர்மாறுத் தொடர்புடையன.)

மின்னழுத்த "வீழ்ச்சி" (அதாவது, தடையொன்றின் இரு புறங்களிலும் உள்ள மின்னழுத்தங்களுக்கிடையிலான வித்தியாசம்) தடையினூடாக மின்சாரத்தைச் செலுத்துவதற்கான வலுவை வழங்குகிறது. நீரியல் அழுத்தத்திலும், குழாயொன்றின் இருபுறங்களிலும் காணப்படும் நீரியல் அமுக்கமே நீர்ப்பாய்ச்சலை நிர்ணயிக்கிறது. உதாரணமாக, குழாயொன்றின் மேலே உயர் நீரியல் அழுத்தம் காணப்பட்டாலும், குழாயின் கீழ்ப்புறத்திலும் அதற்குச் சமனான அமுக்கம் காணப்படுமானால், நீர் அதனூடே பாயாது. ஏனெனில், கீழ்ப்புற அமுக்கம் மேற்புற அமுக்கத்தை எதிர்ப்பதாலாகும். (இடப்புறப் படத்தில், குழாய்க்கு மேலுள்ள நீரியல் அமுக்கம் பூச்சியமாகும்.)

கம்பியொன்றின் தடையும் கடத்துதிறனும், இரு காரணிகளால் நிர்ணயிக்கப்படும். அவை, கம்பியின் கேத்திர கணித வடிவமும், அது ஆக்கப்பட்டுள்ள பதார்த்தமுமாகும்.

வடிவம் மிகவும் முக்கியமானதாகும். ஏனெனில், அகலமான குறுகிய குழாயிலும் பார்க்க, ஒடுங்கிய நீண்ட குழாயினூடாக நீரைச் செலுத்துதல் கடினமானதாகும். இதே போல், நீண்ட ஒடுங்கிய செப்புக் கம்பியின் தடையானது, குறுகிய தடித்த செப்புக் கம்பியிலும் பார்க்க உயர் தடை (தாழ் கடத்துதிறன்) கொண்டதாகும்.

ஆக்கப் பதார்த்தமும் முக்கியமானதாகும். ஒரே வடிவமும் அளவும் உடைய இரு குழாய்களில் சுத்தமான குழாயினூடான நீர்ப்பாய்ச்சல் வேகத்திலும் பார்க்க முடிக்கற்றையால் அடைக்கப்பட்ட குழாயில் நீரின் வேகம் குறைவானதாகும். இதேபோல், இலத்திரன்கள் செப்புக் கம்பியினூடாக இலகுவாகவும் சுதந்திரமாகவும் பாய முடியும். ஆனால், அதே வடிவமும் அளவும் உடைய உருக்குக் கம்பியினூடாக இலகுவாகப் பாயாது. மேலும், எவ்வடிவமாயிருந்தாலும் இறப்பர் போன்ற காவலிப் பதார்த்தங்களில் இலத்திரன் பாய்ச்சல் காணப்படாது. செப்பு, உருக்கு மற்றும் இறப்பர் என்பவற்றுக்கிடையிலான வித்தியாசமானது அவற்றின் அணுக்கட்டமைப்பிலும் இலத்திரன் நிலையமைப்பிலும் தங்கியுள்ளது. இவ்வியல்பு தடைத்திறன் எனும் கணியத்தால் அளவிடப்படுகிறது.

கடத்திகளும் தடையிகளும்

ஒரு 65 Ω தடையி, நிறக்குறியீட்டின் மூலம் பெறுமானம் அறியப்படுகிறது. (நீலம்-பச்சை-கறுப்பு-பொன்). ஓம்மானியொன்றைப் பயன்படுத்தி இதன் பெறுமானத்தை அறிந்து கொள்ளலாம்.

மின்சாரத்தைத் தம்மூடாகப் பாயவிடும் பொருட்கள் கடத்திகள் எனப்படும். மின் சுற்றுக்களில் பயன்படுத்தப்படும், ஒரு குறித்த தடைப் பெறுமானத்தையுடைய கடத்தித் துண்டு தடையி எனப்படும். கடத்திகள் செப்பு, அலுமினியம் போன்ற உயர் கடத்துதிறனுடைய பதார்த்தங்களால் ஆக்கப்பட்டிருக்கும். எனினும், தடையிகள் பல்வேறு மூலப்பொருட்களால் ஆக்கப்பட்டிருக்கும். தேவையான தடைப் பெறுமானம், சக்தி வெளியேற்ற அளவு, பெறுமானத்தின் வழு வீதம் மற்றும் செலவு என்பவற்றைப் பொறுத்து இம் மூலப்பொருட்கள் தீர்மானிக்கப்படும்.

ஓமின் விதி

நான்கு சாதனங்களின் மின்னோட்ட-மின்னழுத்த தொடர்பு: இரு தடையிகள், இருவாயி மற்றும் மின்கலம். கிடை அச்சு மின்னழுத்த வீழ்ச்சியையும் நிலைகுத்து அச்சு மின்னோட்டத்தையும் குறிக்கின்றன. வரைபு உற்பத்தியினூடாகச் செல்லும் நேர்கோடாக அமையும்போது ஓமின் விதி திருப்திசெய்யப்படும். எனவே, தடையிகள் இரண்டும் ஓமின் விதிக்கமைவாகச் செயற்படும். எனினும் இருவாயியும் மின்கலமும் முரணானவை.

ஓமின் விதி எனப்படுவது மின்சாதனமொன்றுக்குக் குறுக்கான மின்னழுத்தம் V ஐயும் அதனூடு பாயும் மின்னோட்டம் I ஐயும் தொடர்புபடுத்தும் விதியாகும். இது பின்வருமாறு தரப்படும்:

(V யானது Iக்கு நேர்விகிதசமனாகும்.). இவ்விதி எப்போதும் உண்மையல்ல. உதாரணமாக இருவாயி, மின்கலங்கள் என்பவற்றைக் குறிப்பிடலாம். எனினும் கம்பிகள் மற்றும் தடையிகளை கருதும்போது, (வெப்பநிலை போன்ற காரணிகள் மாறவில்லை எனக் கொண்டு) இவ்விதி உண்மையானதாகும். ஓமின் விதிக்கு கட்டுப்படும் பொருட்கள் ஓமின் விதிக்கமைவானவை எனவும், இவ்விதிக்கு கட்டுப்படாதவை ஓமின் விதிக்கெதிரானவை எனவும் அழைக்கப்படும்.

தடையை அளத்தல்

தடையை அளக்கும் கருவி ஓம்மானி எனப்படும். பொதுவான ஓம்மானிகள் குறைந்த தடைகளைத் திருத்தமாக அளப்பதில்லை. ஏனெனில் அவற்றின் அளக்கும் முனைவுகளில் மின்னழுத்த வீழ்ச்சி ஏற்பட்டு அளவீடு தவறாகலாம். எனவே மிகவும் திருத்தமான அளவிடு கருவிகள் நான்கு முனை உணரி முறையைப் பயன்படுத்துகின்றன.

பொதுவான மின்தடைகள்

ஆக்கக் கூறுமின்தடை (Ω)
1 மீற்றர் நீளத்தையும் ஒரு மில்லிமீற்றர் விட்டத்தையும்
கொண்ட செப்புக்கம்பி
0.02[2]
1 km தலைமேல் மின்வடம்
(பொதுவானது)
0.03[3]
AA மின்கலம் (பொதுவான
அகத்தடை)
0.1[4]
வெள்ளொளிர்வு விளக்கு
மின்னிழை (பொதுவானது)
200-1000[5]
மனித உடல்1000 தொடக்கம் 100,000 வரை[6]

சக்தி விரயமும் யூலின் வெப்பவிளைவும்

உயர்தடையுள்ள பொருட்களினூடு மின்னைச் செலுத்தும்போது வெப்பம் உருவாகும். இத் தோற்றப்பாடு யூலின் வெப்பவிளைவு எனப்படும். இப்படத்தில் கைத்தொழிலில் பயன்படும் தடை ஒன்று யூலின் வெப்பவிளைவால் சூடாகி செஞ்சூடாக ஒளிர்கிறது.

தடையிகள் (மற்றும் தடையைக் கொண்ட மூலகங்கள்) மின்னோட்டத்தை எதிர்க்கும். எனவே, தடையினூடாக மின்னோட்டத்தை அனுப்புவதற்கு மின்சக்தி தேவை. இச் சக்தி தடையில் வெப்பமாக விரயமாக்கப்படும். இது யூலின் வெப்பவிளைவு எனப்படும் (ஜேம்சு பிரெசுகொட் யூலின் நினைவாக). இவ் விளைவு ஓமிய வெப்பமாதல் அல்லது தடைய வெப்பமாதல் எனவும் அழைக்கப்படும்.

பெரும்பாலான சந்தர்ப்பங்களில் மின்சக்தி விரயம் விரும்பத்தகாதது. முக்கியமாக மின் வடங்களில் ஏற்படும் பரிமாற்றல் இழப்புகளைக் குறிப்பிடலாம். இவ்விழப்பைக் குறைக்க உயர் அழுத்த மின் பரிமாற்றல் பயன்படுத்தப்படுகிறது. இங்கு மின்வலு மாற்றமடைவதில்லை. எனவே ஒரு குறித்த மின்வலுவுக்கு அழுத்தம் அதிகரிக்கையில் மின்னோட்டம் குறையும். எனவே வெப்ப இழப்பும் குறைவடையும்.

மாறாக, யூலின் வெப்பவிளைவு சில சந்தர்ப்பங்களில் பயனுள்ளதாகவும் அமைகிறது. உதாரணமாக, மின்னடுப்புகள் மற்றும் மின்கொதிகலன்கள் (தடைக் கொதிகலன்கள் எனவும் அழைக்கப்படும்) என்பவற்றைக் குறிப்பிடலாம். மேலும், தங்குதன் இழை மின்குமிழ்கள் யூலின் வெப்பவிளைவில் தங்கியுள்ளது. இதன் இழை உயர் வெப்பநிலைக்குச் சூடாக்கப்படும்போது வெப்பக்கதிர்ப்புடன் "வெண் சூடாக" ஒளிரும் (வெள்ளொளிர்வு எனவும் அழைக்கப்படும்).

யூலின் வெப்பவிளைவுக்கான சமன்பாடு:

இங்கு P மின்சக்தியிலிருந்து வெப்பசக்தியாக மாற்றப்பட்ட வலுவும் (அலகு நேரத்துக்கான சக்தி), R தடையும், I தடையியினூடான மின்னோட்டமுமாகும்.

தடை தங்கியுள்ள காரணிகள்

வெப்பநிலை

அறைவெப்பநிலைக்கு அண்மையில் உலோகங்களின் தடைத்திறன் வெப்பநிலையுடன் அதிகரிக்கும். எனினும் குறைகடத்திகளின் தடைத்திறன் வெப்பநிலையுடன் குறைவடையும். காவலிகளினதும் மின்பகுபொருட்களினதும் தடைத்திறன் அது அமைந்துள்ள தொகுதியைப் பொறுத்து வெப்பநிலையுடன் அதிகரிப்பையோ குறைவையோ காட்டும்.

இதனால், கம்பிகள், தடையிகள் மற்றும் ஏனைய பாகங்களின் தடை வெப்பநிலையுடன் அடிக்கடி மாற்றமடையும். இதனால் உயர் வெப்பநிலைகளில் இலத்திரனியல் சுற்றுக்கள் செயலிழக்கலாம். சில சந்தர்ப்பங்களில் இவ் விளைவு உபயோகமானதாக உள்ளது. இவ்விளைவைப் பயன்படுத்தி தடை வெப்பமானிகள் மற்றும் வெப்பத்தடைசைகள் உருவாக்கப்படுகின்றன. (தடை வெப்பமானி பிளாற்றினம் போன்ற உலோகங்களால் ஆக்கப்படும். எனினும், வெப்பத்தடைசைகள் பீங்கான் அல்லது பல்பகுதியம் போன்றவற்றால் ஆக்கப்படும்.)

தடை வெப்பமானிகளும் வெப்பத்தடைசைகளும் பொதுவாக இரு வழிகளில் பாவிக்கப்படுகின்றன. முதலாவதாக, இவை வெப்பமானிகளாகப் பயன்படுத்தப்படலாம். இவற்றின் தடையை அளப்பதன் மூலம் சூழலின் வெப்பநிலையை உய்த்தறியலாம். இரண்டாவதாக, இவை யூலின் வெப்பவிளைவின் (சுய வெப்பமாதல் எனவும் அழைக்கப்படும்) அடிப்படையில் பயன்படுத்தப்படலாம். பாரிய மின்னோட்டமொன்று தடையியினூடாகப் பாயும்போது தடையியின் வெப்பநிலை உயரும். எனவே தடையியின் தடைப்பெறுமானம் மாற்றமடையும். எனவே இவை, உருகிகள் போன்று மின்சுற்றுக்களைப் பாதுகாக்கும் வகையில் பயன்படுத்தப்படலாம். மேலும் இவை சுற்றுக்களில் பின்னூட்டல் வழங்குவதற்காகவும் பயன்படுத்தப்படுகின்றன. பொதுவாக, சுய வெப்பமாதல் விளைவு ஒரு தடையியை சீரற்ற மூலகமாக மாற்றிவிடும்.

வெப்பநிலை T அதிகமாக மாறாதவிடத்து, நேர்விகிதசம அண்ணளவாக்கம் உபயோகிக்கப்படும்:

இங்கு தடைவெப்பநிலைக் குணகம் எனப்படும். நிலைத்த நியம வெப்பநிலையாகும் (பொதுவாக அறை வெப்பநிலை). என்பது அளவீட்டுத் தரவுகளின் மூலம் பெறப்பட்ட மாறிலியாகும். இது வெவ்வேறு நியம வெப்பநிலைக்கேற்ப மாறுபடும். ஏனெனில் நேர்விகிதசம அண்ணளவாக்கம் ஒரு அண்ணளவாக்கம் மட்டுமே. எனவே அளக்கப்பட்ட வெப்பநிலை கீழொட்டாகக் குறிக்கப்படும். உதாரணமாக எனக் குறிக்கப்படும். மேலும், இத்தொடர்பு நியம வெப்பநிலைக்கு அருகான வீச்சில் மட்டுமே செல்லுபடியாகும்.[7]

தடைவெப்பநிலைக் குணகம் பொதுவாக உலோகங்களுக்கு அறைவெப்பநிலைக்கண்மையில் +3×10−3 K−1 இலிருந்து +6×10−3 K−1 வரையான வீச்சில் காணப்படும்.குறைகடத்திகள் மற்றும் காவலிகளுக்கு இது மறைப்பெறுமானம் கொண்டதாகவும் இதன் வீச்சு மிகப் பெரியதாகவும் இருக்கும்.

விகாரம்

தகைப்பு கடத்தியொன்றின் தடை வெப்பநிலையில் தங்கியிருப்பது போலவே அதன் விகாரத்திலும் தங்கியிருக்கும். கடத்தியொன்றை இழுவைக்குள்ளாக்கும் போது (கடத்தியை நீட்சியடையச் செய்யும் வகையிலான தகைப்பு), கடத்தியின் நீளம் அதிகரிப்பதோடு அதன் குறுக்கு வெட்டுப்பரப்பும் குறைவடைகிறது. இவ்விரு விளைவுகளாலும் கடத்தியின் தடை அதிகரிக்கிறது. நெருக்கலின் போது (எதிர்த்திசையிலான விகாரம்), கடத்தியின் தடை குறைகிறது.

ஒளிச்செறிவு

பொதுவாக, குறைகடத்திகளினால் தயாரிக்கப்பட்ட சில தடையிகள் ஒளிமின்கடத்துமை இயல்பைக் காட்டுகின்றன. இவற்றின் மேல் ஒளி விழுகையில் இவற்றின் தடை மாற்றமடைகிறது. எனவே இவை ஒளித்தடையிகள் (அல்லது ஒளி உணரித் தடையிகள்) என அழைக்கப்படுகின்றன. இவை ஒரு வகை ஒளி உணரிகளாகும்.

மீக்கடத்துதிறன்

மீகடத்திகள் பூச்சியத் தடையையும் முடிவிலிக் கடத்துதிறனையும் கொண்டவை. ஏனெனில் இவற்றில் V=0 ஆகுகையில் I≠0 ஆகலாம். இதனால் இவற்றில் யூலின் வெப்பவிளைவு ஏற்படுவதில்லை. அதாவது மின்சக்தி விரயம் ஏற்படுவதில்லை. எனவே மீகடத்தியொன்று மூடிய சுற்றாக்கப்படும்போது அச்சுற்றில் மின்னோட்டம் தொடர்ந்து ஓடிக்கொண்டிருக்கும். NbSn கலப்புலோகம் போன்ற உலோக மீக்கடத்திகள் தொழிற்படுவதற்கு 4 K அளவிலான வெப்பநிலை பேணப்பட வேண்டும். இங்கு குறித்த வெப்பநிலையை அடைய திரவ ஈலியம் பயன்படுத்தப்படுகிறது. விலையுயர்ந்த, உடையக்கூடிய மற்றும் மெல்லிய, பீங்கானாலான உயர் வெப்பநிலை மீகடத்திகளுக்கு 77K வெப்பநிலை பேணப்படவேண்டும். இங்கு குறித்த வெப்பநிலையை அடைய திரவ நைதரசன் பயன்படுத்தப்படுகிறது. இவை தவிர, மீக்கடத்திக் காந்தம் போன்ற பல்வேறு மீக்கடத்தித் தொழில்நுட்பங்கள் காணப்படுகின்றன.

இதையும் பார்க்க

மேற்கோள்கள்

"https:https://www.search.com.vn/wiki/index.php?lang=ta&q=மின்தடை&oldid=2485890" இலிருந்து மீள்விக்கப்பட்டது
🔥 Top keywords: தீரன் சின்னமலைதமிழ்இராம நவமிஅண்ணாமலை குப்புசாமிமுதற் பக்கம்சிறப்பு:Search2024 இந்தியப் பொதுத் தேர்தல்நாம் தமிழர் கட்சிடெல்லி கேபிடல்ஸ்வினோஜ் பி. செல்வம்வானிலைதிருக்குறள்தமிழக மக்களவைத் தொகுதிகள்சுப்பிரமணிய பாரதிஇந்திய மக்களவைத் தொகுதிகள்சீமான் (அரசியல்வாதி)தமிழச்சி தங்கப்பாண்டியன்சுந்தர காண்டம்தமிழ்நாட்டில் இந்தியப் பொதுத் தேர்தல், 2024பாரதிதாசன்இந்திய நாடாளுமன்றம்பிரியாத வரம் வேண்டும்முருகன்தினகரன் (இந்தியா)தமிழ்த் திரைப்படங்களின் பட்டியல் (ஆண்டு வரிசை)தமிழ்நாட்டின் சட்டமன்றத் தொகுதிகள்மக்களவை (இந்தியா)தமிழ்நாட்டின் மாவட்டங்கள்தமிழ் தேசம் (திரைப்படம்)பதினெண் கீழ்க்கணக்குஇராமர்அம்பேத்கர்விக்ரம்நயினார் நாகேந்திரன்கம்பராமாயணம்பொன்னுக்கு வீங்கிதமிழ்நாடுவிநாயகர் அகவல்திருவண்ணாமலை