جرمانيوم

عنصر كيميائي له الرمز Ge وعدد الذري 32

الجرمانيوم عنصرٌ كيميائي رمزه Ge وعدده الذرّي 32، ويقع في المرتبة الثالثة ضمن عناصر المجموعة الرابعة عشرة في الجدول الدوري، والمعروفة باسم «مجموعة الكربون». يُصنّف الجرمانيوم كيميائياً ضمن أشباه الفلزّات. يوجد الجرمانيوم في الظروف القياسية من الضغط ودرجة الحرارة على هيئة عنصرٍ صلبٍ هشٍّ ذي لونٍ لامعٍ بين الأبيض والرمادي، وهو يشبه السيليكون في منظره وخواصّه. ولا يوجد عنصر الجرمانيوم بشكله الحرّ في الطبيعة، ولكنه غالباً ما يوجد مرتبطاً مع الأكسجين في مركّبات مختلفة. ومن النادر العثور على تراكيز مرتفعة من خامات الجرمانيوم؛ فهو يقع حوالي المرتبة الخمسين بالنسبة للوفرة الطبيعية للعناصر الكيميائية في القشرة الأرضية.

زرنيخجرمانيومغاليوم
Si

Ge

Sn
Element 1: هيدروجين (H), لا فلز
Element 2: هيليوم (He), غاز نبيل
Element 3: ليثيوم (Li), فلز قلوي
Element 4: بيريليوم (Be), فلز قلوي ترابي
Element 5: بورون (B), شبه فلز
Element 6: كربون (C), لا فلز
Element 7: نيتروجين (N), لا فلز
Element 8: أكسجين (O), لا فلز
Element 9: فلور (F), هالوجين
Element 10: نيون (Ne), غاز نبيل
Element 11: صوديوم (Na), فلز قلوي
Element 12: مغنيسيوم (Mg), فلز قلوي ترابي
Element 13: ألومنيوم (Al), فلز ضعيف
Element 14: سيليكون (Si), شبه فلز
Element 15: فسفور (P), لا فلز
Element 16: كبريت (S), لا فلز
Element 17: كلور (Cl), هالوجين
Element 18: آرغون (Ar), غاز نبيل
Element 19: بوتاسيوم (K), فلز قلوي
Element 20: كالسيوم (Ca), فلز قلوي ترابي
Element 21: سكانديوم (Sc), فلز انتقالي
Element 22: تيتانيوم (Ti), فلز انتقالي
Element 23: فاناديوم (V), فلز انتقالي
Element 24: كروم (Cr), فلز انتقالي
Element 25: منغنيز (Mn), فلز انتقالي
Element 26: حديد (Fe), فلز انتقالي
Element 27: كوبالت (Co), فلز انتقالي
Element 28: نيكل (Ni), فلز انتقالي
Element 29: نحاس (Cu), فلز انتقالي
Element 30: زنك (Zn), فلز انتقالي
Element 31: غاليوم (Ga), فلز ضعيف
Element 32: جرمانيوم (Ge), شبه فلز
Element 33: زرنيخ (As), شبه فلز
Element 34: سيلينيوم (Se), لا فلز
Element 35: بروم (Br), هالوجين
Element 36: كريبتون (Kr), غاز نبيل
Element 37: روبيديوم (Rb), فلز قلوي
Element 38: سترونشيوم (Sr), فلز قلوي ترابي
Element 39: إتريوم (Y), فلز انتقالي
Element 40: زركونيوم (Zr), فلز انتقالي
Element 41: نيوبيوم (Nb), فلز انتقالي
Element 42: موليبدنوم (Mo), فلز انتقالي
Element 43: تكنيشيوم (Tc), فلز انتقالي
Element 44: روثينيوم (Ru), فلز انتقالي
Element 45: روديوم (Rh), فلز انتقالي
Element 46: بلاديوم (Pd), فلز انتقالي
Element 47: فضة (Ag), فلز انتقالي
Element 48: كادميوم (Cd), فلز انتقالي
Element 49: إنديوم (In), فلز ضعيف
Element 50: قصدير (Sn), فلز ضعيف
Element 51: إثمد (Sb), شبه فلز
Element 52: تيلوريوم (Te), شبه فلز
Element 53: يود (I), هالوجين
Element 54: زينون (Xe), غاز نبيل
Element 55: سيزيوم (Cs), فلز قلوي
Element 56: باريوم (Ba), فلز قلوي ترابي
Element 57: لانثانوم (La), لانثانيدات
Element 58: سيريوم (Ce), لانثانيدات
Element 59: براسيوديميوم (Pr), لانثانيدات
Element 60: نيوديميوم (Nd), لانثانيدات
Element 61: بروميثيوم (Pm), لانثانيدات
Element 62: ساماريوم (Sm), لانثانيدات
Element 63: يوروبيوم (Eu), لانثانيدات
Element 64: غادولينيوم (Gd), لانثانيدات
Element 65: تربيوم (Tb), لانثانيدات
Element 66: ديسبروسيوم (Dy), لانثانيدات
Element 67: هولميوم (Ho), لانثانيدات
Element 68: إربيوم (Er), لانثانيدات
Element 69: ثوليوم (Tm), لانثانيدات
Element 70: إتيربيوم (Yb), لانثانيدات
Element 71: لوتيشيوم (Lu), لانثانيدات
Element 72: هافنيوم (Hf), فلز انتقالي
Element 73: تانتالوم (Ta), فلز انتقالي
Element 74: تنجستن (W), فلز انتقالي
Element 75: رينيوم (Re), فلز انتقالي
Element 76: أوزميوم (Os), فلز انتقالي
Element 77: إريديوم (Ir), فلز انتقالي
Element 78: بلاتين (Pt), فلز انتقالي
Element 79: ذهب (Au), فلز انتقالي
Element 80: زئبق (Hg), فلز انتقالي
Element 81: ثاليوم (Tl), فلز ضعيف
Element 82: رصاص (Pb), فلز ضعيف
Element 83: بزموت (Bi), فلز ضعيف
Element 84: بولونيوم (Po), شبه فلز
Element 85: أستاتين (At), هالوجين
Element 86: رادون (Rn), غاز نبيل
Element 87: فرانسيوم (Fr), فلز قلوي
Element 88: راديوم (Ra), فلز قلوي ترابي
Element 89: أكتينيوم (Ac), أكتينيدات
Element 90: ثوريوم (Th), أكتينيدات
Element 91: بروتكتينيوم (Pa), أكتينيدات
Element 92: يورانيوم (U), أكتينيدات
Element 93: نبتونيوم (Np), أكتينيدات
Element 94: بلوتونيوم (Pu), أكتينيدات
Element 95: أمريسيوم (Am), أكتينيدات
Element 96: كوريوم (Cm), أكتينيدات
Element 97: بركيليوم (Bk), أكتينيدات
Element 98: كاليفورنيوم (Cf), أكتينيدات
Element 99: أينشتاينيوم (Es), أكتينيدات
Element 100: فرميوم (Fm), أكتينيدات
Element 101: مندليفيوم (Md), أكتينيدات
Element 102: نوبليوم (No), أكتينيدات
Element 103: لورنسيوم (Lr), أكتينيدات
Element 104: رذرفورديوم (Rf), فلز انتقالي
Element 105: دوبنيوم (Db), فلز انتقالي
Element 106: سيبورغيوم (Sg), فلز انتقالي
Element 107: بوريوم (Bh), فلز انتقالي
Element 108: هاسيوم (Hs), فلز انتقالي
Element 109: مايتنريوم (Mt), فلز انتقالي
Element 110: دارمشتاتيوم (Ds), فلز انتقالي
Element 111: رونتجينيوم (Rg), فلز انتقالي
Element 112: كوبرنيسيوم (Cn), فلز انتقالي
Element 113: نيهونيوم (Nh)
Element 114: فليروفيوم (Uuq)
Element 115: موسكوفيوم (Mc)
Element 116: ليفرموريوم (Lv)
Element 117: تينيسين (Ts)
Element 118: أوغانيسون (Og)
32Ge
المظهر
أبيض رمادي
Grayish lustrous block with uneven cleaved surface
الخواص العامة
الاسم، العدد، الرمزجرمانيوم، 32، Ge
تصنيف العنصرشبه فلز
المجموعة، الدورة، المستوى الفرعي14، 4، p
الكتلة الذرية72.64 غ·مول−1
توزيع إلكترونيAr]; 3d10 4s2 4p2]
توزيع الإلكترونات لكل غلاف تكافؤ2, 8, 18, 4 (صورة)
الخواص الفيزيائية
الطورصلب
الكثافة (عند درجة حرارة الغرفة)5.323 غ·سم−3
كثافة السائل عند نقطة الانصهار5.60 غ·سم−3
نقطة الانصهار1211.40 ك، 938.25 °س، 1720.85 °ف
نقطة الغليان3106 ك، 2833 °س، 5131 °ف
حرارة الانصهار36.94 كيلوجول·مول−1
حرارة التبخر334 كيلوجول·مول−1
السعة الحرارية (عند 25 °س)23.222 جول·مول−1·كلفن−1
ضغط البخار
ض (باسكال)1101001 كيلو10 كيلو100 كيلو
عند د.ح. (كلفن)164418142023228726333104
الخواص الذرية
أرقام الأكسدة4, 3, 2, 1, 0, -1, -2, -3, -4
أكاسيده تذبذب)
الكهرسلبية2.01 (مقياس باولنغ)
طاقات التأينالأول: 762 كيلوجول·مول−1
الثاني: 1537.5 كيلوجول·مول−1
الثالث: 3302.1 كيلوجول·مول−1
نصف قطر ذري122 بيكومتر
نصف قطر تساهمي122 بيكومتر
نصف قطر فان دير فالس211 بيكومتر
خواص أخرى
البنية البلوريةبنية الألماس المكعّبة
المغناطيسيةمغناطيسية معاكسة[1]
مقاومة كهربائية1 أوم·متر (20 °س)
الناقلية الحرارية60.2 واط·متر−1·كلفن−1 (300 كلفن)
التمدد الحراري6.0 ميكرومتر/(م·كلفن)
سرعة الصوت (سلك رفيع)5400 متر/ثانية (20 °س)
معامل يونغ103[2] غيغاباسكال
معامل القص41[2] غيغاباسكال
معامل الحجم75[2] غيغاباسكال
نسبة بواسون0.26[2]
صلادة موس6.0
رقم CAS7440-56-4
طاقة فجوة النطاق عند 300 كلفن0.67 eV
النظائر الأكثر ثباتاً
المقالة الرئيسية: نظائر الجرمانيوم
النظائرالوفرة الطبيعيةعمر النصفنمط الاضمحلالطاقة الاضمحلال MeVناتج الاضمحلال
68Geمصطنع270.8 يومε-68Ga
70Ge21.23%70Ge هو نظير مستقر وله 38 نيوترون
71Geمصطنع11.26 يومε-71Ga
72Ge27.66%72Ge هو نظير مستقر وله 40 نيوترون
73Ge7.73%73Ge هو نظير مستقر وله 41 نيوترون
74Ge35.94%74Ge هو نظير مستقر وله 42 نيوترون
76Ge7.44%1.78×1021 سنةββ-76Se

اكتُشِفَ هذا العنصر في أواخر القرن التاسع عشر، وكان ضمن العناصر التي توقّعها ديميتري مندلييف، وأطلق عليه اصطلاحاً اسم «إيكاسيليكون»؛ إلى أن تمكّن الكيميائي كليمنس فنكلر من اكتشاف هذا العنصر، والذي أسماه بالجِرْمانيوم نسبةً إلى موطنه ألمانيا. يُستخرَج الجرمانيوم أثناء معالجة خام السفاليريت، الخام الرئيس للزنك؛ بالإضافة إلى استحصاله من خامات الفضّة والرصاص والنحاس. يُستخدَم الجرمانيوم بشكلٍ واسعٍ في صناعة أشباه الموصلات، وخاصّةً في صناعة الترانزستورات والمكوّنات الإلكترونية المختلفة. كما يُستخدَم حالياً في صناعة الألياف البصرية والخلايا الشمسية والثنائِيَات الباعثة للضوء. من جهةٍ أخرى، لا يوجد دورٌ حيويٌّ معروفٌ للجرمانيوم بالنسبة للإنسان.

التاريخ وأصل التسمية

صورة من جدول مندلييف الدوري تعود إلى سنة 1869، وفيه يبدو المكان المتوقّع للعنصر الذي أسماه إيكاسيليكون.
كليمنس فنكلر مكتشف عنصر الجرمانيوم

كان هذا العنصر ضمن العناصر التي توقّعها ديميتري مندلييف [ط 1] في سنة 1869، وأطلق حينها عليه التسمية المؤقّتة «»إيكاسيليكون [ط 2] نظراً لموقعه في الجدول الدوري في مجموعة الكربون تحت عنصر السيليكون وفوق عنصر القصدير.[3] كما خمّن أن تكون الكتلة الذرّية النسبية لهذا العنصر بمقدار 70، وهي قريبة بالفعل من القيمة التجريبيّة (72).[4]

عيّنات من مركّبات الجرمانيوم التي حضّرها فنكلر بعد اكتشافه للعنصر.

في سنة 1885 اكتُشِفَ معدنٌ جديدٌ في منجمٍ في مدينة فرايبرغ [ط 3] الألمانية، وأُطلِقَ عليه اسم «أرجيروديت» [ط 4].[5] وُكّل حينها الكيميائي كليمنس فنكلر [ط 5] العامل في جامعة فرايبيرغ التكنولوجية [ط 6] بتحليل هذا المعدن، والذي تبيّن أنّه مُكوَّنٌ من الفضّة والكبريت، بالإضافة إلى وجود عنصر جديد. لم يتمكّن فنكلر في البداية من عزله، وبعد محاولات كثيفة استمرّت لعدّة شهور، استطاع فنكلر في سنة 1886 من عزل كبريتيد [ط 7] أبيض، والذي أدّى اختزاله إلى الحصول على العنصر الجديد. نظراً لشبهه بالإثمد (الأنتيموان) [ط 8]، ظنّ فنكلر بشكلٍ أوّليٍّ أنّ العنصر الجديد قد يكون إيكاأنتيموان [ط 9]، ولكن بعد التحقّق، تبيّن له أنّه عنصر إيكاسيليكون بالفعل.[6][7][8] قرّر فنكلر، قبل أن يقوم بنشر نتائج أبحاثه عن العنصر الجديد، بأن يطلق عليه اسم «»نبتونيوم [ط 10]، وذلك نسبةً إلى كوكب نبتون المكتشف حديثاً حينها في سنة 1846، خاصّةً أن تخمينات رياضية أيضاً قد تنبّأت بوجود الكوكب قبل اكتشافه، بشكلٍ مشابهٍ لهذا العنصر. إلّا أنّ اسم نبتونيوم كان محجوزاً من أجل تسمية عنصرٍ آخر حديثِ الاكتشاف في ذلك الوقت.[ملاحظة 1] عِوضاً عن ذلك، أطلق فنكلر على العنصر الجديد اسم «جرمانيوم»، نسبةً إلى الاسم اللاتيني لوطنه الأمّ ألمانيا.[7] بعد استخراج كمّيّاتٍ كافيةٍ من معدن الأرجيروديت، قام فنكلر بدراسة الخواص الكيميائية لهذا العنصر مؤكّداً الكثير من توقّعات مندلييف المُسبقَة؛[6][7][13] كما تمكّن أيضًاً من تحضير العديد من المركّبات الكيميائية لهذا العنصر.[6]

الخاصةإيكاسيليكون
متوقعة
الجرمانيوم
محددة
الكتلة الذرّية72.6472.63
الكثافة (غ/سم3)5.55.35
نقطة الانصهار (°س)مرتفعة947
اللونرماديرمادي
نمط الأكسيدثنائي أكسيد حراريثنائي أكسيد حراري
كثافة الأكسيد (غ/سم3)4.74.7
خواص الأكسيد الكيميائيةقاعدية ضعيفةقاعدية ضعيفة
نقطة غليان الكلوريد (°س)دون 10086 (GeCl4)
كثافة الكلوريد (غ/سم3)1.91.9

حتى أواخر ثلاثينيّات القرن العشرين، كان يُعتقَد أنّ الجرمانيوم فلزّ سيِّئً الموصلية؛[14] إلّا أنّ استخداماته المهمّة بدأت بالتزايد بشكلٍ تدريجيّ، إذ في الحرب العالمية الثانية استُخدم الجرمانيوم على نطاقٍ صغيرٍ في الأجهزة الإلكترونية، وخاصّةً ثنائيّات المساري [ط 11].[15][16] وكان أوّل تطبيقٍ رئيسيٍّ له دخولُهُ في تركيب ثنائي مساري شوتكي [ط 12] المستخدَم في أجهزة الرادار أثناء الحرب.[14] إلّا أنّ أهميّته الاقتصادية ازدادت كثيراً بعد الحرب، عندما اكتشفت خواصّه شبه الموصلة، إذ قبل سنة 1945 كانت الكمّيّات المنتَجة من الجرمانيوم لا تتجاوز بضعة مئات من الكيلوغرامات سنوياً، والتي كانت تُنتَج في مصاهر الفلزّات [ط 13]؛ ولكن بالمقابل، بلغ الإنتاج السنويّ من الجرمانيوم نهاية خمسينيّات القرن العشرين قرابة 40 مليون طن.[17]

كانت الأشكال الأولى من الترانزستور معتمدةً بشكلٍ كاملٍ على الجرمانيوم؛[18] وأدّى ذلك التطوير إلى فتح الباب على مصراعيه لتطبيقات غير منتهية لإلكترونيّات الجوامد [ط 14].[19][20] استُحصِلت الأشكال الأولى من سبائك السيليكون والجرمانيوم [ط 15] في أواسط الخمسينيّات؛[21] وحتى أوائل سبعينيّات القرن العشرين كان هناك طلبٌ متزايدٌ على الجرمانيوم في صناعة أشباه الموصلات، إلى أن حلّ السيليكون مرتفع النقاوة محلّ الجرمانيوم في المكوّنات الإلكترونية مثل الترانزستورات وثنائيات المساري والمقوّمات [ط 16].[22]

الوفرة الطبيعية

معدن الرينيريت

يتشكّل الجرمانيوم في الكون من تفاعلات الانصهار النجمي [ط 17]، وغالباً وفق عملية التقاط النيوترون البطيئة [ط 18] في مناطق العماليق المقاربة [ط 19].[23] وقد بُرهِنَ على وجود الجرمانيوم في الغلاف الجوّي لكوكب المشتري؛[24] وكذلك في عددٍ من النجوم سحيقة البعد في الكون.[25]

يأتي الجرمانيوم حوالي المرتبة الخمسين بين العناصر في القشرة الأرضية، وتبلغ الوفرة الطبيعية له فيها قرابة 1.6 جزء في المليون [ط 20].[26] هناك بضعة معادن فقط حاوية على كمّيّات معتبرة من الجرمانيوم، مثل: الأرجيروديت [ط 21] والبريارتيت [ط 22] والجرمانيت [ط 23] والرينيريت [ط 24] والسفاليريت [ط 25].[22][27]

الاستخراج

من النادر العثور على كمّيّات كبيرة مجدية للاستخراج من معادن الجرمانيوم.[28][29][30] بالمقابل؛ يمكن العثور على كمّيّات كافية من الجرمانيوم في بعض توضّعات خامات الزنك أو النحاس أو الرصاص، بحيث تكون عملية الاستخراج مجديةً اقتصادياً.[26] في حالاتٍ خاصّة، قد تحدث عمليّات تخصيب طبيعية تؤدّي إلى إثراء الخامات بالجرمانيوم في مناجم الفحم، وتلك ظاهرة اكتشفها فكتور غولدشميت [ط 26] أثناء قيامه بعمليات مسح عن توضّعات الجرمانيوم الجيولوجية.[31][32] وردت تقارير عن العثور على كمّيّات معتبرة من الجرمانيوم في مناجم في مقاطعة نورثمبرلاند [ط 27] الإنجليزية؛[31][32] وكذلك بالقرب من مدينة شيلينهوت [ط 28] في منطقة منغوليا الداخلية في الصين.[26]

الإنتاج

أُنتِجَ في سنة 2011 حوالي 118 طن من الجرمانيوم عالمياً، وكانت للصين الحصّة الأكبر منه (80 طن)، ثمّ روسيا (5 طن)، ثمّ الولايات المتحدة (3 طن).[22] بيّنت دراسة أن كمّية تقارب 10 آلاف طن على الأقلّ من الجرمانيوم قابلة للاستخراج من احتياطات الزنك، خاصّةً من توضّعات الكربونات المستضيفة لخامات الزنك والرصاص.[ط 29]، في حين أنّ حوالي 112 ألف طن موجود في احتياطات الفحم في العالم.[33][34] من جهةٍ أخرى، بلغت كمّيّة الجرمانيوم المستحصلة من إعادة التدوير نسبة 35%.[26]

يُستحصَل على الجرمانيوم على هيئة ناتجٍ ثانويٍّ أثناء معالجة السفاليريت خام الزنك، حيث يُرَكّز بنسبةٍ تصل إلى 0.3%؛[35] وخاصّةً من التوضّعات الجيولوجية الغنيّة بفلزات الزنك والرصاص والنحاس والباريوم.[36] هناك مصدرٌ آخرٌ للجرمانيوم، وهو من الرماد المتطاير [ط 30] من مداخن محطّات الطاقة العاملة على الفحم الحاوي على الجرمانيوم؛ وهذا الأسلوب من استحصال الجرمانيوم مستخدمٌ بشكلٍ واسعٍ في روسيا والصين.[37] تقع توضّعات الجرمانيوم الجيولوجية من الفحم الحاوي على الجرمانيوم في روسيا في جزيرة سخالين [ط 31] في أقصى الشرق؛ في حين أنّ توضّعات الصين المناظرة توجد في مناجم الفحم البني (الليغنيت) [ط 32] في مقاطعة يونان [ط 33]، وكذلك في منطقة منغوليا الداخلية.[26]

يوجد الجرمانيوم المستخرّج من الخامات على هيئة كبريتيد، والذي يؤكسّد بأكسجين الهواء إلى الأكسيد الموافق بعملية تحميص [ط 34]:

يبقى بعضٌ من الجرمانيوم في الغبار؛ في حين أن المتبقّي يتحوّل إلى جرمانات [ط 35]، ثم يخضع مع الزنك إلى عملية تصويل [ط 36] بواسطة حمض الكبريتيك. بعد إجراء عملية تعديل [ط 37] للوسط، يبقى الزنك في المحلول، في حين يترسّب الجرمانيوم والفلزّات المرافقة في الخامة. يزال الزنك وفق عملية فيلز [ط 38]، أمّا الراسب فيعالج مع غاز الكلور أو حمض الهيدروكلوريك حيث ينتج كلوريد الجرمانيوم الرباعي (رباعي كلوريد الجرمانيوم):

يخضع رباعي كلوريد الجرمانيوم بعد ذلك إمّا لعمليّة حلمهة [ط 39] إلى الأكسيد (GeO2)، أو ينقّى بعملية تقطير بالتجزئة [ط 40] ثم يُحلمَه لاحقاً.[37] بذلك يُستحصَل على ثنائي أكسيد الجرمانيوم، وتعتمد الخطوة اللاحقة على درجة نقاوة الأكسيد، فمن أجل صناعة أشباه الموصلات، يجب أن يكون الجرمانيوم مرتفع النقاوة، لذلك تُجرى عملية الاختزال للمادَة الأوَليَة النقيَة بالهيدروجين:

أمَا الجرمانيوم المستخدَم في صناعة السبائك والعمليّات الصناعية الأخرى، فغالباً ما تجرى عملية الاختزال باستخدام الكربون:[38]

النظائر

لعنصرِ الجرمانيوم خمسة نظائر طبيعية، وهي: جرمانيوم-70 70Ge، وجرمانيوم-72 72Ge، وجرمانيوم-73 73Ge، وجرمانيوم-74 74Ge، وجرمانيوم-76 76Ge. يعدّ النظير 74Ge أكثر نظائر الجرمانيوم انتشاراً، فالوفرة الطبيعية له مقدارها حوالي 36%؛ بالمقابل، فإنّ النظير 76Ge أقلّها وفرةً بنسبة 7%.[39] للنظير الأخير المذكور جرمانيوم-76 76Ge نشاط إشعاعي طفيف، إذ يضمحلّ وفق اضمحلال بيتا المضاعف [ط 41] بعمر نصف مقداره 1.78×1021 سنة. يؤدّي قذف النظير 72Ge بجسيمات ألفا إلى الحصول على نظير السيلينيوم 77Se، وتحرّر هذه العملية إلكترونات مرتفعة الطاقة؛[40] ولهذا السبب فإنّه يستخدَم إلى جانب الرادون من أجل البطّاريات الذرية [ط 42].[40]

هناك 27 نظيراً مشعّاً للجرمانيوم على الأقلّ، وتتراوح كتلها الذرّية من 58 إلى 89؛ أكثرها استقراراً النظير 68Ge، والذي يضمحلّ وفق عملية التقاط إلكترون [ط 43] بعمر نصف يقارب 271 يوماً؛ أمّا أقلّها استقراراً هو النظير 60Ge بعمر نصف مقداره 30 ملي ثانية. تضمحلّ أغلب نظائر الجرمانيوم المشعّة وفق اضمحلال بيتا [ط 44]؛ في حين أنّ النظيرَين 84Ge و87Ge يضمحلّان وفق عملية انبعاث البوزيترون [ط 45] وكذلك وفق انبعاث النيوترون [ط 46].[39]

الخواص الفيزيائية

عنصر الجرمانيوم

يوجد الجرمانيوم في الظروف القياسية من الضغط ودرجة الحرارة على هيئة مادّة صلبة شبيهة بالفلزّات وذات لون أبيض فضّي.[41] يدعى هذا الشكل المتآصل [ط 47] باسم الشكل ألفا (α)، وله بريق فلزّي وبنية تشبه بنية الألماس المكعّبة [ط 48].[22] وعند ضغوط تفوق 120  كيلوبار، يصبح الجرمانيوم على الشكل بيتّا (β)، والذي له بنية مشابهة لبنية الشكل بيتّا للقصدير.[42] ينتمي الجرمانيوم إلى عددٍ قليلٍ من العناصر (السيليكون والغاليوم والبزموت والإثمد) والتي تتمدّد عند تصلّبها، أي عندما تتجمّد من حالتها المصهورة فإنّ كثافتها تزداد، مثل الماء.[42]

إنّ الجرمانيوم من المواد شبه موصلة [ط 49]، وله فجوة نطاق غير مباشرة [ط 50] مثل السيليكون البلّوري. مكّنت تقنيات الصهر النطاقي [ط 51] من إنتاج الجرمانيوم البلّوري من أجل تطبيقات أشباه الموصلات وذلك بنقاوة مرتفعة جدّاً، [43] مما يجعله واحداً من أنقى المواد المنتجة.[44] وُجِدَ أيضاً أنّ لسبيكة من سبائك الجرمانيوم (مع اليورانيوم والروديوم) موصلية فائقة [ط 52] بوجود حقل مغناطيسي قويّ للغاية.[45]

يخضع الجرمانيوم النقيّ عند تطبيق جهدٍ ميكانيكيٍّ إلى عملية تغيّر في المواقع في البنية البلّورية، ممّا يؤدّي إلى انبثاق زوائد طويلة على هيئة براغي [ط 53]، والتي يشار إليها أيضاً باسم شُعَيرات الجرمانيوم [ط 54]. كانت هذه الظاهرة أحد الأسباب الرئيسية لفشل ثنائيات المساري والترانزستورات القديمة المصنوعة من الجرمانيوم، لأنّ تلك الشُعَيرات كانت تؤدّي إلى حدوث دائرة قصر [ط 55].[46]

الخواص الكيميائية

ينتمي الجرمانيوم كيميائياً إلى مجموعة عناصر أشباه الفلزات؛ وهو لا يتأكسد بأكسجين الهواء عند درجة حرارة الغرفة. إنّما يتأكسد عنصر الجرمانيوم ببطءٍ في الهواء عند التسخين إلى درجات حرارة تتجاوز 250 °س، مشكّلاً بذلك ثنائي أكسيد الجرمانيوم GeO2.[47] لا ينحلّ الجرمانيوم عند إلقائه في الأحماض الممدّدة وكذلك في المحاليل القلويّة الممدّدة، لكنّه يذوب ببطء في الأحماض المركّزة الساخنة، مثل حمض الكبريتيك أو حمض النتريك؛ كما يتفاعل بعنفٍ مع مصهور هيدروكسيدات الفلزّات القلويّة ليعطي مركّبات الجرمانات الموافقة.

غالباً ما يوجد الجرمانيوم في حالة الأكسدة الرباعية +4 في مركّباته الكيميائية، بالرغم من ذلك، فإنّه توجد بعض المركّبات الكيميائيّة في حالة الأكسدة الثنائية +2.[48] أمّا حالات الأكسدة المتبقّية (مثل +3 أو+1)، فهي نادرة جدّاً.[49] يمكن العثور على أنيونات الجرمانيوم متعدّدة الذرّات [ط 56] من نمط زنتل [ط 57] في الأنواع الكيميائية 42−Ge أو 94−Ge أو 92−Ge أو 6−[2(Ge9)]؛ والتي يمكن استحصالها من السبائك الحاوية على الفلزّات القلوية والجرمانيوم في الأمونيا السائلة بوجود ثنائي أمين الإيثيلين [ط 58] أو كريبتاند [ط 59].[48][50]

المركبات الكيميائية

هناك أكسيدان معروفان للجرمانيوم؛ الأوّل هو أكسيد الجرمانيوم الرباعي GeO2 (المعروف أيضًاً باسم ثنائي أكسيد الجرمانيوم)؛ أمّا الآخر فهو أكسيد الجرمانيوم الثنائي GeO (المعروف أيضًاً باسم أحادي أكسيد الجرمانيوم).[42] يوجد ثنائي أكسيد الجرمانيوم GeO2 على هيئة مسحوق بلّوري أبيض، وهو ضعيف الانحلال بالماء، ويُستحصَل من تحميص كبريتيد الجرمانيوم الرباعي (ثنائي كبريتيد الجرمانيوم) GeS2. يؤدّي تفاعل ثنائي الأكسيد مع القلويّات إلى الحصول على مركّبات الجرمانات.[42] من ناحيةٍ أخرى، يُستحصَل على أحادي أكسيد الجرمانيوم من تسخين ثنائي أكسيد الجرمانيوم مع عنصر الجرمانيوم عند درجات حرارة مرتفعة.[42] تتميّز أواني الزجاج المصنوعة من أكسيد الجرمانيوم والجرمانات بأنها تمتلك قيمة قرينة انكسار (معامل انكسار [ط 60]) مرتفعة في الضوء المرئي، لكنّها شفافة بالنسبة للأشعة تحت الحمراء [ط 61].[51][52]

يشكّل الجرمانيوم مركّبات الكبريتيد [ط 62] الموافقة مثل كبريتيد الجرمانيوم الرباعي (ثنائي كبريتيد الجرمانيوم) GeS2، وكذلك كبريتيد الجرمانيوم الثنائي GeS. بالإضافة إلى ذلك، فإنّ المركّبات الثنائية للجرمانيوم مع الكالكوجينات [ط 63] الأخرى معروفة، مثل مركبات السيلينيد [ط 64] GeSe وGeSe، وكذلك التيلوريد [ط 65] GeTe.[48] يُستحصَل عادةً على GeS2 على هيئة راسب أبيض عند تمرير غاز كبريتيد الهيدروجين في محلول حمضي حاوٍ على أملاح الجرمانيوم الرباعي، وهو الأسلوب الذي اكتشف به فنكلر هذا العنصر.[53] يؤدّي تسخين ثنائي كبريتيد الجرمانيوم بتيّار من غاز الهيدروجين إلى الحصول على أحادي كبريتيد الجرمانيوم GeS، وهو يذوب في المحاليل القلوية المركّزة.[42] يؤدّي صهر الجرمانيوم مع كربونات الفلزّات القلوية والكبريت إلى الحصول على مركّبات تعرف باسم ثيوجرمانات [ط 66].[54]

بنية الجرمان

يُسمَى مركّب هيدريد الجرمانيوم الرباعي باسم جرمان [ط 67]، وبنيته تشبه بنية غاز الميثان. ينتمي الجرمان إلى سلسلة من مركّبات الجرمان المتعدّدة [ط 68] ذات الصيغة العامة GenH2n+2 والشبيهة بالألكانات، ويُعرَف منها المركّبات إلى حدّ خمس ذرات من الجرمانيوم.[48] إنّ مركّبات الجرمان المتعدّدة هذه أقلّ تطايرية وتفاعلية من نظيراتها السيليكونية.[48] يتفاعل الجرمان مع الفلزّات القلويّة M في الامونيا السائلة ليشكّل صلب بلوري أبيض من MGeH3، والحاوي على أنيون GeH3.[48]

تعدّ هاليدات الجرمانيوم الرباعي من المركّبات المعروفة، وفي الشروط القياسية يوجد يوديد الجرمانيوم الرباعي (أو رباعي يوديد الجرمانيوم) GeI4 على هيئة مركّب صلب، أمّا فلوريد الجرمانيوم الرباعي (أو رباعي فلوريد الجرمانيوم) GeF4، فهو غاز، أمّا مركّبا كلوريد الجرمانيوم الرباعي (أو رباعي كلوريد الجرمانيوم) GeCl4 وبروميد الجرمانيوم الرباعي (أو رباعي بروميد الجرمانيوم) GeBr4 فيوجدان بالحالة السائلة. فعلى سبيل المثال، يُستحصَل على كلوريد الجرمانيوم الرباعي GeCl4 على هيئة سائل مدخّن عديم اللون من تسخين عنصر الجرمانيوم مع غاز الكلور.[42] من السهل على جميع رباعيات هاليد الجرمانيوم أن تتحلمه (تتحلل مائياً) إلى ثنائي أكسيد الجرمانيوم المُمَيَّه.[42] يُستخدَم GeCl4 في تحضير مركّبات الجرمانيوم العضوية [ط 69].[48] من جهةٍ أخرى، فإنّ هاليدات الجرمانيوم الثنائي جميعها معروفة أيضًاً، وهي ذات بنية صلبة متبلمرة، وذلك على العكس من هاليدات الجرمانيوم الرباعي.[48] يمكن الحصول على المركّب اللانمطي Ge6Cl16، والذي وجد أنه بنيته تحوي على وحدات من Ge5Cl12 ذات بنية مماثلة لبنية نيوبنتان.[55]

تفاعل متضمّن لأحد مركّبات الجرمانيوم العضوية.

تمكّن فنكلر، مكتشف عنصر الجرمانيوم، من تحضير أوّل مركّب جرمانيوم عضوي في سنة 1887، وهو مركّب رباعي إيثيل الجرمانيوم Ge(C2H5)4، وذلك من تفاعل رباعي كلوريد الجرمانيوم مع ثنائي إيثيل الزنك.[6] بشكلٍ مناظرٍ، يمكن الحصول على رباعي ميثيل الجرمانيوم من التفاعل مع ثنائي ميثيل الزنك. كما يمكن الحصول على مشتقّات عضوية من الجرمان مثل إيزوبوتيل الجرمان، والتي وجد أنّها أقلّ خطورة من مركّبات الجرمان في صناعات أشباه الموصلات. في مجال كيمياء الجرمانيوم العضوية تعرف أيضًاً المركّبات الوسطية النشيطة [ط 70] مثل الجذور الحرّة [ط 71]: جرميل [ط 72] وجرميلين [ط 73] (الشبيهة بأنواع الكربين) وجرماين [ط 74] (الشبيهة بأنواع الكرباين).[56][57]

الدور الحيوي

لا يعدّ الجرمانيوم أساسياً بالنسبة لصحّة النباتات أو الحيوانات؛[58] وكذلك الأمر بالنسبة للإنسان، إذ لا تُعرَف وظائف حيوية للجرمانيوم.[59] من جهةٍ أخرى، فإنّ لبعض مركّبات الجرمانيوم تأثير سمّي على الثديّيات،[60] كما يبدي سمّيّةً لأنواعِ محدّدة من البكتيريا.[41] ولكن، ووفقاً للتجارب على الحيوانات، فإنّه لا يعدّ ماسخاً [ط 75] أو مسرطناً [ط 76].[61] بالمقابل؛ لا يوجد تأثير كبير له على البيئة، ويعود سبب ذلك إلى وجوده في القشرة الأرضية بتراكيز ضئيلة في الخامات وفي المواد العضوية؛ إضافة إلى استخدامه بكمّيّات صغيرة جدّاً في التطبيقات الصناعية والإلكترونية المتعدّدة.[22]

تُسوّق بعض مركّبات الجرمانيوم العضوية واللاعضوية في الطب البديل ضمن المكمّلات الغذائية على أنّها قادرةٌ على معالجة ابيضاض الدم [ط 77] وسرطان الرئة.[17] ولكن لا توجد دلائل طبّيّة تدعم هذه الادّعاءات؛ بل على العكس من ذلك، إذ توجد بعض الشواهد التي تشير إلى أن هذه المكمّلات ضارّة؛[58] وتمثّل خطراُ على صحّة الإنسان.[62] وهناك عددٌ من التقارير التي تشير للآثار الضارّة للمكمّلات الغذائية للجرمانيوم،[59][63][64] إذ تؤدّي هذه المكمّلات الغذائية إلى حدوث اعتلال الأعصاب المحيطية [ط 78]؛[59][65] كما تؤدّي أيضاً إلى حدوث خللٍ وظيفيّ في الكِليَتين، والذي قد يتطوّر إلى قصورٍ كِلَوِيٍّ حادٍّ [ط 79]،[63][64] ويمكن أن يصل الأمر إلى حدوث وفيّات.[66] لا تزال آلية التأثير السمّيّ للجرمانيوم ومركّباته غير معروفة بالكامل، ولكن لوحظ وجود تأثيرات على الميتوكندريون [ط 80] في الخلايا عند التعرّض لثنائي أكسيد الجرمانيوم على سبيل المثال.[67][68] كما توجد هناك أبحاث تدرس إمكانية تأثير الجرمانيوم ومركّباته على أداء عمل إنزيمات معيّنة، مثل غلوتاثيون S-ترانسفيراز [ط 81].[69]

الأهمية الاقتصادية

يُصنّف الجرمانيوم ضمن الفلزّات الحرجة بالنسبة للتقانة [ط 82]؛[70] وذلك لدخوله في عدد التطبيقات المهمّة في مجالات الإلكترونيات المتقدّمة والبصريات، خاصّةً في عصر التحوّل إلى الطاقة البديلة. فلهذا العنصر أهمّيّة كبيرة، خاصّةً بالنسبة للدول الغربية، إذ تسيطر الصين على الحصّة الأكبر (حوالي 60%) من الإنتاج العالمي من الجرمانيوم وعلى سلسلة التوريد [ط 83] المتعلّقة. لذلك فإنّ سوقَ هذا الفلز عرضةٌ للتجاذبات الجيوسياسية بين الصين والدول الغربية، وهذا ما حدث في منتصف سنة 2023، عندما وضعت الصين قيوداً على صادراتها من عنصرَي الجرمانيوم والغاليوم، ممَا أدَى إلى حدوث توتَرات سياسية مع الغرب.[71][72][73] بعد إصدار الصبن لهذا القرار، أعلنت شركة روستيخ [ط 84] المملوكة للدولة الروسية، أنها ستزيد إنتاجها من الجرمانيوم كي تلبّي حاجة الطلب المحلّي من هذا الفلزّ.[74]

الاستخدامات

تنوّعت استخدامات الجرمانيوم عالمياً في سنة 2007 بين عدّة مجالات: 35% في مجال الألياف البصرية، و30% في مجال تطبيقات الأشعة تحت الحمراء، و15% في مجال تحفيز تفاعلات البلمرة، و15% في مجال التطبيقات الإلكترونية والخلايا الشمسية، و5% في تطبيقات متفرّقة.[22]

البصريات

ليف بصري

يتميّز أكسيد الجرمانيوم الرباعي (ثنائي أكسيد الجرمانيوم GeO2) بارتفاع قيمة معامل الانكسار وانخفاض قيمة التشتّت البصري [ط 85] ممّا يجعله ملائماً بشكلٍ كبيرٍ لعددٍ من التطبيقات البصرية، مثل العدسات واسعة الزاوية [ط 86]، والأجهزة المجهرية، وفي نوى الألياف البصرية [ط 87].[75][76] حلّ ثنائي أكسيد الجرمانيوم (الجرمانيا) مكان ثنائي أكسيد التيتانيوم (التيتانيا) على هيئة عامل إشابة [ط 88] لألياف السيليكا، ممّا أدّى إلى حلّ مشكلة ارتفاع درجة الحرارة، والتي كانت تجعل الألياف البصرية هشّةً.[77] بنهاية سنة 2002 شكّلت صناعة الألياف البصرية قرابة 60% من الاستخدامات السنوية للجرمانيوم في الولايات المتّحدة.[76] تُصنّف سبيكة الجرمانيوم والإثمد والتيلوريوم [ط 89] ضمن المواد متَغيُّرة الطور [ط 90] المستخدَمة للتطبيقات البصرية مثل أقراص الفيديو الرقمية القابلة للتسجيل [ط 91].[78]

لكون الجرمانيوم شفافاً في مجال الأطوال الموجية في طيف الأشعّة تحت الحمراء، فإنّه يعدّ من المواد البصرية المهمّة، والتي يمكن تشكيلها على هيئة عدسة للكاميرات الحرارية [ط 92] والرؤية الليلية [ط 93].[38] يُستخدَم الجرمانيوم أيضاً في أجهزة المطيافية البصرية [ط 94] والأجهزة البصرية الأخرى التي تتطلّب حساسية مرتفعة.[76] يتميّز الجرمانيوم بارتفاع قيمة معامل الانكسار (4.0)، ويجب تغطيته بمواد مضادّة للانعكاس، وخاصّةً بالمواد الكربونية الشبيهة بالألماس [ط 95]، والتي تساهم بتحسين صلادة هذه السطوح أيضاً ومقاومتها للعوامل المناخية.[79][80]

الإلكترونيات

يمكن أن يُسبَك الجرمانيوم مع السيليكون ليشكّل سبيكة السيليكون والجرمانيوم (SiGe)، والمستخدَمة بشكلٍ كبيرٍ في مجال صناعة أشباه الموصلات من أجل الدارات المتكاملة [ط 96]. تُستغَل هذه الدارات خواص الوصلات غير المتجانسة (الوصلات المتغايرة [ط 97]) الأسرع من الوصلات المتجانسة المعتمدة على السيليكون فقط.[81] يمكن أن تُصطَنع رقائق SiGe عالية السرعة بتكاليف منخفضة وبنفس التقنيات التي تُصطَنع بها الدارات السيليكونية.[22]

تعدّ الألواح الضوئية الجهدية مرتفعة الكفاءة من التطبيقات المهمّة للجرمانيوم. إذ بما أن ثابت الشبكة البلّورية [ط 98] شبه متطابق بين الجرمانيوم وزرنيخيد الغاليوم [ط 99] GaAs، لذلك يمكن استخدام ركائز من الجرمانيوم من أجل صناعة خلايا GaAs الشمسية.[82] يعدّ الجرمانيوم أيضاً ركيزةً [ط 100] في الرقائق من أجل الخلايا الضوئية الجهدية متعدّدة الوصلات مرتفعة الكفاءة من التطبيقات الفضائية، مثلما كان عليه الحال في متجوّل استكشاف المرّيخ [ط 101]، والذي استخدمت فيه وصلات ثلاثية من زرنيخيد الغاليوم على خلايا من الجرمانيوم.[83] من تطبيقات الجرمانيوم الإلكترونية أيضاً دخوله في تركيب الثنائيات الباعثة للضوء (LED) [ط 102] مرتفعة السطوع.[22]

هناك تطبيقات مستقبلية محتملة لركائز الجرمانيوم على العوازل [ط 103]، إذ يُنظَر إليها على أنّها بدائل محتملة للسيليكون في الرقائق المصغّرة [ط 104].[22][84] من التطبيقات الإلكترونية الأخرى للجرمانيوم دخوله في تركيب المواد الفسفورية [ط 105] في المصابيح الفلورية [ط 106]،[43] وكذلك في الثنائيات الضوئية (LEDs).[22] من جهةٍ أخرى، لا تزال الترانزستورات العاملة بالجرمانيوم مستخدمةً في بعض وحدات المؤثّرات [ط 107] من الموسيقيين الراغبين في إعادة إصدار الصوت المميّز للتشوّه (التشويش) [ط 108]، الذي كان يصدر في الأيّام الأولى لموسيقى روك أند رول.[85] في تطبيقٍ آخر، تُدرَس احتمالية استخدام الجرمانيوم في تركيب الحسّاسات الإلكترونية الحيوية القابلة للزرع [ط 109] والقابلة للتحلّل الحيوي [ط 110] داخل الجسم، وذلك مكان الزرعات المعتمدة على أكسيد الزنك وأكسيد الزنك والغاليوم والإنديوم.[ط 111].[86]

متفرقات

قارورة من بولي إيثيلين تيرفثالات (PET).

يُستخدَم ثنائي أكسيد الجرمانيوم في بعض الدول ضمن الحفّازات من أجل تحفيز تفاعلات البلمرة لإنتاج بولي إيثيلين تيرفثالات [ط 112].[87]

نظراً للتشابه بين السيليكا SiO2 وثنائي أكسيد الجرمانيوم GeO2، فإنّ الأخير يُستخدَم في أعمدة الكروماتوغرافيا الغازية [ط 113].[88]

يزداد استخدام الجرمانيوم مؤخّراً في السنوات الأخيرة في سبائك الفلزّات الثمينة، مثل الفضّة الإسترلينية [ط 114]، ممّا يحسّن من الخواصّ المقاومة لفقدان اللمعان والتآكل؛ كما يحسّن من الخواص الميكانيكية.[22]

يمكن لجهاز مكشاف شبه الموصلات [ط 115] المصنوع من بلّورة أحادية [ط 116] مرتفعة النقاوة من الجرمانيوم أن يكشف بدقّة عن مصدر الإشعاع ويحدّده، ممّا يمكّن من استخدامه في أمن المطارات على سبيل المثال.[89] يدخل الجرمانيوم في تركيب مستوحدات اللون البلّورية [ط 117] من أجل خطوط الأشعة [ط 118] المستخدمة في تشتّت النيوترون [ط 119] وحيود الإشعاع السنكروتروني [ط 120]؛ إذ تتفوّق انعكاسية الجرمانيوم على السيليكون في هذه التطبيقات.[90] كما تُستخدَم البلّورات الأحادية من الجرمانيوم مرتفع النقاوة في تركيب كواشف مطيافية غاما [ط 121] المستخدمة في مجال الأبحاث عن المادة المظلمة.[91] كما تُستخدَم بلّورات الجرمانيوم في أجهزة مطيافية الأشعّة السينية [ط 122] من أجل الكشف عن الفوسفور والكلور والكبريت.[92]

يعدّ الجرمانيوم من المواد المهمّة والواعدة في مجال الإلكترونيات الدورانية [ط 123] وتطبيقات الحوسبة الكمومية [ط 124] المعتمدة على اللف المغزلي [ط 125]،[93] إذ بيّنت دراسات أخيرة أنّ اللفّ المغزلي في الجرمانيوم يتميّز بزمن اتّساق [ط 126] طويل جدّاً.[94]

المخاطر

لا يعدّ الجرمانيوم من المواد الخطرة، إلّا أنّ لبعض مركّبات الجرمانيوم المُصطَنعة فعّالية كيميائية كبيرة، وتمثّل خطراً على الصحّة إبّان التعرّض لها. على سبيل المثال، فإنّ لمركّبي كلوريد الجرمانيوم الرباعي (رباعي كلوريد الجرمانيوم) والجرمان (رباعي هيدريد الجرمانيوم)، واللّذَان يوجدان في الشروط العادية في الحالة السائلة والغازية، على الترتيب، خواصّاً مهيّجة للعينين والجلد والرئتين عند التعرّض المباشر لهذه الكيماويات.[95]

طالع أيضًاً

الهوامش

ملحوظات
مصطلحات

المراجع

🔥 Top keywords: ريال مدريددوري أبطال أوروباالصفحة الرئيسيةمانشستر سيتيخاص:بحثنادي أرسنالنادي الهلال (السعودية)بايرن ميونخشيرين سيف النصرتصنيف:أفلام إثارة جنسيةسكسي سكسي لافرعرب العرامشهعبد الحميد بن باديسنادي برشلونةبرشلونة 6–1 باريس سان جيرمانمتلازمة XXXXدوري أبطال آسياالكلاسيكوكارلو أنشيلوتيأنطونيو روديغرإبراهيم ديازصلاة الفجرنادي العينيوتيوبملف:Arabic Wikipedia Logo Gaza (3).svgتصنيف:ممثلات إباحيات أمريكياتيوم العلم (الجزائر)قائمة أسماء الأسد في اللغة العربيةكريستيانو رونالدوميا خليفةسفيان رحيميحسن الصباحعثمان ديمبيليالدوري الإنجليزي الممتازآية الكرسيبيب غوارديولاريم علي (ممثلة)مجزرة مستشفى المعمدانيقائمة مباريات الكلاسيكو