ரீமன் இசீட்டா சார்பியம்

பகுப்பாய்வு செயல்பாடு

கணிதவியலில், குறிப்பாக எண்கோட்பாட்டு இயலில் ரீமன் இசீட்டா சார்பியம் அல்லது ரீமன் இசீட்டா சார்பு (Riemann zeta function) என்பது முதன்மையான சார்புகளில் ஒன்று. இச் சார்பியம் ஒரு முடிவிலா கூட்டுத் தொடர். இச்சார்பியத்திற்குப் புகழ்பெற்ற இடாய்ட்சு நாட்டுக் கணிதவியலாளர் பெர்னார்டு ரீமன் (Bernhard Riemann) அவர்களின் பெயர் சூட்டப்பட்டுள்ளது. இச்சார்பியத்தின் பெயரில் உள்ள இசீட்டா (zeta) என்பது கிரேக்க மொழியிலுள்ள ஒரு எழுத்து. இந்த எழுத்தின் தோற்றம், என்பதாகும். இச்சார்பியம் இயற்பியல், நிகழ்தகவியல், பயன்முகப் புள்ளியியல் போன்ற பல துறைகளிலும் பயன்படும் ஒரு சார்பியம். இச்சார்பியம் பகா எண் தேற்றத்தோடும் தொடர்பு கொண்டது.

சிக்கலெண் தளத்தில் ரீமன் இசீட்டா சார்பியம் (Riemann zeta function) ζ(s). இச் சார்பியத்தின் மாறியாகிய s இன் நிறம் அவ்விடத்தில் ரீமன் இசீட்டா சார்பியம் கொள்ளும் மதிப்பைப் பொறுத்தது. "வலுவான" நிறங்கள் சுழி மதிப்புக்கு நெருக்கமானவற்றைச் சுட்டும். s = 1 என்னும் இடத்தில் உள்ள வெள்ளைப் புள்ளி, இசீட்டா சார்பியத்தின் "முடிவிலிக் கோலைச்" (pole) சுட்டும்; எதிர்ம மெய்யெண் அச்சிலும், Re(s) = 1/2 என்னும் முக்கியகோடுகளிலும் காணப்படும் கறுப்புப் புள்ளிகள் இசீட்டா சார்பியத்தின் (மறை) வேர்களைச் (zeros) சுட்டும். படத்தின் வலப்புறம் உள்ள நேர்ம மெய்யெண் தளத்தில் உள்ள மதிப்புகள் சிவப்பு நிறத்தில் காட்டப்பட்டுள்ளன.

ரீமன் கருதுகோள் (Riemann hypothesis) என்று அறியப்படும், ரீமன் ஊகம், தனிக்கணிதத்தில் (pure mathematics) இன்னும் நிறுவப்படாத மிக முக்கியமான கேள்விகளில் ஒன்று என்று கணிதவியலாளர் கருதுகின்றனர்.[1] இந்த ரீமன் ஊகம் என்பது ரீமன் இசீட்டா சார்பியத்தின் வேர்கள்(zeros) பற்றிய ஓர் கணித ஊகம் (நிறுவா முன்கருத்து). .

வரையறை

ரீமன் இசீட்டா-சார்பியம் என்பது என்னும் சிக்கல் எண் மாறியில் அமைந்த ஒரு சார்பியம். மெய்ப்பகுதி என்றவாறு அமையும் அனைத்து சிக்கலெண்களுக்கும் கீழே தரப்பட்டுள்ள முடிவிலித் தொடர் குவிந்து, இச்சார்பியம் -ஐத் தருகிறது.

-மதிப்புக்கு வரையறுக்கப்பட்ட இந்த முடிவிலித் தொடரின் பகுப்பாய்வுத் தொடர்ச்சியாக ரீமன் இசீட்டா-சார்பியம் வரையறுக்கப்படுகிறது.

மேலே தரப்பட்டுள்ள முடிவிலித் தொடர், எனும்போது பகுப்பாய்வுச் சார்பியமாக முற்றும் குவியும் டிரிச்லெட் தொடராகவும் (Dirichlet series) ஏனைய சிக்கலெண்களுக்கு குவியாது விரிந்து (diverge) செல்லும் சார்பியமாகவும் இருக்கும்.

குவியும் அரை-தளைத்தில் உள்ள முடிவிலித் தொடரால் வரையறை செய்யப்பட்ட இச்சார்பியம், s ≠ 1 என்ற எல்லா சிக்கல் எண்களுக்கும் பகுப்பாய்வுத் தொடர்ச்சி செய்யகூடிய ஒரு சார்பியம் என்றும், s = 1 என்னும் நிலையில், இத்தொடர் இசைத் தொடராக மாறி முடிவிலியாக விரிகின்றது எனவும் ரீமன் நிறுவியுள்ளார். ஆகவே இசீட்டா சார்பியம் என்பது ஒரு சில புள்ளிகளில் மட்டும் முடிவிலியாக மாறவல்ல, ஆனால் மற்ற இடங்களில் பகுப்பாய்வு தொடர்ச்சி செய்யவல்ல, s என்னும் சிக்கலெண் மாறியால் ஆன பொறிவிரிவு சார்பியம் (Meromorphic function) ஆகும். சிக்கலெண் எச்சம் மதிப்பு 1 கொண்ட s = 1 என்னும் இடத்தைத் தவிர மற்ற இடங்களில் சீராக மாறவல்ல சீருருவு சார்பியம் (holomorphic) ஆகும்.

இசீட்டா சார்பியத்தின் சில குறிப்பிட்ட மதிப்புகள்

s > 1 -க்கான ரீமன் இசீட்டா சார்பியம்.

2n என்னும் எந்த நேர்ம இரட்டைப்படை எண்ணுக்கும்,

இதில் B2n என்பது பெர்னூலி எண்(Bernoulli number),

ஆனால் அதுவே எதிர்ம எண்களாக இருந்தால்,

என்னும் நிலையில்

மாறி இரட்டைபப்டை எதிர்ம எண்களாக இருந்தால், இசீட்டா சார்பியம் , கரைந்து விடுகின்றது. ஆனால் ஒற்றைப் படை நேர்ம எண்களுக்கு இவ்வகையான எளிய தீர்வுகள் இல்லை.

இசீட்டா சார்பியத்தின் மதிப்பை தொகுமுறைகளின் படி பெறுவனவற்றை இசீட்டா மாறிலிகள் என்பர். சில குறிப்பிட்ட மாறிகளுக்கான இசீட்டா சார்பியத்தின் மதிப்புகளைக் கீழே காணலாம்:

இது இசைத் தொடர்.
இயற்பியலில் போசு-ஐன்சுட்டைன் உறைநிலை என்னும் நிலையை அடைய தேவைப்படும் மாறுநிலை வெப்பநிலையைக் கணக்கிடுவதில் இது பயன்படுகின்றது. இது காந்தப்பொருள்களில் காந்த ஒழுங்குறும் பொழுது நிகழும் தற்சுழற்சி அலைகளின் இயற்பியலிலும் எழுகின்றது.
இச்சமன்பாட்டை நிறுவிக்காட்டுவது இபேசல் சிக்கல் எனப்படுகின்றது. சீருறா வண்ணம் ஏதோ இரண்டு எண்களைத் தேர்ந்தெடுத்தால், அவை ஒன்றுக்கு ஒன்று பகா எண்களாக இருக்கும் நிகழ்தகவு என்ன என்னும் கேள்விக்கு விடையாக இத்தொடரின் கூட்டுத்தொகையின் தலைகீழ் மதிப்பு அமையும்.[2]
இது அப்பெரியின் மாறிலி (Apéry's constant) என்று அழைக்கப்படுகின்ன்றது.
இது வெப்பவியலில் புகழ்பெற்ற இசுட்டெவ்வான்-போல்ட்சுமன் விதி (Stefan–Boltzmann law) மற்றும் வீன் விதி அல்லது வீன் அண்ணளவு (Wien approximation) என்று அறியப்படுகின்றது.

ஆய்லரின் பெருக்குத்தொடர் வாய்பாடு

இசீட்டா சார்பியத்துக்கும் பகா எண்களுக்கும் இடையே உள்ள தொடர்பை லியோனார்டு ஆய்லர் கண்டுபிடித்தார். அவர் கீழ்க்காணும் ஈடுகோளை நிறுவினார்:

மேலுள்ளதில், வரையறையின் படி இடப்புறம் உள்ளது இசீட்டா சார்பியம் ζ(s), வலப்புறம் உள்ளது p என்று குறிக்கப்பெறும் எல்லா பகா எண்களுக்கும் பொருந்துமாறு அமைந்த முடிவிலி தொடர்பெருக்கல்

இத்தொடர் பெருக்கல் ஆய்லர் பெருக்கற்பலன் எனப்படும்:

Re(s) > 1 என்னும் தளத்தில் ஆய்லரின் தொடர்பெருக்கு வாய்பாட்டில் உள்ள இருபக்கத்தில் உள்ளனவும் குவியும். ஆய்லரின் வாய்பாட்டின் நிறுவலில் அடிப்படை எண்கணக்கியல் தேற்றம் எனப்படும் பகா எண் காரணிப்படுத்துதல் முறையும் பெருக்குத் தொடரும் மட்டுமே பயன்படுத்தப்படுகின்றன. s = 1 என்னும் நிலையில் கிடைக்கும் இசைத் தொடர் முடிவிலியாக விரிவதால், பகா எண்களின் எண்ணிக்கை முடிவிலியாக அமையும் என ஆய்லரின் வாய்பாடு சுட்டிக்காட்டுகிறது.

மாறி s என்பது முழு எண், மற்றும் சீருறாமல் தேர்ந்தெடுக்கப்படுமானால் , அவை ஒன்றுக்கு ஒன்று பகா எண்க்களாக இருக்கும் நிகழ்தகவைக் கணக்கிட ஆய்லரின் பெருக்கல் வாய்ப்பாடு உதவும்.

இந்நிகழ்தகவு:

[3]

அடிக்குறிப்புகளும் மேற்கோள்களும்

உசாத்துணை

வெளி இணைப்புகள்

🔥 Top keywords: தீரன் சின்னமலைதமிழ்இராம நவமிஅண்ணாமலை குப்புசாமிமுதற் பக்கம்சிறப்பு:Search2024 இந்தியப் பொதுத் தேர்தல்நாம் தமிழர் கட்சிடெல்லி கேபிடல்ஸ்வினோஜ் பி. செல்வம்வானிலைதிருக்குறள்தமிழக மக்களவைத் தொகுதிகள்சுப்பிரமணிய பாரதிஇந்திய மக்களவைத் தொகுதிகள்சீமான் (அரசியல்வாதி)தமிழச்சி தங்கப்பாண்டியன்சுந்தர காண்டம்தமிழ்நாட்டில் இந்தியப் பொதுத் தேர்தல், 2024பாரதிதாசன்இந்திய நாடாளுமன்றம்பிரியாத வரம் வேண்டும்முருகன்தினகரன் (இந்தியா)தமிழ்த் திரைப்படங்களின் பட்டியல் (ஆண்டு வரிசை)தமிழ்நாட்டின் சட்டமன்றத் தொகுதிகள்மக்களவை (இந்தியா)தமிழ்நாட்டின் மாவட்டங்கள்தமிழ் தேசம் (திரைப்படம்)பதினெண் கீழ்க்கணக்குஇராமர்அம்பேத்கர்விக்ரம்நயினார் நாகேந்திரன்கம்பராமாயணம்பொன்னுக்கு வீங்கிதமிழ்நாடுவிநாயகர் அகவல்திருவண்ணாமலை